aMUSE: Translating Text to Point and Click Games

Martin Cerny ! and Marie-Francine Moens

Abstract. In this demo we will show aMUSE — a system for au-
tomatically translating text, in particular children stories, to simple
2D point and click games. aMUSE consists of a pipeline of state-of-
the-art natural language processing tools to analyse syntax, extract
actions and their arguments and resolve pronouns and indirect men-
tions of entities in the story. Analysed text serves as data the game
mechanics operate on, while the story is represented graphically by
images the system downloads from the Internet. The system can also
merge multiple stories from a similar domain into a branching nar-
rative. Users will be able to both play games created by aMUSE and
create games from their own texts using the aMUSE editor.

1 INTRODUCTION

Video games are a powerful media for telling stories and for trans-
ferring experiences and feelings in a more general sense. Games are
different to most other art forms in that they require active collabo-
ration on the receiver’s part. Thus adapting a story to the video game
genre requires more than visualisation of the story events on screen:
The game mechanics must also be designed to support the story or
actively convey parts of the experience.

Recent research has shown that both game design and adaptation
of text to game can be, to some extent, performed automatically.
Most of the work so far either a) focuses on the game mechanics and
does not consider the story of the game, or b) uses a large amount of
domain-specific knowledge.

In this demo we will show aMUSE — a system that can auto-
matically translate stories given in natural language to simple games
without using any domain-specific knowledge. As our focus is on the
story, we have chosen to generate games in the 2D point and click
adventure genre. Games in this genre are inherently story-driven and
consist of the player clicking on various objects to trigger interac-
tions. If the correct interaction is found, the story progresses further.
We have chosen this genre as it allows for a very direct mapping
between the story and the game mechanics.

2 RELATED WORK

A system called Angelina can fully automatically design simple 2D
and even 3D games [3, 2]. Game-o-matic [9] uses common-sense
knowledge databases to generate 2D arcade games involving given
topics. Our work is orthogonal to these efforts as it translates a story
written in a natural language to a predefined game mechanic instead
of generating the mechanics.

In the context of adapting a text to an interactive experience, De
Mulder et al. [4] discuss transforming patient guidelines into edu-
cational 3D experiences. The authors use a large domain-specific

2

knowledge base to provide common-sense grounding to the fragmen-
tary information present in the text.

Some progress has been made on generating 3D scenes from text
to be later used in a whole interactive experience [5]. However, the
system is not fully automatic, as it relies on crowdsourced domain-
specific knowledge to correctly position the entities in the scene and
does not produce playable experiences yet.

3 THE SYSTEM

The aMUSE system consists of four parts: editor, translator, server
and frontend. The editor is a graphical application that lets the user
enter stories, group stories to form projects and control the execution
of the translator. The translator is responsible for finding an interac-
tive representation of the story which is passed to the frontend. For
fast startup of the translator and due to some technical aspects of the
technologies used, some of the tasks performed by the translator are
carried on a dedicated server. The frontend is a simple game engine
written in Flash that visualises the game provided by the translator.

To translate a story, the translator first passes it to the server. The
most important part of server-side processing is semantic role la-
belling (SRL) using the Lund pipeline®. SRL builds upon syntactic
features of the sentence to discover semantic frames. A frame repre-
sents a concept in the sentence (the root) and annotated arguments of
the concept (the roles). We use frame definitions given in PropBank®*.

For example the sentences “The city was taken by the Romans”
and “The Romans took the city” have different syntax, but both con-
tain the frame take.01(taker : Romans, thingTaken : city). The
numbered suffix to the frame root distinguish between various mean-
ings of the same word: e. g., “I cannot take it anymore” would re-
solve to take.02(tolerator : I,thingTolerated : it). The Lund
SRL was trained on news texts, so we used transfer learning [8] to
adapt it to handle stories better.

The last crucial part of server-side processing is coreference reso-
lution using Stanford CoreNLP [6]. Coreference resolution links all
mentions of the same entity (pronouns, in particular) throughout the
whole story. The annotated text is then returned to the translator.

The translator uses the semantic frames to find possible interac-
tions for each sentence of the story. In our case, interaction is an
agent-action-target triplet, where either agent or target may be omit-
ted (but not both). All frames with roots that are verbs are candidates
for interactions. Simple hard-coded heuristics are used to choose the
agent and the target among the frame’s roles.

Now, every story is represented as a linear multigraph with sen-
tences as nodes and possible interactions as edges from the previ-
ous sentence to the sentence that defined the interaction. Optionally,
the translator can merge multiple stories to form a non-linear story

L Charles University in Prague, Czech Republic, email: cerny.m@gmail.com
2 KU Leuven, Belgium, email: sien.moens @cs.kuleuven.be

3 http://nlp.cs.lth.se/
4 http://verbs.colorado.edu/propbank/



graph. To achieve this we check all pairs of sentences A, B. If they
are from different stories, but have similar frames then for each in-
teraction (X, A) we add (X, B) to the graph and vice versa, i.e., at
these nodes the game can switch to a different story, depending on
the interaction chosen by the player. This approach was inspired by
the story generation process described in [7].

The translator then lists all the entities present in the story and
schedules at which point in the story they should appear. As corefer-
ence resolution is not flawless, we make the simplifying assumption
that two entities with the same name are the same and merge the re-
spective entity mentions. The translator then requests images for the
entities from the server which uses Spritely [1] for this task.

Now playing:

| Afly bit the bare head of a Bald Man who,
| endeavoring to destroy it, gave himself a
. heavy slap.

Screenshot of the aMUSE frontend.

Figure 1.

The frontend then uses the story graph as the basic structure to
guide gameplay. It keeps the current node in the graph and when the
user performs an interaction corresponding to any of the outgoing
edges, the story progresses to the edge’s target, i.e., every action of
the user corresponds to progressing the story one sentence further.

Originally, we intended that the user will represent the protago-
nist of the story and perform only the interactions where he is the
agent. In this case, the other interactions would be performed by the
system automatically as a kind of a cutscene. This however led to
a large number of non-interactive nodes, so we decided to alter the
game design a little: the user is no longer a character in the story;
he represents a disembodied entity, whose single goal is to make the
story happen. To do this, the user can take control of any active entity
and act (click on objects) on its behalf. The resulting interactions are
very abstract and it is almost impossible to decipher the story from
the interactions themselves. To allow the player to follow the story,
the original text of the sentence is shown in a stylized book. The
screenshot of the frontend is given in Figure 1.

So far, we have not been able to finish our work on extracting
spatial relationships between the entities from text, so the entities
only float around the screen without any structure.

4 CONCLUSION

Our system is capable to automatically translate stories written in
natural language into a specific type of playable experiences. While
many of the interactions that the system produces make sense, it also

produces absurd options, mostly due to imperfections in natural lan-
guage processing (NLP). To some extent, this can be enjoyable from
the user perspective, but there is definitely room for improvement.

The system works reasonably well on short stories targeted at very
small children, as the vocabulary and syntactical structure is simple.
However, the main reason that short stories work better than longer
ones is that the gameplay is very limited and it is not fun to click
through a longer story. Although longer stories also degrade accu-
racy of coreference resolution. Semantic and syntactic complexity of
the text is currently the most limiting factor for our tool. We tested
the system on Aesop’s fables, where the resulting gameplay was still
more often relevant to the story than not. However, when run on fairy
tales collected by Andrew Lang, which have long and complex sen-
tences and archaic language style, only a minority of the resulting
interactions were reasonable. Further issues arise from incorrect as-
sociation of words with images.

Our system can serve as a demonstration of the power (and re-
maining deficiencies) of the contemporary NLP technology. We be-
lieve that NLP is at the level where it can improve games and gaming
experience. While we are aware of game-related research using syn-
tactic analysis of texts, we are not aware of usage of SRL in this
context, although there are high possible benefits.

Examples of games created by the system can be played online’
and the system itself is fully open-source.

ACKNOWLEDGEMENTS

This research is partially supported by the EU FP7-296703 project
MUSE, student grant GA UK No. 559813/2013/A-INF/MFF and by
SVV project number 260 224.

REFERENCES

[1] M. Cook. Spritely — autogenerating sprites from the web. http://
tinyurl.com/spritelypost, (2013). Last checked: 2015-01-16.

[2] M. Cook and S. Colton, ‘Ludus ex machina: Building a 3d game designer
that competes alongside humans’, in Proceedings of the Fifth Interna-
tional Conference on Computational Creativity, pp. 54-62, (2014).

[3] M. Cook, S. Colton, A. Raad, and J. Gow, ‘Mechanic miner: Reflection-
driven game mechanic discovery and level design’, in 16th Euro-
pean Conference on Applications of Evolutionary Computation, volume
LNCS 7835, pp. 284-293. Springer, (2013).

[4] W. De Mulder, Q. Ngoc Thi Do, P. Van den Broek, and M.-F. Moens,
‘Machine understanding for interactive storytelling’, in Proceedings of
KICSS 2013: 8th international conference on knowledge, information,
and creativity support systems, pp. 73-80, (2013).

[5] R. Hodhod, M. Huet, and M. Riedl, ‘Toward generating 3d games with
the help of commonsense knowledge and the crowd’, in Tenth Artificial
Intelligence and Interactive Digital Entertainment Conference, pp. 21—
27, (2014).

[6] C. Manning, M. Surdeanu, J. Bauer, J. Finkel, S. Bethard, and D. Mc-
Closky, ‘The Stanford CoreNLP natural language processing toolkit’, in
Proceedings of 52nd Annual Meeting of the Association for Computa-
tional Linguistics: System Demonstrations, pp. 55-60, (2014).

[7]1 N. Mclntyre and M. Lapata, ‘Plot induction and evolutionary search for
story generation’, in Proceedings of the 48th Annual Meeting of the As-
sociation for Computational Linguistics, pp. 1562—1572. Association for
Computational Linguistics, (2010).

[8] Q. Ngoc Thi Do, S. Bethard, and M.-F. Moens, ‘Text mining for open
domain semi-supervised semantic role labeling’, in Proceedings of the
First International Workshop on Interactions between Data Mining and
Natural Language Processing, pp. 33-48, (2014).

[9] M. Treanor, B. Blackford, M. Mateas, and I. Bogost, ‘Game-o-matic:
Generating videogames that represent ideas’, in Proceedings of the The
Third Workshop on Procedural Content Generation in Games, p. 11,
(2012).

5http://tinyurl.com/amuseExamples



