
Computational Intelligence, Volume 59, Number 000, 2010

To Plan or To Simply React?

An Experimental Study of Action Planning in a Game Environment

MARTIN ČERNÝ, ROMAN BARTÁK, CYRIL BROM, JAKUB GEMROT

Faculty of Mathematics and Physics, Charles University in Prague, Czech Republic

Many contemporary computer games, notably action and role-playing games, represent an interesting

class of navigation-intensive dynamic real-time simulations inhabited by autonomous intelligent virtual agents

(IVAs). Although higher level reasoning of IVAs in these domains seems suited for action planning, planning is

not widely adopted in existing games and similar applications. Moreover, statistically rigorous study measuring

performance of planners in decision making in a game-like domain is missing. Here, five classical planners

were connected to the virtual environment of Unreal Development Kit along with a planner for delete-free

domains (only positive preconditions and positive effects). Performance of IVAs employing those planners and

IVAs with reactive architecture was measured on a class of game-inspired test environments of various sizes

and under different levels of external interference. The analysis has shown that planning agents outperform

reactive agents if a) the size of the problem is small or if b) the environment changes are either hostile to the

agent or infrequent. In delete-free domains, specialized approaches are inferior to classical planners because

the lower expressivity of delete-free domains results in lower plan quality. These results can help to determine

when planning is advantageous in games and for IVAs control in other dynamic real-time environments.

Key words: Action Planning, Comparison, Dynamic Environments, Intelligent Virtual Agents, Delete-

free planning

iC 2010 The Authors. Journal Compilation iC 2010 Wiley Periodicals, Inc.



TO PLAN OR TO SIMPLY REACT? 1

1. INTRODUCTION

Dynamic, real-time and continuous environments pose a big challenge for the

design of intelligent virtual agents (IVAs). 3D first person role-playing (RPG) and

shooter (FPS) games are canonical examples of a subclass of such environments

that are motion-intensive while offering the agent only limited options to interact

with the environment and with other agents. Many serious games and some cul-

tural heritage applications also fit this description (Connolly et al., 2012; Anderson

et al., 2010).

One of the fundamental problems faced by an IVA in such an environment is

the action selection problem — what to do next? In computer games, the preva-

lent approach involves reactive techniques, the most common being behaviour

trees (Champandard, 2007) and finite state machines (FSMs) (Fu and Houlette-

Stottler, 2004). Although the reactive techniques handle the dynamic aspects of

the world well, they have some limitations: their strategies are fixed and cannot be

altered during runtime, and they require a large amount of authoring work as the

world gets more complex. There is however a complementary approach to solve

the action selection problem — AI planning, which has a history of over 40 years

of academic research. Planning could theoretically allow IVAs to act smarter while

easing the design burden. In this paper we focus on the longest studied approach

— classical planning as solved by STRIPS (Fikes and Nilsson, 1972) — but mention

also HTN planning (Ghallab et al., 2004) and systems based on Markov decision

processes (MDP) as related work.



2 COMPUTATIONAL INTELLIGENCE

Unfortunately, the gap between the game AI community on the one hand and

the planning and agent communities on the other hand is still huge. There are

only a few applications of agent-based languages to game environments (detailed

in (Gemrot et al., 2013)). Also only a few attempts were made to employ classical

planning or its derivatives for controlling IVAs in dynamic environments. There

are also numerous issues to be addressed for successful application of planning

in complex domains (Pollack and Horty, 1999). While planning implementations

in FPS-like domains, including released commercial games, do exist, we are not

aware of any rigorous comparison of classical planning to reactive techniques in

such environments.

In classical planning, the state of the world is modelled by a set of logical

propositions. The agent can change the world by performing actions, each having

a set of preconditions and effects. Preconditions are propositions that must hold

for the action to be applicable, effects are either positive (propositions that be-

came true after the action executes) or negative (propositions that no longer hold,

once the action is executed). A planner then tries to find a sequence of actions that

is applicable to the initial state of the world and that transforms the initial state

into one of a set of goal states.

Since classical planning is computationally expensive, simplifications of the

general planning problem were proposed in the past. One such simplification

is that all effects of all actions are irreversible and the set of applicable actions

never shrinks. Such domains are equivalent to delete-free domains (domains with

only positive preconditions and effects). In delete-free domains, finding a plan

becomes polynomial, although finding an optimal plan is NP-complete (Barták



TO PLAN OR TO SIMPLY REACT? 3

et al., 2012). Because delete-free domains do actually correspond to problems

present in some computer games, they are considered as a special case in this

paper. One example of such problem is finding a plan to complete a set of quests

that depend on each other — completing a quest is usually an irreversible action

and it only adds new quests that are available.

The goal of this paper is to determine the conditions that allow AI planning

to outperform reactive techniques in controlling IVAs in game-like environments.

We focus on controlling individual agents and leave out of our present scope other

possible planning applications in games (squad coordination, level generation,

interactive storytelling, . . . ). We have designed a class of agent centric game-like

motion-intensive test environments that allow a smooth adjustment of their dy-

namicity. Performance of several reactive agents and agents controlled by plan-

ners is then compared under different levels of external interference. Performance

is measured by the solution time and the number of problems solved before time-

out. Note that since this work is to our knowledge a first attempt at thorough eval-

uation of planning in a game-like environment, it is necessarily simplistic. Many

more dimensions could be added to the problem, but we deliberately omitted

most of them for the sake of clarity and interpretability of results.

This paper addresses two open questions. The first question is whether IVAs

in real-time environments can actually perform better if they use a planner in-

stead of a reactive architecture for their decision making. While planning has been

adopted in some commercial games, the prominent reason to do so was not to

improve performance, but to reduce complexity of AI code and increase man-

ageability (Orkin, 2006). Intuition hints us that planners should be beneficial in



4 COMPUTATIONAL INTELLIGENCE

puzzle-like static environments, but they will be outperformed by reactive tech-

niques in fast-paced dynamic worlds with multiple “good” actions at any time.

Planners are also likely not to scale well to large problems, due to exponential

complexity of planning. We want to make such claims precise by examining a

whole spectrum of environment dynamicity and size. This comparison can hint

the game industry, under which conditions action planning is a viable choice to

improve IVAs intelligence, and academic planning community, along which lines

to improve the current planning technology. The agent community may regard it

as a preliminary test of real-time applicability of complex BDI-based languages,

such as GOAL (Hindriks, 2009) or Jason (Bordini et al., 2007), to virtual agents in

case planning is used as a part of the deliberation.

Our second question is whether limiting the planning problem to delete-free

domains may mitigate the computing requirements of action planning to a sig-

nificantly lower level while not sacrificing IVA performance in the environment.

If this is the case, planning in delete-free domains might be another option for

game developers to consider when choosing an appropriate AI technique.

To assess agent performance in practice, it is useful to present case studies at

first. However, experimental results — even if performed in silico — are subject to

substantial random noise. It is thus simple to misinterpret a random coincidence

as a significant result. Therefore it is necessary to continue with a series of rigor-

ous experiments after presenting simple case studies and to analyse the results

statistically. Here, we conduct such series of experiments and analyse the results

for significance, report respective p-values and effect sizes so that the readers

have as much information as possible to judge the believability of our conclu-



TO PLAN OR TO SIMPLY REACT? 5

sions by themselves. While some case studies of action planning in the context of

3D games were published (Champandard, 2013; Vassos and Papakonstantinou,

2011; Cartier, 2011), we consider lack of rigorous statistical analysis in game AI

experiments an issue in the field.

This paper is an extension to our previous work on comparing action planning

and reactive techniques (Cerny et al., 2013) and of the thesis (Cerny, 2012a). The

extension in this paper consists of the study of planning in delete-free domains,

detailed description of experimental design and much more detailed results and

discussion.

The rest of the paper starts with discussion of related research (Sec. 2). Af-

terwards the actual experimental setup is introduced (Sec. 3 — 5). Then the ex-

perimental results are presented (Sec. 6) and the final part discusses the results

and points out possible future research (Sec. 7, 8). Appendix A presents domain

and problem descriptions for our test case, Appendix B shows a full diagram of a

scenario we used in the experiments and Appendix C contains auxiliary tabular

data on statistical significance of the results presented.

2. RELATED WORKS

To our knowledge, the only published papers on planning implementation in

a commercial game describe the work of Orkin on F.E.A.R. and the GOAP system

(Orkin, 2006, 2003) and were published in 2003 and 2006. GOAP is a planning

system derived from STRIPS, but enhanced to better suite game needs. It has

been applied to multiple games since: a good overview of planning applications



6 COMPUTATIONAL INTELLIGENCE

in games (including GOAP and Hierarchical Task Networks planning) is given in

(Champandard, 2013). However, no research papers have been published yet.

Vassos and Papakonstantinou (2011) tested the BlackBox (Kautz and Selman,

1998) and Fast Forward (Hoffmann and Nebel, 2001) planners on a domain rep-

resenting an FPS game. They show that the planners are able to plan in sub-

second time for reasonably sized problems. However, the planning component is

not connected to any real simulation. Thompson and Levine (2009) compared the

performance of an agent employing a classical planner on several runs in static

and dynamic versions of the same environment. The paper is however focused

on the agent architecture and the performance comparison is very brief.

In (Bartheye and Jacopin, 2009), the Fast Forward and Qweak (Bartheye and

Jacopin, 2005) planners are connected to a 2D arcade game and a 3D serious

military game. However the paper is very unclear about the actual planners’ per-

formance and only states that most of the cases were solved in 4 seconds limit.

Long (2007) run a set of matches in Unreal Tournament between bots con-

trolled by FSMs and bots controlled with GOAP. Bots controlled with GOAP win

the matches more often, but no fine-grained statistical analysis has been done.

Cartier (2011) has run a series of matches between bots controlled by FSMs,

GOAP and hierarchical task networks (HTN) planning in an abstracted FPS game.

He concludes that unless the environment “waits” for agents to make decisions,

the three architectures perform quite similarly, GOAP being significantly better

than the other two by a small margin. However, only single environment size was

investigated and the domain seems very sensitive to particular FSM design tested.

The test domain also does not capture the continuous aspect of game environ-



TO PLAN OR TO SIMPLY REACT? 7

ments as the agents move in large discrete steps. This work is also available only

in French.

We know no other performance comparison of classical planning techniques

in game-like domains. There are however other related papers where different

planning approaches are included. Two of the alternative approaches to classical

planning are the hierarchical task networks (HTN) formalism and Markov deci-

sion processes (MDP).

Hawes (2004) presents an anytime planning system based on HTN and eval-

uates it in the environment of Unreal Tournament. The planner is however com-

pared only to a non-anytime planning system and not to a reactive architecture.

In (Hoang et al., 2005), a set of “Capture the flag” matches between reactive bots

and bots controlled with HTN was run. It is concluded that HTN planning brought

relative advantage to the agents, but no statistical analysis is done and too few ex-

periments were performed to give the results statistical significance. For instance

one of the results is presented as “HTN clearly dominating”, but analysing the

published results with one-sided paired t-test (McKillup, 2011) gives p-value of

0.06 and thus the result is mildly unconvincing. Other relevant test variants report

even higher p-values.

HTN planners have been also used in commercial games, most notable is the

implementation in Killzone (Champandard et al., 2009), see the aforementioned

planning overview (Champandard, 2013) for a list of other HTN applications.

Balla and Fern use Monte-Carlo based MDP solver called UTC to control be-

haviour of a group of units in a real-time strategy game (Balla and Fern, 2009).

The planner is shown to outperform simple reactive behaviour and is better or



8 COMPUTATIONAL INTELLIGENCE

comparable to a human player, but no significance analysis was done and the

number of experiment runs (5 per scenario) is not large enough to be convincing

without such analysis.

CAPIR (Nguyen et al., 2011) is a system based on MDP for controlling an agent

in a non-deterministic dynamic environment that is trying to infer human player

goals and aid him in achieving them. CAPIR’s performance was shown to be sim-

ilar to a human in both absolute performance and perceived helpfulness, but it is

not compared to any reactive architecture, and the statistical analysis performed

is only basic.

Overall, the aforementioned papers show that planning in dynamic real-time

environments is feasible and performs well against various baselines, but the pa-

pers either do not provide a rigorous comparison or do not compare planners di-

rectly to reactive techniques. This paper addresses this gap by a deep comparison

of classical and reactive planners.

To our knowledge there is no implementation of a planner for delete-free do-

mains actually connected to a game-like environment to control IVAs.

Planning techniques are also experimentally employed in games for other tasks

than action selection. For example, the MIST interactive storytelling system (Paul

et al., 2011) takes advantage of HTN planning in order to generate plots and dy-

namically repair them when changes in the world preclude their successful com-

pletion. There are many more planning implementations in the interactive story-

telling domain, but as our focus is on action selection, we do not give a thorough

review. An interested reader should consult the archives of the ICIDS conference1.

1International Conference on Interactive Digital Storytelling, http://www.icids.org/



TO PLAN OR TO SIMPLY REACT? 9

Planning has also been used for offline creation of game content. For instance

Kelly et al. (2008) implement an offline planning system based on HTN that auto-

matically generates reactive plans (scripts) to control non-player characters from

abstract description of the game world. Such uses are out of scope of this paper

and our results are not directly transferable to those domains.

Finally, a parallel endeavour is being made to evaluate use of agent-based

languages to develop game AI as in (Gemrot et al., 2013; Hindriks et al., 2012).

While this is quite a different problem, there is a common ground since multiple

agent-based programming paradigms assume that high-level deliberation, which

is often supposed to use planning, constitutes a part of the reasoning cycle. To our

knowledge, all of these works present user-studies or case-studies but they do not

directly assess usage of planning within an agent-based language, let alone in a

statistically rigorous manner.

3. EXPERIMENTAL DESIGN — ENVIRONMENT

Comparing reactive techniques to planning is a multi-faceted problem and

there are many possible experimental design options. Since the area of action

planning in dynamic game-like domains is not well studied, it is important to

focus on a well-defined problem with a limited number of parameters first. The

dynamicity of the environment was chosen as the most important factor for this

paper, while all the other factors were either left out completely or kept as simple

as possible. Still there are many ways how dynamicity may be achieved and it will

be useful to investigate the nature of dynamicity present in games first.



10 COMPUTATIONAL INTELLIGENCE

In most game-like environments, the changes are continuous — or, more pre-

cisely, can be considered continuous for almost all practical purposes. Planning

on the other hand, as other symbolic AI approaches, is discrete by nature. A natu-

ral way to discretize the dynamics is to consider only “important” changes, i.e., the

changes that would affect a chosen discrete representation of the world. On a very

abstract level, discrete dynamics may be considered as interference to the initially

static state of the (symbolic) world. Interference may be broadly categorized with

three general parameters:

• delay — mean delay between two successive changes;

• impact — the size of the impact of a single change to the state of the environ-

ment;

• attitude — whether hostile or friendly changes are dominant. The hostile changes

interfere with the agent’s goals, while the friendly changes open new possibili-

ties for the agent to reach its goals.

Table 1 summarizes a few game situations with respect to the above param-

eters. However the reader should keep in mind that such summary necessarily

involves a large amount of subjective interpretation and therefore is by no way

definitive.

[Table 1 about here.]

It is beneficial if the test environment covers the complete spectrum of in-

terference parameters, because such an environment may be considered as an

abstract model of a whole class of games. While most of the previous work in this

area focused on performing matches between two classes of agents, we let the



TO PLAN OR TO SIMPLY REACT? 11

agents in our work to solve a common problem individually. This should mitigate

the influence of implementation details of the agents on overall result trends.

Moreover, unless a model of opponent behaviour is available or unless the prob-

lem is solved as a game, an opponent may be effectively perceived as a part of the

environment. It is also important that the problem is not overly complex, so that

there is not much room for improvement of reactive techniques by fine-tuning of

the reactive plans by hand.

To keep the present work focused, we expect the world to be fully observable

and the actions available to the agent to be deterministic. However, partial observ-

ability and non-deterministic actions can be to some extent modelled as changes

in the environment (via interference).

3.1. Test Environment

[Figure 1 about here.]

Taking the aforementioned requirements into account, we proposed a sim-

ple yet flexible domain loosely inspired by the 1984 computer game Spy vs. Spy

(Anonymous author, 2012). The environment consists of rooms on a grid that are

connected by corridors. There is a door in the middle of each corridor. On both

ends of each corridor, there is a button. A button may open one or more doors

and/or close one or more doors all over the map. Initially, all doors are closed.

The agent starts at a predefined room and has a goal room to reach. The agent is

aware of all effects of all buttons. See Figure 1 for an example scenario in such an

environment. The shortest solution to go from A1 to C2 is to:



12 COMPUTATIONAL INTELLIGENCE

(1) Push the east button at A1.

(2) Go to B1.

(3) Push the west button at B1.

(4) Go to A2 (through A1).

(5) Push the north button at A2.

(6) Go to C1 (through A1 and B1).

(7) Push the west button at C1.

(8) Go to C2 (through B1 and B2), which is the goal.

Note that while this map is very small, it demonstrates that the problem at

hand cannot be solved in the most straightforward way — the solution requires

the agent to move away from the goal room twice. Also there is a dead end: if the

agent performs Steps 1 — 4 and then pushes the east button at A2 to get to B2, he

traps himself and is no longer able to reach the goal.

An easy and efficient way for introducing interference into the environment

is to repeatedly choose a subset of doors at random and alter their state. The

interference parameters are then implemented in a straightforward way. The de-

lay is the mean interval between two successive changes. The impact is the frac-

tion of the total door count that is affected (on average) by a single interference.

The attitude is represented by the friendliness parameter, which is the probability

that a single door is set to open state when it was chosen for interference. Note

that opening a single door might not be necessarily beneficial for the agent, for

instance when it opens a path to a room where the agent might get trapped.

Similarly a door that is closed might actually help the agent if it forces him to take



TO PLAN OR TO SIMPLY REACT? 13

a safer path. Nevertheless, averaging over large amount of interference, opening

door is definitely friendly, while closing a door is not.

3.2. PDDL Representation

The most widely accepted formalism for expressing classical planning domains

is PDDL (Fox and Long, 2003) — the language used at the International Planning

Competition (IPC). Since all of the planners chosen for experiments transform

all domains to ground representations (no variables) internally, the planning do-

mains for experiments were created as grounded from the start.

We will call the most straightforward PDDL representation standard as op-

posed to delete-free described in the next section. In the standard representation

the agent position is expressed with a set of “at” atoms and the door status with a

set of “adjacent” atoms. “move” actions are available for each pair of neighbouring

rooms and there is a “push” action for each button, which may change the “ad-

jacent” status of the rooms. An example domain and a problem in the standard

representation are given in Appendix A.

3.3. Delete-free Domains

One of the experiment goals was to separately evaluate planner performance

in delete-free domains (domains with only positive effects and preconditions).

Note that a domain is equivalent to a delete-free domain, if and only if it contains

no reversible actions and the set of applicable actions never shrinks by perform-

ing an action. Note that the standard representation of any map is not delete-

free, because the move action itself is reversible by its very definition. However



14 COMPUTATIONAL INTELLIGENCE

simplified maps where buttons only open doors and do not close them may be

represented by a delete-free domain, if we change the way we represent move-

ment.

In our delete-free representation, the predicates for adjacency stay the same,

so do the actions for pushing buttons (except they are not permitted to close

doors), but instead of explicitly reasoning about its actual position, the agent rea-

sons about the set of locations reachable from the agent’s current position. In the

initial state, only the agent’s current location is marked as reachable. Then for

every pair of neighbouring rooms A and B , there is a “reach” action that adds B to

the set of reachable locations under the condition that:

• A is already reachable and

• the door from A to B is open, that is, if “adjacent” holds for A and B .

Thus we have no negative effects and no negative preconditions. Because but-

tons may not close doors, the set of locations reachable from the agent’s current

position may only grow. The problem at hand then has a solution if and only if

the goal room is eventually added to the set of reachable locations, so the repre-

sentation is both correct and complete. An example domain and a problem in the

delete-free representation are given in Appendix A.

In further text, map variants that do not contain buttons that close doors and

thus allow for a delete-free representation will be referred to as the delete-free or

shortly DF maps as opposed to the standard maps.

Unlike the standard representation, the plans that solve problems in the delete-

free representation cannot be directly interpreted as actions the agent may exe-



TO PLAN OR TO SIMPLY REACT? 15

cute in the environment. Instead, the “reach” actions are ignored and the “push”

actions are expanded to first move to the button location by a series of what-

would-be “move” action in the standard domain and then push the button. After

successfully executing such plan, the agent has not yet reached the goal room,

but the path should be open. So the last step of the plan interpretation is to find

a path from the current agent position to the goal and to execute the respective

move actions. Technically, the paths are provided during plan execution from a

separate pathfinding module. In our experiments, the time spent in pathfinding

was negligible and was not included in the timing results.

Note that planning in delete-free domains precludes reasoning about the agent’s

position at the planner level. This means that the planner does not optimize agent

movement in such representation and may well decide to push buttons at remote

locations even though closer buttons with similar effect are available. Also, the

order of an uninterrupted “push” actions sequence is arbitrary, while different

orderings often correspond to fairly different routes. This is an example of a more

general issue with delete-free domains: while they allow for faster and simpler

solution algorithms, some important aspects of the problem may not be repre-

sentable. It is of interest to what extent this will affect performance of agents using

the delete-free representation in practice.

3.4. Map Generation

The maps for the experiments were created randomly, only ensuring that in

the initial state of the map, there is always a solution path. See Algorithm 1 for the

actual procedure. Note that although every room in our map is connected to all its



16 COMPUTATIONAL INTELLIGENCE

neighbours, there may be no button opening a particular door. Such a door may

be opened only by interference. Similarly, there may be buttons that neither open

nor close any door. Once again those buttons are ignored by the agents.

Algorithm 1 The map generation algorithm.

procedure GENERATEMAP(wi d th,hei g ht , av g DoorC l ose, av g Door Open)
create square map with wi d th ×hei g ht rooms and no button interactions
g uar anteedPath ← RANDOMPATH(point(0, 0), point(width, height))
numOpens ← 0, numC loses ← 0
for all door d on g uar anteedPath do

randomly select a button b on g uar anteedPath prior to d
add opens(b,d) to map definition, numOpens ← numOpens +1

end for
while numOpens / number of buttons in map < av g Door Open do

randomly select a button b and door d
add opens(b,d) to map definition, numOpens ← numOpens +1

end while
while numC loses / number of buttons in map < av g DoorC l oses do

randomly select a button b and door d
if not PATHTHREAT(b,d , g uar anteedPath) then

add closes(b,d) to map definition, numC loses ← numC loses +1
end if

end while
end procedure

B av g DoorC l ose and av g Door Open is the average number of doors open
(closed) by a single button in the map.
B RANDOMPATH returns a path with possibly repeated rooms, the length of
the path varies from wi d th +hei g ht (the minimum of steps needed) to 3∗
(wi d th +hei g ht ).
B PATHTHREAT(b,d , g uar anteedPath) is a heuristic function that checks
whether adding closes(b,d) to the map may possibly render g uar anteedPath
impossible to pass. The function may report false positives, but when it returns
false, it is guaranteed that the path is not threatened.
B In our setting, the g uar anteedPath never required so many opens inter-
actions so that no more randomized opens interactions would be added in the
first while block — there was always a significant margin.

The standard maps for our experiments were created with the average number



TO PLAN OR TO SIMPLY REACT? 17

of doors opened/closed by a single button varying from 0.2 to 2.5. For the DF maps

the number of doors opened by a single button varied between 0.2 and 1.7 and

the number of doors closed was set to 0. The lower parameter bound represents

only slightly more interactions than those needed for a solution to exist, while the

upper bound represents a situation where nearly all of the buttons in the map

interact with multiple doors at once. The parameter range for the DF maps was

lowered a little, because the difficulty of a DF map decreases with more door

opening interactions. An example standard map generated by the algorithm is

shown in Appendix B.

4. EXPERIMENTAL DESIGN — AGENTS

This section discusses the agent design. It starts with the overall description

of the agent action selection mechanism, continues with the specifics of reactive

and planning agents tested, and finally the actual planners that were tested are

introduced.

4.1. Agent Action Selection

The agents have only two classes of actions to choose: move to a reachable

room and push a button in the current room. The details of execution of the ac-

tions are delegated to an abstract interface to the virtual world, which is the same

for all agents. This interface also includes a pathfinding module. Note that from

the experiment point of view the total time spent in pathfinding was negligible

(less than 1%).



18 COMPUTATIONAL INTELLIGENCE

Apart from the agent specific action selection mechanism there are two kinds

of reactive rules available to the agents:

(R1) If there is a clear path to the goal location then follow that path.

(R2) If there is a button in the same room as the agent that will open an unopened

door and will not close any open door, then push the button. If there are multi-

ple such buttons, one is chosen randomly.

Note that both reactive rules are designed to never increase the number of

actions required to reach a goal and are necessarily insufficient on their own to let

an agent reach the goal. It is up to the agent’s main logic to choose actions for the

non-obvious cases.

Reactive rules have a higher priority than the agent’s main logic — if the rule is

active and the conditions are met, the rule’s actions are always triggered. However,

not all agents use both rules (see below).

In the context of computer games, planning is never used as the sole decision

making mechanism, but is built on top of a reactive layer that handles high pri-

ority events where immediate reaction is vital. We thus considered using reactive

rules in both planning and reactive agents.

4.2. Reactive Agents

The overall action selection mechanism for reactive agents is shown in Algo-

rithms 2 and 3. Initially, three reactive agent types were examined with different



TO PLAN OR TO SIMPLY REACT? 19

reactive rules. After a set of preliminary experiments one instance of each type

was chosen for the final comparison. Two were chosen for their high performance

and one was chosen as a baseline:

• Inactive — the agent performs only the actions triggered by rule R1, i.e. it can

succeed only if a path to the goal is opened by chance (baseline agent).

• Random — the agent repeatedly chooses a reachable button at random, moves

to its location and pushes it. The agent uses both rules R1 and R2.

• Greedy — if it is possible to move to a place closer to the goal, the agent moves

there. The agent does not push any buttons, unless it is an action initiated by a

reactive rule; both rules are active.

Algorithm 2 The main action selection function for reactive agents.
function SELECTACTIONREACTIVEAGENT

r ul e Acti on ← EVALUATEREACTIVERULES

if r ul e Acti on 6= nil then
return r ul e Acti on

else
return SELECTACTIONREACTIVEAGENTSPECIFIC

end if
end function

B SELECTACTIONREACTIVEAGENTSPECIFIC performs an agent type specific de-
liberation (the implementation is different for each reactive agent type — see
text for further description).
B EVALUATEREACTIVERULES selects a reactive rule and returns the selected
action (Algorithm 3).

Preliminary experiments have shown that rule R1 is beneficial for all reactive

agents. All reactive agents performed better with rule R2, but except for the Greedy

agent the difference was not statistically significant in the standard maps (at 0.05

level) and in the DF maps, it was significant only for a minority of cases.



20 COMPUTATIONAL INTELLIGENCE

Algorithm 3 The reactive rules used by agents.
function EVALUATEREACTIVERULES

if r 1Acti ve and ∃ a path to goal then
return “moveToAction(goal)”

end if
if r 2Acti ve then

b ← any button in cur r entRoom, such that opens(b)∩ closedDoor s 6=
; and closes(b)∩openDoor s =;

if b 6= nil then
return “pushAction(b)”

end if
end if
return nil

end function

B The values r 1Acti ve and r 2Acti ve are true in case the respective rule is
active; otherwise it is false. The values are set specifically for each agent class.
B opens(b) is the set of all doors opened by button b, closedDoor s is the set of
all doors, that are closed in the current world state. closes(b) and openDoor s
are defined analogically.

Note that if there is interference and it is not extremely unfriendly, the Greedy

agent is likely to eventually succeed in solving a map if the agent is given enough

time. However it is also likely that this agent will produce “plans” far away from

the theoretical optimum. This is a common situation in game AI: usually plan-

ning or some other more advanced technique is not required for the agent to act

“somewhat OK”, but an advanced technique may (or may not) help the agent to

perform better.

4.3. Planning Agents

The action selection mechanism for a planning agent is shown in Algorithms 4

and 3. This algorithm is invoked for every tick of agent’s logic (approximately every

250ms). The agent translates the actual state of the world into the PDDL language



TO PLAN OR TO SIMPLY REACT? 21

and sends it to the planner. Until the planner responds, the agent initiates no ac-

tion (except for rule actions). When the plan is received, it is executed sequentially

and it is continuously checked for validity. If the check fails or if an action fails to

execute, the current plan is discarded and the planner is called to yield a new one.

The planner is never invoked, while the agent has a valid plan. This is a typical

approach in computer games using planning, as replanning is expensive and is

thus performed only when really necessary.

Preliminary experiments have shown that rule R1 is beneficial for all planning

agents, improving the fraction of the runs when the agent reached goal by several

percentage points in smaller maps and by over 30 percentage points in the largest

maps. The R2 rule showed to be more problematic. Activating R2 for planning

agents never improved the performance and it had statistically significant adverse

effect in all but the largest maps. Based on those results all planning agents used

R1 as their only reactive rule.

Note that in a dynamic hostile environment, even a freshly computed plan

may be invalid because the environment may have changed while the agent was

planning. Also, in a dynamic but friendly environment the R1 rule may be acti-

vated if a path to the goal becomes available while the agent is planning. In prac-

tice, both situations occur, especially for large maps where planning sometimes

takes over a minute.

4.4. Chosen Planners

For our experiments we have chosen five classical planners based on their

performance in recent International Planning Competition (IPC) and our subjec-



22 COMPUTATIONAL INTELLIGENCE

Algorithm 4 The action selection mechanism specific for the planning agents.
function SELECTACTIONPLANNINGAGENT

B The agent has two persistent variables: st ate that describes the current state
of the agent and pl an, which is the current plan being executed.

r ul e Acti on ← EVALUATEREACTIVERULES

if r ul e Acti on 6= nil then
return r ul e Acti on

end if
if st ate is waiting_for_plan then

return “no_op_action”
end if
if st ate is just_received_plan then

pl an ← the plan received
st ate ← executing_plan

. continues in executing_plan branch
end if
if st ate is executing_plan then

if last action failed or PLANINVALID?(pl an) then
STARTPLANNINGTHREAD

st ate ← waiting_for_plan
return “no_op_action”

else
return EXTRACTFIRSTACTION(pl an)

end if
end if

end function

B Action failures are evaluated by the environment.
B PLANINVALID? tests whether the given plan can be executed in the current
world state and if its execution reaches the goal state.
B STARTPLANNINGTHREAD translates the current world state into PDDL (the
representation is set separately for each agent) and starts the associated planner
in a background thread. Once the thread finishes, it sets the st ate variable to
just_received_plan and sends the plan to the agent.
B EXTRACTFIRSTACTION removes the first action from the plan and returns it.

tive assessment of their popularity in the game AI community. Out of the four

fastest planners at the IPC 2011 three were based on the Fast Downward plat-

form (Helmert, 2006), including the winner. The winning planner — LAMA 2011



TO PLAN OR TO SIMPLY REACT? 23

(Richter et al., 2011) — was chosen to represent this platform. The second fastest

planner at IPC 2011 was the Probe (Lipovetzky and Geffner, 2011) and so it was

chosen too. Apart from the two very recent planners, three older planners, which

have earned reasonable respect in the past years, were chosen. The first is SGPlan 6

(Hsu and Wah, 2008), which won IPC 2006. The Fast Forward (FF) planner (Hoff-

mann and Nebel, 2001), a top performer at IPC 2002, was also chosen. All four

aforementioned planners are based on forward state space search. The last in-

cluded planner is the BlackBox (BB) (Kautz and Selman, 1998) that tries to extract

solution directly from a planning graph for the problem. The extraction problem

is formulated as a SAT problem which is then solved by Walksat (Selman et al.,

1994) and Satz (Li and Anbulagan, 1997) solvers. No partial-order planner was

tested, since none has succeeded in recent IPCs neither there is (to our knowl-

edge) one with wider academic use.

In addition to those five planners, a specialized planner with a specific algo-

rithm tailored for the delete-free domains was added — the ANA* planner (Barták

et al., 2012). In contrast to the other planners, which are written in C/C++, ANA*

is written in Java.

For the DF maps, the five classical planners were tested both with the standard

PDDL representation and the delete-free PDDL representation. In the context of

DF maps, those will be referred to as DF and standard planner variants.



24 COMPUTATIONAL INTELLIGENCE

5. EXPERIMENTAL DESIGN — PARAMETERS AND ANALYSIS

This section discusses the hardware and software setup for the experiments,

the number and the types of maps used and the actual values of interference

parameters, and statistical methods we used to analyse the results.

5.1. Hardware and Software Setup

The experiments were carried out in the virtual environment of Unreal Devel-

opment Kit (UDK) (Epic Games Inc., 2012). The agents were written in Java using

the Pogamut platform (Gemrot et al., 2009). Moving from one room to an adjacent

one takes approximately one second, while approaching and pushing a button

takes about 200ms. All the final experiments were run on a dedicated computing

server with two AMD Opteron 2431 processors (6 cores each, 2.4GHz, 64bit) and

32GB RAM, running CentOS (Linux core version 2.6). Five experiments at a time

were run. This setup did allow each planner instance and each environment sim-

ulation to have its own core to run on and left a big margin of free RAM so that the

experiments did not compete for resources.

5.2. Experiment Scale

Since the simulations run in real-time, the experiments are very time consum-

ing, especially for large maps (up to 15 minutes per run). Therefore the number of

maps was limited. Table 2 summarizes the four map types used along with their

time limits. The time limits were set (separately for each map size) to 5 times the

time needed by all planning agents on average to reach the goal without inter-

ference. The reason is that the time planning agents take to complete the map



TO PLAN OR TO SIMPLY REACT? 25

without interference is close to the shortest time the maps may be completed in

and multiplying by 5 should give a sufficient margin so that agents that do not

reach the goal in this limit can be considered incapable of reaching the goal in a

reasonable time. Our preliminary experiments indicated that our limits are suffi-

cient to let the agents reach goal in a substantial number of cases while keeping

the total time needed for the experiments bearable.

The number of actions refers to the number of grounded “push button” and

“move to adjacent room” actions. The standard maps for our experiments were

created with the average number of doors opened/closed by a single button vary-

ing from 0.2 to 2.5. For the DF maps the number of doors opened by a single

button varied between 0.2 and 1.7 and the number of doors closed was set to 0.

More details on map generation can be found in Section 3.4.

[Table 2 about here.]

The interference parameters were set based on the estimates from Table 1 and

observations from the preliminary experiments. The mean delay values were cho-

sen as 0.5, 1.5 and 3 seconds. The mean impact (fraction of the doors changed at

once) values were 0.05, 0.1 and 0.2 and the friendliness (probability a door opens)

values were 0, 0.15, 0.3, 0.5 and 0.7. More focus was kept on hostile environments

since the reactive agents clearly dominated with friendliness 0.3 and higher, as

shown by the preliminary experiments.

The actual delay and impact values during the experiment run are sampled

from a uniform distribution with zero minimum and respective mean. The ran-

domness is realized through a built in random number generator of the Java lan-



26 COMPUTATIONAL INTELLIGENCE

guage. The generator is seeded with the same number for all experiments in a

single round (experiments that differ only in the agent to be tested) so that the

resulting interferences are the same for all agents.

For each combination of map, agent, and interference parameters three ex-

periments were run with different random seeds for interferences. This led to a

total of 68,175 experiment runs taking over 145 days of computing time.

5.3. Analysis

The primary metric for evaluation of the experiments is the success rate. It

measures whether the agent managed to reach the goal before the timeout elapsed.

Note that since the environment is stochastic, all agents would eventually reach

the goal thanks to the R1 heuristic, if no time limit was enforced. The only excep-

tion is when friendliness is 0, where the agent may find itself in a dead end and no

interference will help him.

Success rate was chosen as the primary metric, because it is easy to interpret

and does not need to be rescaled to compare runs in different map sizes. Statisti-

cal results for the success rates are assessed using multiple comparisons of means

with Tukey contrasts (Hothorn et al., 2008) over an ANOVA fit with a first order

generalized linear model. In other words, we assume a binomial distribution for

the success of the agent, and that the parameters of the distribution can be de-

scribed by a linear combination of the agent properties transformed by a logit

function. For each pair of the agents, we test a null hypothesis that the means of

the binomial distributions are equal. Tukey’s contrasts correct for the increased

probability of a type I error resulting from the large amount of comparisons be-



TO PLAN OR TO SIMPLY REACT? 27

ing made. We compute the effect size simply as the difference between the two

success rates.

An important metric is also the time the agent spent from start of the simula-

tion to the moment it reaches the goal — the solution time. The solution time is

considered only for the runs where the agent actually reached the goal. To anal-

yse the solution time, a linear model is fitted to the data with solution time log

transformed to be closer to the normal distribution, and the Tukey’s HSD test

(McKillup, 2011) is performed to reveal significant differences between agent pairs.

Tukey’s HSD test performs all pairwise comparisons of means of the agents’ met-

rics, i.e. for each pair of the agents, it tests a null hypothesis that their means are

equal. Tukey’s HSD corrects for the increased probability of a type I error resulting

from the large amount of comparisons being made.

Effect size is asserted using Hedge’s g, a less biased metric derived from Co-

hen’s d (Hedges, 1981). For both Hedge’s g and Cohen’s d, effect size of 0.2 to 0.3

is usually considered a “small” effect, around 0.5 a “medium” effect and 0.8 to

infinity, a “large” effect.

However, the results for solution time should be interpreted with caution, since

the number of successful runs is likely to be different among the agents. Thus the

longest times — the ones where the agent failed to reach the goal — are effec-

tively not included. To partially remedy this, right censored accelerated failure-

time survival model (Diez, 2013) was fitted to the data using R package survival

(Therneau and Lumley, 2011). The error distribution was lognormal and multiple

comparison was performed with Tukey contrasts (Hothorn et al., 2008). The sur-

vival model takes all runs into account and is aware of the fact that unsuccessful



28 COMPUTATIONAL INTELLIGENCE

runs are to be interpreted as “time greater by unknown amount than timeout”.

The null hypothesis is that different agents would have the same mean solution

time given infinite time to solve the problem. Here, the multiplicative coefficient

by which such estimated mean solution times differ between a pair of agents (as

given by the model) is treated by us as the effect size. The results of the survival

model have the advantage of being robust with respect to the choice of the time

limit, as long as a large amount of runs is completed within the limit.

To measure the computing power needed by the agents we measure the time

the agents spent deliberating. It is however to be expected, that an agent that

spends more time solving a map, will also spend more time deliberating simply

because it runs longer. For this reason, the time is not measured absolutely but

rather as a fraction of the total running time. The term deliberation time will refer

to this fraction. Deliberation time is taken for both successful and unsuccessful

runs and includes all processing related to deliberation (e.g. translating world

state to PDDL). This related processing however took less than 5% of the delib-

eration time in all but few runs and less than 1.5% on average (with the exception

of LAMA 2011 planner, see below). The deliberation time does not include the

processing performed by the interface between agent’s action selection and the

virtual world. Almost 100% of the time spent in the interface corresponds to find-

ing low-level paths in the virtual environment when executing “move” actions.

The time spent in these pathfinding calls was however negligible when compared

to the time spent by planning and did not in any way slow the execution of the

plan down. The purpose of deliberation time is to compare different planners in

terms of computing power needed.



TO PLAN OR TO SIMPLY REACT? 29

6. RESULTS

In the preliminary runs, the LAMA 2011 planner performed very poorly (worse

than Random agent and only slightly better than Inactive agent). The main rea-

son is that the Fast Downward platform carries out a quite costly translation of

the PDDL input to different formalism before starting the actual planning. The

pre-processing of our domains took from several hundred milliseconds to several

seconds, which is a big performance hit, considering the interference delays. To

save computing time, LAMA 2011 was removed from further experiments.

This section continues with the analysis of overall agent performance in the

standard maps, then similar analysis is performed for DF maps and finally the

effect of various interference parameters is discussed.

6.1. Overall Performance — Standard Maps

Averaging success rate over all standard maps (Table 3, row “Total”) shows that

all planners perform very similarly to each other and to Greedy. SG, FF, BB and

Greedy are not significantly different and thus share the first place. All the other

differences in row “Total” are significant (all p < 10−3).

[Table 3 about here.]

Inspecting the results for individual map sizes shows that the planners domi-

nate by large amount in small and medium maps, but yield lead to Greedy in large

and 13×13 maps. The Inactive baseline bot showed that in many cases no smart

acting is required to complete a map. The success rates of planning agents are

not generally significantly different from each other, but nearly all of the other



30 COMPUTATIONAL INTELLIGENCE

differences are significant with p < 10−3. For detailed significance analysis see

Tables 15 and 16 in Appendix C. The performance of each agent was similar across

individual maps of the same size.

While the success rate of planning agents decreases with the growing map

size, the success rates of Greedy and Inactive behave differently — their success

rate is higher for 13×13 maps than for the large ones. Examining the results more

closely (see Figure 2) reveals that the raise of the time limit with growing map

size was larger than the raise of the mean solution time for Greedy and Inactive:

In small, medium and large maps, Inactive and Greedy agents reached the goal

shortly before the respective timeout in many runs, indicating that the success

rate is likely to grow if they were given more time. For 13×13 maps, most of the

runs finished long before the timeout.

Although the success rate of the reactive agents in smaller maps would likely

grow if the time limit was increased, the analysis of the survival model (see below)

indicates that planning agents would still outperform reactive agents in small

and medium maps. Similar observation can be made intuitively by examining

Figure 2 — as the histograms of reactive agents are very flat (in log scale), we can

reasonably expect that even a two fold increase/decrease in the time limit would

change their success rate only by several percentage points, while the success rate

of planning agents would be even less affected, as the bulk of their runs finished

long before the time limit.

[Figure 2 about here.]



TO PLAN OR TO SIMPLY REACT? 31

The solution times are presented in Table 4. Most of the solution time differ-

ences are significant at 0.05 level, for detailed significance results and effect sizes

see Table 17 in Appendix C. The results show that when the planning agents did

manage to reach the goal, they were faster than reactive agents in all map sizes.

The effect size is small or negligible among the planning agents and medium to

large between all planning and all reactive agents, except for 13× 13 where the

effect sizes diminish, probably in connection with lower number of successful

agent runs. As mentioned above, it is tricky to interpret this result due to the un-

even number of successful runs and thus we leave further analysis to the survival

model.

[Table 4 about here.]

Table 5 shows the ordering of agents based on significant differences of the

survival model, for detailed significance results and effect sizes see Table 18 in

Appendix C. The survival model produces results similar to the success rate for

small, medium and 13× 13 maps, but for the large maps, there is an important

difference: BB is considered to share the first place with Greedy, and Greedy is not

significantly better than FF and SG. Thus it is possible to conclude that while BB,

FF and SG have lower success rate than Greedy in large maps, they compensate

this with a shorter solution time. The overall similarity to the results of our success

rate analysis also indicates that the findings of the success rate analysis would be

similar even if the time limits were chosen differently.

[Table 5 about here.]



32 COMPUTATIONAL INTELLIGENCE

The deliberation time results are shown in Table 6. For reactive agents, the

time spent deliberating is almost negligible — less than 0.4% of the solution time

in all cases, the planning agents however spent at least 21% of the solution time

deliberating and in some cases climbed above 50%. SG showed the least growth

of time for single planning execution with the growing map size.

An interesting thing to note is that in some instances of the 13×13 maps, the

planning agents did not complete any planner execution, but they were still able

to succeed, thanks to the R1 rule. Out of 540 runs of each agent on 13×13 maps,

this was the case in 39 runs of BB and 32 runs of Probe. These correspond to

relatively quick runs, and thus they represent cases where the agent terminated

its deliberation early on, because a path to the goal became available.

[Table 6 about here.]

[Figure 3 about here.]

6.2. Overall Performance — Delete-free Maps

In general, the results for the DF maps show similar patterns as the standard

maps, but the relative performance of reactive agents to planning agents has slightly

improved. Averaging the success rate across all map sizes (Table 7, row “Total”)

shows that Greedy agent performs best by a reasonable margin and ANA* is worse

than all other agents except Inactive, which is the worst. All those differences are

significant (all p < 0.01), but most of the other differences are not. The perfor-

mance of each agent was similar across individual maps of the same size.

Similarly to the standard maps, the planning agents outperform all reactive



TO PLAN OR TO SIMPLY REACT? 33

agents in small maps, but their performance degrades with growing map size,

yielding the lead position to the Greedy agent for large maps (Table 7). Nearly all

differences among the classical planning agents (both DF and standard variants)

are not significant. ANA* on the other hand is almost always significantly different

than the rest and so are Greedy and Inactive (p < 0.05).

In many cases DF variants of planning agents perform worse than the stan-

dard ones (although the difference is not significant). There are two possible rea-

sons for this: the difficulties in interpreting a DF plan (see Section 3.3, page 15)

and small to negligible increase in planner performance on DF problems. As we

show in further analysis, both seem to play a role.

Quite notably the performance of ANA* degrades very quickly. This is most

likely because ANA* does not return, until it finds an optimal plan. Interestingly,

the DF variants of planning agents almost never beat their standard counterparts.

Similarly to the standard maps and for the same reason, the actual success

rate of reactive agents is larger in 13×13 maps than in the Large maps (Table 7,

Figure 3). Once again, the analysis of survival model (see below) and the his-

tograms indicates that the results would be similar even if the time limit differed.

Surprisingly, the random agent has performance very similar to that of the worst

planning agents. This is probably due to the fact that since the buttons cannot

close the doors, just pushing random buttons is not a bad strategy.

Comparing the actual numbers to those for the standard maps (cf. Tables 3, 4

and Tables 7, 8), shows that while in small maps agents in DF maps performed

better, for medium and larger maps, the agents have only slightly better or even

worse performance in the DF maps. This hints that the DF maps are not much



34 COMPUTATIONAL INTELLIGENCE

simpler for planners to handle and simultaneously the R2 rule does not bring

significantly better advantage in DF maps. The theoretical shift to lower problem

class2 therefore does not seem significant for practical use.

[Table 7 about here.]

[Table 8 about here.]

[Table 9 about here.]

[Table 10 about here.]

[Table 11 about here.]

Considering the solution times in the DF maps does not bring many inter-

esting results (Table 8). There are nearly no significant differences among the

planners, although the DF variants have slightly longer solution times in general,

probably due to suboptimal interpretation of DF plans. Planners are able to have

lower solution times than reactive agents in all map sizes, although in 13×13 maps

some of the planners are worse than Greedy.

For small and medium maps survival analysis (Table 9) reports similar results

to those of the success rate. In large and 13×13 maps planners are able to rank bet-

ter in survival model than by the success rate only. Note that for 13×13 maps some

of the agents were left out of the comparison, this is due the fact that their solution

time distributions were grossly non-normal (Figure 3) and their analysis was thus

impossible. However none of those was among candidates for top performers. For

small and medium maps the planners are clear leaders in the survival model, but

2Classical planning is PSPACE-complete (Bylander, 1994), while planning in DF domains is in PTIME (Barták et al., 2012).



TO PLAN OR TO SIMPLY REACT? 35

for larger maps they yield the first position to Greedy. There are also only a few

significant differences among the planners. The similarity to the results of our

success rate analysis also indicates that the findings of the success rate analysis

would be similar even if the time limits were chosen differently.

It is of interest, that while in most cases the deliberation times of the DF and

the standard variants of planners were very similar (Table 10), the DF variants

of FF, Probe and BB have significantly lower average deliberation time in 13×13

maps than their standard counterparts (p < 10−4, see Table 10) Those planners

thus seem to benefit from the delete-free representation for very large maps. The

same is however not true for SG (p > 0.9). This might be due to the fact that the

problem decomposition method used in SGPlan allowed it to exploit the delete-

free nature of the problem even in the standard representation. Also the lower

deliberation time has not resulted in better performance which hints us that while

BB, Probe and FF planners solve the delete-free problems faster in larger maps,

they are slowed down by the difficulties of interpreting a DF plan (see Section

3.3).

While ANA* degrades quickly in medium and larger maps, it spent only 5% of

solution time deliberating in small maps (other planners spent 18 – 21%). Thus for

smaller domains ANA* got close to reactive agents in terms of speed of response.

However, this did not result in a comparable increase in success rate, which once

again shows that the lower quality of plans found in the DF representation is a

major obstacle to practical applicability of DF planning. Moreover, if very quick

optimal planning in delete-free representation for small maps did not result in

superior performance, it is unlikely that switching to suboptimal planning would



36 COMPUTATIONAL INTELLIGENCE

result in superior performance in larger maps — even if the planning time shrunk

considerably.

Interestingly, the deliberation time of ANA* is lower in large maps than in

medium maps. This is likely because the planning time for ANA* grew faster from

small to medium maps than the timeout, but in large maps the timeout grew

faster than the ANA* planning time.

In some instances of the 13×13 DF maps, the planning agents did not com-

plete any planning runs, but were able to succeed thanks to the R1 rule only. Out

of 810 runs of each agent on 13× 13 DF maps, this was the case in 209 runs of

ANA*, 180 runs of BB, 1 run of BB-DF, 1 run of FF, 2 runs of FF-DF, 123 runs of

Probe, 69 runs of Probe-DF, 2 runs of SGPlan and 1 run of SGPlan-DF. Similarly to

standard domains, these correspond to relatively quick runs, where a path to the

goal became available before the agent completed its initial planning.

Unlike in the standard domains, there were also cases when the agents did

not complete any planning run on the 13×13 map, but did not succeed: 338 for

ANA*, 255 for BB, 1 for BB-DF and 1 for Probe. These are the cases where the agent

interrupted its planning, because a path became available, but the path was later

blocked by interference and the agent took too long to find a solution in the new

situation and either was once again interrupted by R1 or the time ran out. This

once again hints that the DF maps were in some sense harder for the agents than

the standard maps, probably due to smaller number of buttons opening doors. In

addition, ANA* did not complete any planning computation in 190 unsuccessful

and 80 successful runs on large maps and in 192 unsuccessful and 100 successful

runs on medium maps, but that is probably due only to its low performance.



TO PLAN OR TO SIMPLY REACT? 37

6.3. Performance and Dynamicity

In this section we focus mostly on analysing the success rate. Since the survival

model is robust to a different choice of time limit and the results for the success

rate are close to the results of the survival model, it indicates that our choice of

the time limit lets us generalize the results drawn from analysing the success rate.

All the interference parameters have statistically significant impact on the agent

performance (all p < 0.01 for both metrics); see Tables 11 and 12 for the actual

effect sizes for SG and Greedy. Since the results were very similar for all planning

agents, SG was taken as a representative. In general, friendliness is unsurprisingly

the most important factor. For SG, impact and delay also play an important role,

but for Greedy their effect is only marginal. The effect size of the combination

of delay and impact is small, because the effect of combination is strongly de-

pendent on friendliness. Both impact and delay show large effect sizes in com-

bination with friendliness, but for SG and friendliness levels below 0.5, the larger

impact mitigates the effect of small changes in friendliness. For Greedy the larger

impact improves performance for all friendliness levels. Note that larger friend-

liness might not improve the solution time, because larger friendliness alters the

number of runs where the agent reached the goal, but some of the “newly added”

successful runs might have longer solution times. This is just another issue with

the solution time metric.

It has been already noted that concerning the success rate, the Greedy bot per-

formed the best on average. However, in hostile environments (friendliness = 0)

and in less dynamic environments (delay = 3s), the planners prevailed. This effect



38 COMPUTATIONAL INTELLIGENCE

was more dramatic in the standard maps than in the DF maps. The differences

between different planners were very small and followed the same overall trends.

Figure 4 shows a plane fitted through the average success rates of SG and

Greedy bots in the standard maps, depending on the environment friendliness

and the interference delay. It shows the principal difference between the reactive

and planning approaches in handling dynamicity. While the success rate of the

Greedy agent grows with the shorter interference delays, the success rate of SG

decreases quite steadily. There is a minor exception to this rule at the friendli-

ness level 0, because in such a setting the environment dynamics cannot bring

the reactive agent any new opportunity. Note that the Inactive agent has similar

properties to Greedy, while Rand is similar to planning agents.

[Figure 4 about here.]

In the DF maps the trends are very similar, although the performance of Greedy

agent degrades much slower with the growing delay (Figure 5). There are no no-

table differences between the DF and the standard variants of planners and ANA*

behaves similarly to other planners, although with a lower overall success rate.

[Figure 5 about here.]

The impact and delay values were chosen so that there are more combinations

that yield the same number of mean door changes per second, so it is possible

to determine whether delay or impact has a larger effect on agent performance.

The results for the success rate are presented in Table 13. They show that SG (as a

representative planning agent), Rand and Greedy all perform the same if the mean

number of door changes per second is the same and thus the effect of delay and



TO PLAN OR TO SIMPLY REACT? 39

impact may be considered identical. This is in accord with the effect sizes listed in

Tables 11 and 12 and holds also for examining only specific friendliness settings

or map sizes.

[Table 12 about here.]

As interference forces the agent to replan, it is worth examining how often did

the agents actually need to replan. Table 14 shows the number of planner exe-

cutions for the SGPlan agent, which was chosen as the representative. We report

numbers with respect to friendliness, map size and delay. Friendliness and map

size had the highest influence on the number of planner executions, the influence

of delay was smaller and the influence of interference impact was similar to the

influence of delay. The number of executions with respect to interference impact

was not reported as they provide little additional insight, while requiring a large

amount of space.

Overall, the number of planner executions is very high — in some cases it is

more than one in every two seconds. Quite unsurprisingly, more hostile environ-

ments and shorter delay times result in more planner executions. The same is true

for larger maps as plans in larger maps are longer and thus there is more time for

the interference to invalidate the agent’s plan. In fact, the number of replannings

reacts to changes in interference parameters inversely to success rate, but it is not

sufficient to explain the worse performance of planning agents in dynamic envi-

ronments on its own. For example for friendliness 0.5 and delay 3s, the number of

replannings is higher than for friendliness 0.5 and delay 1.5s. This is probably just

due to chance, but the success rate is still higher in the former case and thus the



40 COMPUTATIONAL INTELLIGENCE

increase in number of planning executions cannot be linked directly to decrease

in success rate. The correlation between the number of planner executions and

success rate, measured by Pearson’s R, is -0.42 in standard maps and -0.44 in DF

maps. The differences between DF and standard maps are once again very small

in general, signalling that in our particular case, the DF maps were not easier for

the agents.

The numbers are however inflated by the cases where the planner could not

find a solution. If no solution is found, the agent starts replanning immediately

(see Algorithm 4). In situations where the non-existence of the plan can be proved

quickly and the environment is not friendly, the agent may execute the planner a

relatively large number of times before the environment changes enough to allow

for a solution. In the case of both standard and DF 13×13 maps and friendliness

0.15 the effect of continual replanning is so strong that there is actually a higher

number of planner executions for longer delay values.

The only case when the agent does not replan immediately is when friendli-

ness is 0. In this case, the agent stops completely after the first time the planner

has found no solution, because it means that the agent will never be able to reach

the goal. This manifests in low number of planner executions for completely hos-

tile environments.

A more detailed discussion of the experiment design and complete results are

described in the thesis (Cerny, 2012a).

[Table 13 about here.]



TO PLAN OR TO SIMPLY REACT? 41

7. DISCUSSION

7.1. Main Results

The most important result is that in small (< 200 atoms and/or actions) or

hostile (friendliness = 0) or less dynamic (delay > 3s) domains, the contemporary

planning algorithms are fast enough to provide advantage over the reactive ap-

proaches concerning action planning (Table 3 and Figure 4). Examining the sizes

of our planning domains and logged planning times, we perceive the limits of real-

time applicability (planning faster than 1s) of contemporary planners somewhere

above one hundred atoms and two hundred grounded actions.

While it is still improbable that AI in a commercial game would be allowed

to consume a whole processor core, it is likely that given today’s gaming devices,

solving problems with tens of predicates and actions in real-time will be easily

manageable. Performance could be improved by a tighter integration of the plan-

ning component.

On the other hand, the results also explain why planning is not the first choice

for action selection in IVA design. Unless the environment is either changing slowly

or in an extremely hostile way, even a simple reactive approach might prove rea-

sonably efficient (Figure 4 and 5). While planning is most effective for smaller

domains, it is also easier to write specialized reactive agents for such domains.

This reduces the possible gain from implementing a planning algorithm. It is also

useful to know that the planner performance is affected similarly by interference

delay and interference impact (Table 13) — at least if the interference parameters

lie within the game spectrum as we observed in Table 1.



42 COMPUTATIONAL INTELLIGENCE

Another result is that unless the problem cannot be modelled naturally as

delete-free, involving delete-free representation may pay off only in domains that

are significantly larger than the largest we have tested, if ever (Section 6.2). This

can be because the speedup in planning is mitigated by the lower quality of plans.

For some planners there is no significant planning speedup with delete-free maps

at all. Except for the smallest maps, ANA*, a specialized planner for delete-free

domains performed very poorly, but this might be improved if it did not search

for an optimal solution.

7.2. Generalizations, Limitations

Initially we have set a spectrum to classify environment dynamicity (Table 1).

Generalizing our results with respect to this classification indicates that if the

planning domain is smaller than about a hundred atoms and/or grounded ac-

tions, contemporary planning techniques may improve IVA performance under

the whole spectrum of dynamic conditions and thus in many different game gen-

res (comparing to reactive agents similar to reactive agents used in our study).

If the domain grows larger, situation is more complicated. In less dynamic

situations, such as fulfilling a quest in a RPG game or everyday activities in en-

vironments similar to The Sims, action planning may be beneficial to IVA perfor-

mance. However if the environment is changing more frequently and does not

introduce significant hostility, the reactive approaches might prove equal or even

better. In even more dynamic situations in larger domains, action planning might

be beneficial only if the environment is extremely hostile, which is probably not



TO PLAN OR TO SIMPLY REACT? 43

the case for most games — even in FPS games a large number of changes in the

environment is friendly to the agent (e.g., item respawn).

There are nevertheless some limitations to the applicability of results of this

paper to a general case. Despite our efforts, the environment is still quite spe-

cific. The design of interferences made waiting in front of a door until it opens by

chance — which is an important part of Greedy agent operation — a viable choice,

although it is not a typical feature of a game scenario. It is also possible that the

simplicity of the environment (only two kinds of actions, simple goals) affected

the results in some way. Future studies investigating action planning by means

of contemporary academic planners in more complex conditions are needed to

pinpoint other situations when planning techniques can be fruitful.

To investigate the effect of dynamicity, we have used the success rate as a

primary metric, because it is easy to interpret. Although the success rate seems

to reflect the general trends well, it is a crude measure of performance and thus

might have hidden some important details. Future studies could benefit from

involving a real/integer valued reward signal instead of a simple success/failure.

8. CONCLUSION

We have compared action planning and simple reactive approaches as ac-

tion selection mechanisms for IVAs in dynamic, game-like environments. Perfor-

mance of four off-the-shelf classical planners and one special-purpose planner

were analysed in detail. The agents were run in the whole spectrum of dynamic



44 COMPUTATIONAL INTELLIGENCE

conditions and in environments of various sizes. As a specialized case, we have

tested environments that allow for delete-free representation.

We have shown that action planning performs better than the reactive ap-

proaches if the environment is either changing slowly, is very hostile to the agent

or is small in terms of the planning domain size. Using the delete-free represen-

tation has not proven to bring any benefit to the agents. Tested classical planners

exhibited surprisingly similar results to each other.

From the methodological perspective, the important contribution of this pa-

per is the usage of a statistical analysis allowing us to quantify the importance of

various patterns seen in the data and put our conclusions on a solid ground. At

the same time, our test environment presents a new benchmark that is arguably

closer to the real game environments than standard planning benchmarks (e.g.

International Planning Competition).

Multiple possibilities for future research are open. It would be interesting to

see if the given results hold for more extreme parameter values, larger maps and

more complex domains. For the gaming AI community, it would be advantageous

to invent other benchmarks mimicking more specific game-like scenarios and

demonstrate usefulness of planning in these scenarios using analysis similar to

ours. For the planning, agent and gaming AI communities, it would be interesting

to see how HTN planners and/or systems based on MDP perform in these scenar-

ios.

Exploring the effect of different plan validation strategies (e.g. validating only

the first action of a plan) and modifications to the reactive rules would also yield

more insights, as well as using a more diverse set of planners: As Blackbox per-



TO PLAN OR TO SIMPLY REACT? 45

formed very well on small domains, modern SAT-based planners such as Mada-

gascar (Rintanen, 2014) could be competitive even on the larger ones. Including

optimal planners for the standard domains could also be interesting, although

we suspect them to perform even worse than the satisficing ones in non-static

environments.

Another research direction is a development one. Tightly integrating a planner

with the agent, interleaving planning and execution as well as meta-reasoning

about the planning process and explicit handling of uncertainty in the world might

bring a significant performance boost. For instance, ANA* planner already has

internal anytime capabilities, but those are not exposed to the user. Exploiting

those could bring advantage to the ANA* planner.

To decide whether a reactive or a planning approach is better for IVA design

for a particular scenario, it is also important to consider what are the costs asso-

ciated with implementing either one. Is it easier to develop a reactive agent or to

construct a PDDL model? To answer this question would require a qualitatively

different analysis than we conducted in this paper.

An important side part of work on this paper was to connect classical planners

to Java and the Pogamut platform with one universal API through the develop-

ment of an open source library Planning4J (Cerny, 2012b). We hope that this tool

will help other researchers cross the gap between planning and IVAs.



46 COMPUTATIONAL INTELLIGENCE

ACKNOWLEDGMENT

This work was partially supported by the student research grant GA UK 559813/2013/A-

INF/MFF, by the SVV project number 260 224 and by the grant P103/10/1287 from

GAČR.

REFERENCES

ANDERSON, EIKE FALK, LEIGH MCLOUGHLIN, FOTIS LIAROKAPIS, CHRISTOPHER PETERS, PANAGIOTIS

PETRIDIS, and SARA DE FREITAS. 2010. Developing serious games for cultural heritage: A state-of-the-art

review. Virtual Reality, 14(4):255–275.

ANONYMOUS AUTHOR. 2012. Spy a vs. Spy (1984 video game). http://en.wikipedia.org/wiki/

Spy_vs._Spy_%281984_video_game%29. Accessed 2014-05-10.

BALLA, RADHA-KRISHNA, and ALAN FERN. 2009. UCT for tactical assault planning in real-time strategy games.

In Proceedings of the Twenty-First International Joint Conference on Artificial Intelligence, pp. 40–45.

BARTÁK, ROMAN, FILIP DVOŘÁK, JAKUB GEMROT, CYRIL BROM, and DANIEL TOROPILA. 2012. When planning

should be easy: On solving cumulative planning problems. In Twenty-Fifth International FLAIRS

Conference, pp. 405–410.

BARTHEYE, OLIVIER, and ERIC JACOPIN. 2005. New results for arithmetic constraints partial order planning.

In Proceedings of the 24th Workshop of the UK Planning and Scheduling Special Interest Group.

BARTHEYE, OLIVIER, and ERIC JACOPIN. 2009. A real-time PDDL-based planning component for video games.

In Proceedings of the Fifth Artificial Intelligence for Interactive Digital Entertainment Conference, pp.

130–135.

BORDINI, RAFAEL H, JOMI FRED HÜBNER, and MICHAEL WOOLDRIDGE. 2007. Programming multi-agent

systems in AgentSpeak using Jason, Volume 8. Wiley-Interscience.

BYLANDER, TOM. 1994. The computational complexity of propositional strips planning. Artificial Intelli-

gence, 69:165–204.

CARTIER, JEAN-FRANÇOIS. 2011. Étude comparative des planificateurs appliqués au domaine des jeux-

vidéos. Master’s thesis, Université de Montréal, Québec, Canada.

CERNY, MARTIN. 2012a. Comparing reactive techniques to classical planning for intelligent virtual agents.

Master’s thesis, Charles University, Prague, Czech Republic.



TO PLAN OR TO SIMPLY REACT? 47

CERNY, MARTIN. 2012b. Planning4J. http://code.google.com/p/planning4j/. Accessed 2015-05-

10.

CERNY, MARTIN, ROMAN BARTAK, CYRIL BROM, and JAKUB GEMROT. 2013. Reactive and planning agents in

dynamic game environments: An experimental study. In Proceedings of the 5th International Confer-

ence on Agents and Artificial Intelligence, pp. 234–240.

CHAMPANDARD, ALEX. 2007. Understanding behavior trees. In AIGameDev.com. http://aigamedev.

com/open/article/bt-overview/. Accessed 2015-05-03.

CHAMPANDARD, ALEX. 2013. Planning in games: An overview and lessons learned. In AIGameDev.com.

http://aigamedev.com/open/review/planning-in-games/. Accessed 2013-08-10.

CHAMPANDARD, ALEX, TIM VERWEIJ, and REMCO STRAATMAN. 2009. Killzone 2 multiplayer bots. In Game AI

Conference 2009.

CONNOLLY, THOMAS M, ELIZABETH A BOYLE, EWAN MACARTHUR, THOMAS HAINEY, and JAMES M BOYLE.

2012. A systematic literature review of empirical evidence on computer games and serious games.

Computers & Education, 59(2):661–686.

DIEZ, DAVID. 2013. Survival analysis in R. http://anson.ucdavis.edu/~hiwang/teaching/

10fall/R_tutorial%201.pdf. Accessed 2015-05-10.

EPIC GAMES INC. 2012. Unreal development kit. http://udk.com/.

FIKES, RICHARD E., and NILS .J. NILSSON. 1972. STRIPS: A new approach to the application of theorem

proving to problem solving. Artificial intelligence, 2(3-4):189–208.

FOX, MARIA, and DEREK LONG. 2003. PDDL2.1: An extension to PDDL for expressing temporal planning

domains. Journal of Artificial Intelligence Research, 20:61–124.

FU, DANIEL, and RYAN HOULETTE-STOTTLER. 2004. The ultimate guide to FSMs in games. In AI Game

Programming Wisdom II. Charles River Media, pp. 283–302.

GEMROT, JAKUB, ZDENĚK HLÁVKA, and CYRIL BROM. 2013. Does high-level behavior specification tool make

production of virtual agent behaviors better? In Cognitive Agents for Virtual Environments, Volume

LNCS 7764. Springer, pp. 167–183.

GEMROT, JAKUB, RUDOLF KADLEC, MICHAL BÍDA, ONDŘEJ BURKERT, RADEK PÍBIL, JAN HAVLÍČEK, LUKÁŠ

ZEMČÁK, JURAJ ŠIMLOVIČ, RADIM VANSA, MICHAL ŠTOLBA, and OTHERS. 2009. Pogamut 3 can assist

developers in building AI (not only) for their videogame agents. In Agents for Games and Simulations,

Volume LNCS 5920. Springer, pp. 1–15.

GHALLAB, MALIK, DANA NAU, and PAOLO TRAVERSO. 2004. Automated Planning: Theory and Practice,



48 COMPUTATIONAL INTELLIGENCE

Chapter Hierarchical Task Network Planning, pp. 229–252. Morgan Kaufmann.

HAWES, NICHOLAS ANDREW. 2004. Anytime deliberation for computer game agents. Ph. D. thesis, University

of Birmingham, Birmingham, UK.

HEDGES, LARRY V. 1981. Distribution theory for Glass’s estimator of effect size and related estimators. Journal

of Educational and Behavioral Statistics, 6(2):107–128.

HELMERT, MALTE. 2006. The fast downward planning system. Journal of Artificial Intelligence Re-

search, 26(1):191–246.

HINDRIKS, KOEN V. 2009. Programming rational agents in GOAL. In Multi-Agent Programming:Languages,

Tools and Applications. Springer, pp. 119–157.

HINDRIKS, KOEN V, BIRNA M RIEMSDIJK, and CATHOLIJN M JONKER. 2012. An empirical study of patterns in

agent programs. In Principles and Practice of Multi-Agent Systems. Springer, pp. 196–211.

HOANG, HAI, STEPHEN LEE-URBAN, and HÉCTOR MUÑOZ-AVILA. 2005. Hierarchical plan representations

for encoding strategic game AI. In Proceedings of the First Artificial Intelligence and Interactive Digital

Entertainment Conference, pp. 63–68.

HOFFMANN, JÖRG, and BERNHARD NEBEL. 2001. The FF planning system: Fast plan generation through

heuristic search. Journal of Artificial Intelligence Research, 14:253–302.

HOTHORN, TORSTEN, FRANK BRETZ, and PETER WESTFALL. 2008. Simultaneous inference in general para-

metric models. Biometrical Journal, 50(3):346–363.

HSU, CHIH-WEI, and BENJAMIN W WAH. 2008. The SGPlan planning system in IPC-6. In Proceedings of the

Sixth International Planning Competition, pp. 5–7.

KAUTZ, HENRY, and BART SELMAN. 1998. BLACKBOX: A new approach to the application of theorem proving

to problem solving. In AIPS98 Workshop on Planning as Combinatorial Search, pp. 58–60.

KELLY, JOHN-PAUL, ADI BOTEA, and SVEN KOENIG. 2008. Offline planning with hierarchical task networks in

video games. In Proceedings of the Fourth Artificial Intelligence and Interactive Digital Entertainment

Conference, pp. 60–65.

LI, CHU MIN, and ANBULAGAN ANBULAGAN. 1997. Heuristics based on unit propagation for satisfiability

problems. In Proceedings of the 15th international joint conference on Artifical intelligence, Volume 1,

pp. 366–371.

LIPOVETZKY, NIR, and HECTOR GEFFNER. 2011. Searching for plans with carefully designed probes. In Pro-

ceedings of the Twenty-First International Conference on Automated Planning and Scheduling (ICAPS-

2011), pp. 154–161.



TO PLAN OR TO SIMPLY REACT? 49

LONG, EDMUND. 2007. Enhanced NPC behaviour using goal oriented action planning. Master’s thesis, School

of Computing and Advanced Technologies, University of Abertay Dundee, Dundee, UK.

MCKILLUP, STEVE. 2011. Statistics explained: an introductory guide for life scientists. Cambridge University

Press, Cambridge.

NGUYEN, TRUONG-HUY DINH, DAVID HSU, WEE-SUN LEE, TZE-YUN LEONG, LESLIE PACK KAELBLING,

TOMAS LOZANO-PEREZ, and ANDREW HAYDN GRANT. 2011. CAPIR: Collaborative action planning

with intention recognition. In Proceedings of the Seventh Artificial Intelligence and Interactive Digital

Entertainment International Conference, pp. 61–66.

ORKIN, JEFF. 2003. Applying goal-oriented action planning to games. AI Game Programming Wis-

dom, 2(1):217–227.

ORKIN, JEFF. 2006. Three states and a plan: the AI of FEAR. In Game Developers Conference, Volume 2006,

pp. 1–18.

PAUL, RICHARD, DARRYL CHARLES, MICHAEL MCNEILL, and DAVID MCSHERRY. 2011. Adaptive storytelling

and story repair in a dynamic environment. In Proceedings of the 4th International Conference on

Interactive Digital Storytelling, pp. 128–139.

POLLACK, MARTHA E., and JOHN F. HORTY. 1999. There’s more to life than making plans. AI Maga-

zine, 20(4):71–83.

RICHTER, SILVIA, MATTHIAS WESTPHAL, and MALTE HELMERT. 2011. LAMA 2008 and 2011. In Seventh

International Planning Competition (IPC 2011), Deterministic Part, pp. 50–54.

RINTANEN, JUSSI. 2014. Madagascar: Scalable planning with sat. In The 2014 International Planning

Competition, pp. 66–69.

SELMAN, BART, HENRY A KAUTZ, and BRAM COHEN. 1994. Noise strategies for improving local search.

In Proceedings of The Twelfth National Conference on Artificial Intelligence, pp. 337–343.

THERNEAU, TERRY, and THOMAS LUMLEY. 2011. Survival analysis, including penalised likelihood. http:

//CRAN.R-project.org/package=survival. Accessed 2015-05-10.

THOMPSON, TOMMY, and JOHN LEVINE. 2009. Realtime execution of automated plans using evolutionary

robotics. In IEEE Symposium on Computational Intelligence and Games, pp. 333–340.

VASSOS, STAVROS, and MICHAIL PAPAKONSTANTINOU. 2011. The SimpleFPS planning domain: A PDDL

benchmark for proactive NPCs. In Workshops at the Seventh Artificial Intelligence and Interactive

Digital Entertainment Conference, pp. 92–97.



50 COMPUTATIONAL INTELLIGENCE

Appendix A

A standard PDDL domain representation of a simple environment with two
rooms (A0, A1) and a button (But ton1) that opens the door between them:

(define (domain SimpleStandardDomain)
(:requirements :strips)

(:predicates
(at_A0)
(at_A1)
(adjacent_A1__A0)

)

(:action move_A0_to_A1
:precondition

(and (at_A0) (adjacent_A1__A0))
:effect

(and (at_A1) (not (at_A0)))
)

(:action move_A1_to_A0
:precondition

(and (at_A1) (adjacent_A1__A0))
:effect

(and (at_A0) (not (at_A1)))
)

(:action push_Button1
:precondition (at_A0)
:effect (adjacent_A1__A0)

)
)

A PDDL problem formulation in the domain above:

(define (problem SimpleProblem)
(:domain SimpleStandardDomain)

(:init (at_A0))
(:goal (at_A1))

)

A delete-free PDDL representation of the same environment:

(define (domain SimpleDeleteFreeDomain)



TO PLAN OR TO SIMPLY REACT? 51

(:requirements :strips)
(:predicates

(A0_reachable)
(A1_reachable)
(adjacent_A1__A0)

)

(:action reach_from_A0_to_A1
:precondition (and (adjacent_A1__A0) (A0_reachable))
:effect (A1_reachable)

)

(:action reach_from_A1_to_A0
:precondition (and (adjacent_A1__A0) (A1_reachable))
:effect (A0_reachable)

)

(:action push_Button1
:precondition (A0_reachable)
:effect (adjacent_A1__A0)

)
)

A PDDL problem formulation for the delete-free problem:

(define (problem SimpleDeleteFreeProblem)
(:domain SimpleDeleteFreeDomain)

(:init (A0_reachable))
(:goal (A1_reachable))

)

Appendix B

[Figure 6 about here.]

Figure 6 shows one of the small maps used in the experiments. An example

plan to reach goal, if there is no interference (as given by the Fast Forward planner)

is:

(1) Push the east button at A0.



52 COMPUTATIONAL INTELLIGENCE

(2) Go to room B0.

(3) Push the west button at B0.

(4) Go to room C0.

(5) Push the south button at C0.

(6) Push the east button at C0.

(7) Go to room E0 (through D0).

(8) Push the west button at E0.

(9) Go to room B0 (through D0 and C0).

(10) Push the east button at B0.

(11) Go to room D0 (through C0).

(12) Push the south button at D0.

(13) Go to room B1 (through C0 and B0).

(14) Push the east button at B1.

(15) Go to room E4 (through B2, B3, C3, D3, E3 and E4).

In the same situation, Greedy agent would push the east button at A0 (rule R2)

and then move to B0 (greedy behaviour), where it would push all three buttons

(R2 - all the doors closed by the buttons are closed already). At this moment there

are two equally good greedy actions: moving to B1 and moving to C0. The agent

chooses one randomly.

If the agent moves to B1, it would press east button there (R2) and then wait

for interference, as no reachable room would be closer to the goal.

If the agent moves to C0, it would press all three buttons (R2) and move to

D0. There it would press south and east buttons (R2) and move greedily to E0 and



TO PLAN OR TO SIMPLY REACT? 53

press the west button there (R2). At this moment, there is no room closer to goal

than E0 — although path to B3 is clear, it has the same distance to goal as E0 and

the Greedy agent would perform no action.

Appendix C

[Table 14 about here.]

[Table 15 about here.]

[Table 16 about here.]

[Table 17 about here.]



54 COMPUTATIONAL INTELLIGENCE

FIGURE 1. An example map representing the test environment class where the
experiments were performed.



TO PLAN OR TO SIMPLY REACT? 55

FIGURE 2. Histogram of solution times of agents in the standard maps of various
sizes. The x-axis is in log-scale. The red dashed lines indicate the timeout for the
respective map size.



56 COMPUTATIONAL INTELLIGENCE

FIGURE 3. Histogram of solution times of agents in the DF maps of various sizes.
The x-axis is in log-scale. For some agents in the 13×13 maps, the distribution is
bimodal and could not be analysed with the standard parametric methods. The
red dashed lines indicate the timeout for the respective map size.



TO PLAN OR TO SIMPLY REACT? 57

FIGURE 4. Success rate of SGPlan and Greedy bots under different dynamic
conditions in the standard maps. The dotted lines show a plane fitted to the
results of the Inactive bot. Planes are fitted to the averaged results and they are
intended only as a visual cue. Crosses mark points where the respective agent is
significantly better than the other (all p < 0.01).



58 COMPUTATIONAL INTELLIGENCE

FIGURE 5. Success rate of SGPlan and Greedy bots under different dynamic con-
ditions in the DF maps. The dotted lines show a plane fitted to the results of the
Inactive bot. Planes are fitted to the averaged results and they are intended only as
a visual cue. Crosses mark points where the respective agent is significantly better
than the other (all p < 0.01).



TO PLAN OR TO SIMPLY REACT? 59

Start

Opens door

Closes door

A

1

0

CB

Door

Button

Goal

D E

2

3

4

FIGURE 6. A scheme of one of the small maps. 51 buttons that do not open any
door were removed for clarity. Buttons that are used on the shortest path found by
a planner and their connections to doors are highlighted. The map was generated
such that the average number of doors opened per button was 0.5 and average
number of doors closed per button was 1.2.



60 COMPUTATIONAL INTELLIGENCE

TABLE 1. A subjective classification of several situations that arise in computer games by the three
parameters we devised to describe interference in the world, i.e., the changes in the world state that are not
controlled by the agent.

Situation Delay Impact Attitude

FPS shootout 0.5 – 2s Small Hostile

Quest in a RPG, no combat > 5s Medium Balanced

Getting food in The Sims 1 – 5s Small Friendly

Navigating through a spaceship falling apart 1 – 3s Large Hostile



TO PLAN OR TO SIMPLY REACT? 61

TABLE 2. Map classes for the experiments and their respective sizes in the number of rooms along with
the number of map instances tested during the experiments. The number of actions refers to the number of
grounded actions and differs in different map instances.

Map class/size
Number of maps Domain size Time limit

Standard Delete-free (atoms/actions) [s]

Small (5×5) 9 6 65 / 90 - 160 135
Medium (7×7) 9 6 133 / 190 - 336 165
Large (10×10) 9 6 280 / 390 - 720 250
13×13 4 6 481 / 650 - 1248 900



62 COMPUTATIONAL INTELLIGENCE

TABLE 3. Average success rates over all experiment runs in standard maps. Best results in each row are
highlighted.

Map BB FF Probe SG Greedy Rand Inactive

Small 0.80 0.80 0.76 0.80 0.61 0.64 0.25
Medium 0.69 0.66 0.63 0.67 0.57 0.52 0.30
Large 0.51 0.48 0.46 0.48 0.56 0.40 0.32
13 × 13 0.40 0.43 0.42 0.44 0.68 0.42 0.38

Total 0.60 0.60 0.57 0.60 0.61 0.50 0.32



TO PLAN OR TO SIMPLY REACT? 63

TABLE 4. Average solution times [s] for standard maps with standard deviation (in brackets). Best
results in each row are highlighted.

Map BB FF Probe SG Greedy Rand Inactive

Small 23.3 (13) 28.2 (19) 28.1 (15) 24.7 (14) 32.4 (19) 33.2 (18) 44.9 (20)
Medium 42.7 (27) 46.0 (30) 50.2 (31) 46.2 (30) 58.6 (38) 61.1 (36) 70.3 (39)
Large 72.1 (46) 75.7 (49) 85.6 (51) 78.5 (49) 96.5 (58) 94.8 (53) 103.8 (61)
13 × 13 214 (188) 167 (144) 206 (167) 181 (172) 253 (218) 230 (199) 255 (187)



64 COMPUTATIONAL INTELLIGENCE

TABLE 5. Ordering of agents in standard maps according to survival model of solution time. If two
agents have different ranks, their mean solution time is significantly different (all p < 0.01).
Note that in large maps ordering given by statistically significant differences is only partial: BB is significantly
better than FF and SG, but not significantly better than Greedy. At the same time Greedy is not significantly
better than either FF or SG. This is shown by overlapping ranks.

Map BB FF Probe SG Greedy Rand Inactive

Small 1–2 3–4 3–4 1–2 5–6 5–6 7
Medium 1 2–3 4 2–3 5 6 7

Large 1–2 3–4 5 3–4 2–4 6 7
13 × 13 4–6 2–3 4–6 2–3 1 4–6 7



TO PLAN OR TO SIMPLY REACT? 65

TABLE 6. Average deliberation times [%] for standard maps with standard deviation (in brackets).
Deliberation time includes path finding. Best results among planning agents in each row are highlighted.

Map BB FF Probe SG Greedy Rand Inactive

Small 21 (19) 24 (21) 23 (21) 22 (20) 0.08 (0.05) 0.11 (0.07) 0.03 (0.07)
Medium 25 (24) 26 (26) 27 (25) 27 (25) 0.08 (0.07) 0.11 (0.06) 0.03 (0.06)
Large 37 (31) 38 (30) 41 (30) 37 (31) 0.14 (0.25) 0.18 (0.11) 0.05 (0.07)
13 × 13 78 (28) 50 (36) 62 (33) 43 (36) 0.21 (0.56) 0.32 (0.42) 0.06 (0.13)

Total 34 (31) 32 (29) 34 (30) 30 (28) 0.11 (0.25) 0.16 (0.18) 0.04 (0.09)



66 COMPUTATIONAL INTELLIGENCE

T
A

B
L

E
7

.
A

ve
ra

ge
su

cc
es

s
ra

te
s

ov
er

al
le

xp
er

im
en

tr
u

n
s

in
D

F
m

ap
s.

B
es

tr
es

u
lt

s
in

ea
ch

ro
w

ar
e

h
ig

h
li

gh
te

d
.

M
ap

si
ze

A
N

A
*

B
B

B
B

-D
F

F
F

F
F

-D
F

P
ro

b
e

P
ro

b
e-

D
F

SG
SG

-D
F

G
re

ed
y

R
an

d
In

ac
ti

ve

Sm
al

l
0.

86
0.

87
0.

83
0.

87
0.

83
0.

83
0.

83
0.

86
0.

83
0.

80
0.

82
0.

31
M

ed
iu

m
0.

49
0.

70
0.

66
0.

69
0.

64
0.

64
0.

64
0.

67
0.

65
0.

60
0.

59
0.

30
L

ar
ge

0.
36

0.
42

0.
43

0.
42

0.
39

0.
40

0.
40

0.
43

0.
39

0.
53

0.
39

0.
28

13
×

13
0.

37
0.

38
0.

41
0.

41
0.

41
0.

40
0.

40
0.

42
0.

41
0.

70
0.

42
0.

37

To
ta

l
0.

52
0.

59
0.

58
0.

59
0.

57
0.

57
0.

57
0.

59
0.

57
0.

66
0.

55
0.

32



TO PLAN OR TO SIMPLY REACT? 67

T
A

B
L

E
8

.
A

ve
ra

ge
so

lu
ti

o
n

ti
m

es
[s

]f
o

r
D

F
m

ap
s

w
it

h
st

an
d

ar
d

d
ev

ia
ti

o
n

(i
n

b
ra

ck
et

s)
.B

es
tr

es
u

lt
s

in
ea

ch
ro

w
ar

e
h

ig
h

li
gh

te
d

.

M
ap

si
ze

A
N

A
*

B
B

B
B

-D
F

F
F

F
F

-D
F

P
ro

b
e

P
ro

b
e-

D
F

SG
SG

-D
F

G
re

ed
y

R
an

d
In

ac
ti

ve

Sm
al

l
25

.6
(1

8)
24

.6
(1

8)
27

.3
(2

0)
24

.5
(1

8)
30

.0
(2

1)
27

.5
(1

9)
29

.5
(2

0)
24

.8
(1

9)
30

.1
(2

0)
29

.7
(2

4)
30

.5
(2

1)
56

.9
(3

2)
M

ed
iu

m
65

.2
(3

5)
43

.9
(2

6)
52

.2
(3

1)
45

.7
(2

8)
54

.3
(3

1)
52

.9
(2

9)
56

.4
(3

2)
45

.3
(2

7)
51

.9
(2

9)
58

.2
(3

6)
58

.7
(3

6)
76

.0
(3

7)
L

ar
ge

98
.9

(5
8)

77
.8

(4
7)

85
.8

(4
9)

79
.2

(4
6)

90
.1

(5
0)

87
.7

(5
1)

95
.4

(4
9)

82
.0

(4
9)

89
.1

(5
0)

99
.0

(5
6)

93
.9

(5
2)

10
7.

8
(5

7)
13

×
13

27
2

(2
17

)
25

1
(1

95
)

20
1

(1
76

)
18

6
(1

74
)

20
6

(1
84

)
25

3
(2

07
)

25
0

(1
97

)
18

0
(1

58
)

21
3

(1
88

)
26

5
(2

14
)

22
7

(2
07

)
27

3
(2

15
)



68 COMPUTATIONAL INTELLIGENCE

T
A

B
L

E
9

.
O

rd
er

in
g

o
f

ag
en

ts
in

D
F

m
ap

s
ac

co
rd

in
g

to
su

rv
iv

al
m

o
d

el
o

f
so

lu
ti

o
n

ti
m

e.
N

o
te

th
at

o
rd

er
in

g
gi

ve
n

b
y

st
at

is
ti

ca
lly

si
gn

ifi
ca

n
t

d
if

fe
re

n
ce

s
is

o
n

ly
p

ar
ti

al
.F

o
r

ex
am

p
le

,i
n

la
rg

e
m

ap
s

G
re

ed
y

is
si

gn
ifi

ca
n

tl
y

b
et

te
r

SG
,b

u
t

n
o

t
si

gn
ifi

ca
n

tl
y

b
et

te
r

th
an

B
B

.A
t

th
e

sa
m

e
ti

m
e

B
B

is
n

o
t

si
gn

ifi
ca

n
tl

y
b

et
te

r
th

an
SG

.T
h

is
is

sh
ow

n
b

y
ov

er
la

p
p

in
g

ra
n

ks
.I

f
tw

o
ag

en
ts

h
av

e
n

o
in

te
rs

ec
ti

o
n

o
f

ra
n

k
in

te
rv

al
s,

th
ei

r
m

ea
n

so
lu

ti
o

n
ti

m
e

is
si

gn
ifi

ca
n

tl
y

d
if

fe
re

n
t

(a
ll

p
<

0.
05

).
A

ge
n

ts
w

it
h

n
o

ra
n

ki
n

g
fo

r
13

×1
3

m
ap

s
h

ad
n

o
n

-n
o

rm
al

d
is

tr
ib

u
ti

o
n

s
o

fs
o

lu
ti

o
n

ti
m

es
an

d
th

u
s

co
u

ld
n

o
tb

e
an

al
ys

ed
.

M
ap

si
ze

A
N

A
*

B
B

B
B

-D
F

F
F

F
F

-D
F

P
ro

b
e

P
ro

b
e-

D
F

SG
SG

-D
F

G
re

ed
y

R
an

d
In

ac
ti

ve

Sm
al

l
1–

4
1–

4
5–

9
1–

4
5–

9
5–

9
5–

9
1–

4
5–

9
10

–1
1

10
–1

1
12

M
ed

iu
m

11
1–

3
4–

8
1–

3
4–

8
4–

8
4–

8
1–

3
4–

8
9–

10
9–

10
12

L
ar

ge
9–

11
2–

5
4–

6
4–

6
6–

10
6–

10
9–

11
3–

5
6–

10
1–

2
9–

11
12

13
×

13
N

/A
N

/A
N

/A
3–

5
3–

5
N

/A
N

/A
2–

3
4–

5
1

N
/A

N
/A



TO PLAN OR TO SIMPLY REACT? 69

T
A

B
L

E
1

0
.

A
ve

ra
ge

d
el

ib
er

at
io

n
ti

m
es

[%
]

fo
r

D
F

m
ap

s
w

it
h

st
an

d
ar

d
d

ev
ia

ti
o

n
(i

n
b

ra
ck

et
s)

.
D

el
ib

er
at

io
n

ti
m

e
in

cl
u

d
es

p
at

h
fi

n
d

in
g.

B
es

t
re

su
lt

s
am

o
n

g
p

la
n

n
in

g
ag

en
ts

in
ea

ch
ro

w
ar

e
h

ig
h

li
gh

te
d

.

M
ap

si
ze

A
N

A
*

B
B

B
B

-D
F

F
F

F
F

-D
F

P
ro

b
e

P
ro

b
e-

D
F

SG
SG

-D
F

G
re

ed
y

R
an

d
In

ac
ti

ve

Sm
al

l
05

(0
6)

19
(1

8)
20

(1
9)

19
(1

8)
20

(1
8)

21
(1

9)
18

(1
8)

20
(1

9)
20

(1
8)

0.
05

(0
.0

4)
0.

07
(0

.0
6)

<
0.

01
(<

10
−4

)
M

ed
iu

m
72

(2
9)

27
(2

3)
29

(2
4)

27
(2

3)
29

(2
4)

29
(2

5)
31

(2
4)

28
(2

4)
29

(2
4)

0.
07

(0
.0

5)
0.

11
(0

.0
8)

<
0.

01
(<

10
−4

)
L

ar
ge

62
(4

1)
46

(3
1)

41
(3

0)
43

(3
0)

43
(3

0)
45

(3
0)

49
(2

8)
43

(3
0)

43
(3

0)
0.

11
(0

.2
0)

0.
18

(0
.1

1)
<

0.
01

(<
10

−4
)

13
×1

3
89

(1
8)

87
(2

4)
50

(3
3)

51
(3

7)
46

(3
3)

80
(2

5)
74

(2
6)

48
(3

4)
47

(3
3)

0.
18

(0
.5

3)
0.

30
(0

.2
5)

<
0.

01
(<

10
−4

)

To
ta

l
57

(4
1)

45
(3

6)
35

(2
9)

35
(3

0)
34

(2
9)

44
(3

3)
43

(3
2)

34
(3

0)
35

(2
9)

0.
10

(0
.2

9)
0.

16
(0

.1
7)

<
0.

01
(<

10
−4

)



70 COMPUTATIONAL INTELLIGENCE

T
A

B
L

E
1

1
.

E
ff

ec
ts

iz
es

fo
r

th
e

m
ai

n
m

et
ri

cs
an

d
va

ri
at

io
n

s
o

fi
n

te
rf

er
en

ce
p

ar
am

et
er

s
fo

r
SG

P
la

n
an

d
G

re
ed

y
ag

en
ts

.S
in

ce
al

lc
la

ss
ic

al
p

la
n

n
er

s
h

av
e

ve
ry

si
m

il
ar

re
su

lt
s,

th
e

ef
fe

ct
si

ze
s

o
fS

G
ap

p
ly

ve
ry

cl
o

se
ly

to
o

th
er

p
la

n
n

in
g

ag
en

ts
.

R
ec

al
lt

h
at

su
cc

es
s

ra
te

ef
fe

ct
si

ze
is

co
m

p
u

te
d

si
m

p
ly

as
th

e
d

if
fe

re
n

ce
in

su
cc

es
s

ra
te

,p
o

si
ti

ve
n

u
m

b
er

re
fl

ec
ts

b
et

te
r

p
er

fo
rm

an
ce

w
it

h
sp

ec
ifi

ed
p

ar
am

et
er

va
lu

es
th

an
w

it
h

th
e

b
as

el
in

e,
d

if
fe

re
n

ce
>

0.
10

is
co

n
si

d
er

ed
la

rg
e.

T
h

e
ef

fe
ct

fo
r

ti
m

e
is

ev
al

u
at

ed
w

it
h

H
ed

ge
’s

g,
p

o
si

ti
ve

n
u

m
b

er
re

fl
ec

ts
sh

o
rt

er
ti

m
e

an
d

th
u

s
b

et
te

r
p

er
fo

rm
an

ce
w

it
h

sp
ec

ifi
ed

p
ar

am
et

er
va

lu
es

th
an

w
it

h
th

e
b

as
el

in
e

va
lu

es
,a

b
so

lu
te

va
lu

e
>

0.
8

is
co

n
si

d
er

ed
la

rg
e.

Fo
r

su
rv

iv
al

,t
h

e
ef

fe
ct

si
ze

is
co

m
p

u
te

d
as

th
e

m
u

lt
ip

li
ca

ti
ve

co
ef

fi
ci

en
tb

y
w

h
ic

h
es

ti
m

at
ed

m
ea

n
so

lu
ti

o
n

ti
m

es
d

if
fe

r
b

et
w

ee
n

sp
ec

ifi
ed

va
lu

es
an

d
b

as
el

in
e,

co
ef

fi
ci

en
tl

ar
ge

r
th

an
1

re
fl

ec
ts

sh
o

rt
er

ti
m

e
an

d
th

u
s

b
et

te
r

p
er

fo
rm

an
ce

w
it

h
sp

ec
ifi

ed
p

ar
am

et
er

va
lu

es
th

an
w

it
h

th
e

b
as

el
in

e
va

lu
es

,c
o

ef
fi

ci
en

tl
ow

er
th

an
0.

75
o

r
gr

ea
te

r
th

an
1.

5
is

co
n

si
d

er
ed

la
rg

e.
So

lid
fi

ll
re

p
re

se
n

ts
la

rg
e

ef
fe

ct
in

fa
vo

u
r

o
ft

h
e

sp
ec

ifi
ed

p
ar

am
et

er
s,

d
as

h
ed

fi
ll

re
p

re
se

n
ts

la
rg

e
ef

fe
ct

in
fa

vo
u

r
o

ft
h

e
b

as
el

in
e.

P
ar

am
et

er
SG

P
la

n
,s

ta
n

d
ar

d
m

ap
s

G
re

ed
y,

st
an

d
ar

d
m

ap
s

SG
P

la
n

,d
el

et
e-

fr
ee

m
ap

s
G

re
ed

y,
d

el
et

e-
fr

ee
m

ap
s

B
as

el
in

e
Va

lu
e

Su
cc

es
s

T
im

e
Su

rv
.

Su
cc

es
s

T
im

e
Su

rv
.

Su
cc

es
s

T
im

e
Su

rv
.

Su
cc

es
s

T
im

e
Su

rv
.

D
el

ay
0.

5s
1.

5s
0.

12
−0

.2
1

1.
50

−0
.0

3
−0

.0
5

0.
96

0.
10

−0
.2

8
1.

43
0.

00
−0

.2
6

1.
19

3.
0s

0.
23

−0
.3

1
2.

03
−0

.0
8

−0
.0

0
0.

84
0.

16
−0

.4
0

1.
68

−0
.0

1
−0

.3
1

1.
19

Im
p

ac
t0

.0
5

0.
1

−0
.0

8
0.

08
0.

78
0.

03
−0

.0
5

1.
12

−0
.0

6
0.

13
0.

84
0.

01
0.

06
0.

99
0.

2
−0

.1
8

0.
19

0.
58

0.
06

−0
.0

0
1.

15
−0

.1
3

0.
20

0.
70

0.
02

0.
20

0.
93

Fr
ie

n
d

li
n

es
s

0

0.
15

0.
09

0.
47

1.
20

0.
19

1.
31

1.
55

0.
13

0.
58

0.
66

0.
32

1.
33

2.
6

0.
3

0.
32

0.
75

1.
94

0.
68

1.
52

3.
82

0.
28

0.
75

0.
91

0.
75

1.
62

4.
50

0.
5

0.
74

0.
84

4.
69

0.
89

1.
27

7.
40

0.
77

1.
3

2.
39

0.
89

1.
41

8.
49

0.
7

0.
76

0.
37

7.
71

0.
92

0.
76

12
.1

6
0.

82
0.

73
4.

50
0.

91
1.

10
13

.6
8



TO PLAN OR TO SIMPLY REACT? 71

T
A

B
L

E
1

2
.

E
ff

ec
ts

iz
es

fo
r

th
e

m
ai

n
m

et
ri

cs
an

d
va

ri
at

io
n

s
o

fi
n

te
rf

er
en

ce
p

ar
am

et
er

s
fo

r
SG

P
la

n
an

d
G

re
ed

y
ag

en
ts

.S
in

ce
al

lc
la

ss
ic

al
p

la
n

n
er

s
h

av
e

ve
ry

si
m

il
ar

re
su

lt
s,

th
e

ef
fe

ct
si

ze
s

o
fS

G
ap

p
ly

ve
ry

cl
o

se
ly

to
o

th
er

p
la

n
n

in
g

ag
en

ts
.

R
ec

al
lt

h
at

su
cc

es
s

ra
te

ef
fe

ct
si

ze
is

co
m

p
u

te
d

si
m

p
ly

as
th

e
d

if
fe

re
n

ce
in

su
cc

es
s

ra
te

,p
o

si
ti

ve
n

u
m

b
er

re
fl

ec
ts

b
et

te
r

p
er

fo
rm

an
ce

w
it

h
sp

ec
ifi

ed
p

ar
am

et
er

va
lu

es
th

an
w

it
h

th
e

b
as

el
in

e,
d

if
fe

re
n

ce
>

0.
10

is
co

n
si

d
er

ed
la

rg
e.

T
h

e
ef

fe
ct

fo
r

ti
m

e
is

ev
al

u
at

ed
w

it
h

H
ed

ge
’s

g,
p

o
si

ti
ve

n
u

m
b

er
re

fl
ec

ts
sh

o
rt

er
ti

m
e

an
d

th
u

s
b

et
te

r
p

er
fo

rm
an

ce
w

it
h

sp
ec

ifi
ed

p
ar

am
et

er
va

lu
es

th
an

w
it

h
th

e
b

as
el

in
e

va
lu

es
,a

b
so

lu
te

va
lu

e
>

0.
8

is
co

n
si

d
er

ed
la

rg
e.

Fo
r

su
rv

iv
al

,t
h

e
ef

fe
ct

si
ze

is
co

m
p

u
te

d
as

th
e

m
u

lt
ip

li
ca

ti
ve

co
ef

fi
ci

en
tb

y
w

h
ic

h
es

ti
m

at
ed

m
ea

n
so

lu
ti

o
n

ti
m

es
d

if
fe

r
b

et
w

ee
n

sp
ec

ifi
ed

va
lu

es
an

d
b

as
el

in
e,

co
ef

fi
ci

en
tl

ar
ge

r
th

an
1

re
fl

ec
ts

sh
o

rt
er

ti
m

e
an

d
th

u
s

b
et

te
r

p
er

fo
rm

an
ce

w
it

h
sp

ec
ifi

ed
p

ar
am

et
er

va
lu

es
th

an
w

it
h

th
e

b
as

el
in

e
va

lu
es

,c
o

ef
fi

ci
en

tl
ow

er
th

an
0.

75
o

r
gr

ea
te

r
th

an
1.

5
is

co
n

si
d

er
ed

la
rg

e.
So

lid
fi

ll
re

p
re

se
n

ts
la

rg
e

ef
fe

ct
in

fa
vo

u
r

o
ft

h
e

sp
ec

ifi
ed

p
ar

am
et

er
s,

d
as

h
ed

fi
ll

re
p

re
se

n
ts

la
rg

e
ef

fe
ct

in
fa

vo
u

r
o

ft
h

e
b

as
el

in
e.

A
ss

es
si

n
g

su
rv

iv
al

ef
fe

ct
si

ze
fo

r
p

ar
am

et
er

co
m

b
in

at
io

n
w

o
u

ld
re

q
u

ir
e

a
d

if
fe

re
n

tm
o

d
el

th
an

th
e

o
n

e
u

se
d

fo
r

al
lo

th
er

d
at

a
in

th
is

p
ap

er
an

d
th

u
s

w
as

n
o

ti
n

cl
u

d
ed

.

P
ar

am
et

er
SG

P
la

n
,s

ta
n

d
ar

d
m

ap
s

G
re

ed
y,

st
an

d
ar

d
m

ap
s

SG
P

la
n

,d
el

et
e-

fr
ee

m
ap

s
G

re
ed

y,
d

el
et

e-
fr

ee
m

ap
s

B
as

el
in

e
Va

lu
e

Su
cc

es
s

T
im

e
Su

cc
es

s
T

im
e

Su
cc

es
s

T
im

e
Su

cc
es

s
T

im
e

D
el

1.
5s

*
Im

p
0.

1
0.

04
−0

.0
1

−0
.0

4
−0

.0
2

0.
05

−0
.0

1
−0

.0
2

−0
.1

3
D

el
ay

0.
5s

*
D

el
3.

0s
*

Im
p

0.
1

0.
16

−0
.1

2
−0

.0
6

0.
04

0.
10

−0
.1

1
−0

.0
5

−0
.2

4
Im

p
ac

t0
.0

5
D

el
1.

5s
*

Im
p

0.
2

−0
.0

6
0.

02
0.

03
0.

04
−0

.0
3

0.
12

0.
00

0.
04

D
el

3.
0s

*
Im

p
0.

2
0.

05
0.

08
−0

.0
3

0.
00

0.
03

−0
.2

0
0.

01
−0

.0
5

Im
p

0.
1

*
Fr

0.
15

−0
.0

7
0.

43
0.

15
0.

23
0.

02
0.

61
0.

25
1.

25
Im

p
0.

2
*

Fr
0.

15
−0

.2
4

0.
59

0.
16

1.
91

−0
.0

8
0.

70
0.

35
1.

92
Im

p
0.

1
*

Fr
0.

3
0.

16
0.

84
0.

63
1.

53
0.

29
0.

78
0.

75
1.

66
Im

p
ac

t0
.0

5
*

Im
p

0.
2

*
Fr

0.
3

0.
00

1.
01

0.
75

1.
83

0.
20

0.
77

0.
73

1.
98

Fr
ie

n
d

li
n

es
s

0
Im

p
0.

1
*

Fr
0.

5
0.

56
0.

85
0.

87
1.

18
0.

66
1.

02
0.

85
1.

47
Im

p
0.

2
*

Fr
0.

5
0.

54
1.

00
0.

88
1.

20
0.

64
1.

13
0.

86
1.

44
Im

p
0.

1
*

Fr
0.

7
0.

58
0.

34
0.

88
0.

73
0.

69
0.

70
0.

87
1.

18
Im

p
0.

2
*

Fr
0.

7
0.

58
0.

35
0.

89
0.

47
0.

68
0.

70
0.

87
1.

05

D
el

1.
5s

*
Fr

0.
15

0.
28

0.
57

0.
25

1.
51

0.
29

0.
51

0.
39

1.
01

D
el

3s
*

Fr
0.

15
0.

45
0.

51
0.

17
0.

94
0.

42
0.

27
0.

36
0.

62
D

el
1.

5s
*

Fr
0.

3
0.

54
0.

79
0.

72
1.

82
0.

47
0.

63
0.

84
1.

32
D

el
ay

0.
5s

*
D

el
3s

*
Fr

0.
3

0.
70

0.
71

0.
60

1.
50

0.
57

0.
51

0.
78

1.
11

Fr
ie

n
d

li
n

es
s

0
D

el
1.

5s
*

Fr
0.

5
0.

92
0.

91
0.

96
1.

67
0.

93
0.

92
0.

99
1.

9
D

el
3s

*
Fr

0.
5

0.
92

0.
81

0.
89

1.
76

0.
93

0.
76

0.
95

1.
8

D
el

1.
5s

*
Fr

0.
7

0.
93

0.
55

0.
98

1.
33

0.
93

0.
58

0.
99

0.
74

D
el

3s
*

Fr
0.

7
0.

93
0.

57
0.

96
1.

53
0.

94
0.

64
0.

99
0.

85



72 COMPUTATIONAL INTELLIGENCE

TABLE 13. Success rate for three representative agents in different dynamic conditions with the same
mean number of door changes per second.

Agent
0.067 door changes / s 0.033 door changes / s

Impact 0.1 Impact 0.2 Impact 0.05 Impact 0.1
Delay 1.5s Delay 3s Delay 1.5s Delay 3s

SGPlan 0.64 0.64 0.75 0.75
Greedy 0.58 0.60 0.56 0.56
Rand 0.53 0.52 0.57 0.57



TO PLAN OR TO SIMPLY REACT? 73

T
A

B
L

E
1

4
.

N
u

m
b

er
o

fp
la

n
n

er
ex

ec
u

ti
o

n
o

fS
G

P
la

n
ag

en
td

ep
en

d
in

g
o

n
fr

ie
n

d
li

n
es

s,
d

el
ay

an
d

m
ap

ty
p

e.
W

e
re

p
o

rt
av

er
ag

e
n

u
m

b
er

o
fp

la
n

n
er

ex
ec

u
ti

o
n

s
p

er
se

co
n

d
(E

xe
c.

/s
)

an
d

av
er

ag
e

ab
so

lu
te

n
u

m
b

er
o

fp
la

n
n

er
ex

ec
u

ti
o

n
s

(E
xe

c.
To

ta
l)

,w
it

h
st

an
d

ar
d

d
ev

ia
ti

o
n

in
b

ra
ck

et
s.

St
an

d
ar

d
M

ap
s

Sm
al

lM
ap

s
M

ed
iu

m
M

ap
s

L
ar

ge
M

ap
s

13
×

13
M

ap
s

Fr
ie

n
d

li
n

es
s

D
el

ay
E

xe
c.

/s
E

xe
c.

To
ta

l
E

xe
c.

/s
E

xe
c.

To
ta

l
E

xe
c.

/s
E

xe
c.

To
ta

l
E

xe
c.

/s
E

xe
c.

To
ta

l

0
0.

5
0.

09
6.

57
(5

.5
2)

0.
05

7.
30

(4
.9

6)
0.

03
6.

81
(5

.5
3)

0.
01

5.
22

(2
.5

1)
0

1.
5

0.
08

3.
98

(3
.1

3)
0.

06
6.

01
(4

.5
4)

0.
02

5.
28

(3
.6

8)
0.

00
4.

33
(1

.7
7)

0
3

0.
08

2.
37

(1
.7

6)
0.

06
4.

40
(3

.8
3)

0.
02

4.
33

(2
.4

3)
0.

00
4.

00
(1

.7
7)

0.
15

0.
5

0.
43

34
.7

8
(2

0.
21

)
0.

42
65

.9
8

(2
4.

33
)

0.
44

10
8.

23
(2

6.
53

)
0.

36
32

4.
31

(1
72

.8
6)

0.
15

1.
5

0.
26

18
.8

1
(2

4.
55

)
0.

33
49

.4
8

(3
1.

34
)

0.
41

10
0.

86
(3

2.
96

)
0.

46
41

1.
19

(1
11

.4
5)

0.
15

3
0.

15
8.

16
(1

7.
96

)
0.

22
30

.5
7

(3
4.

15
)

0.
35

83
.1

6
(4

3.
83

)
0.

46
41

4.
50

(1
27

.4
7)

0.
3

0.
5

0.
32

22
.3

8
(1

7.
46

)
0.

47
67

.9
6

(3
7.

22
)

0.
44

10
8.

74
(3

5.
77

)
0.

38
33

5.
69

(1
38

.9
7)

0.
3

1.
5

0.
16

8.
20

(1
2.

77
)

0.
30

36
.0

7
(3

7.
85

)
0.

36
82

.4
0

(4
7.

88
)

0.
40

32
6.

25
(1

09
.0

8)
0.

3
3

0.
13

6.
06

(1
2.

62
)

0.
21

20
.4

3
(3

0.
01

)
0.

28
58

.0
9

(5
0.

98
)

0.
35

27
1.

50
(1

73
.8

0)

0.
5

0.
5

0.
21

7.
52

(7
.7

1)
0.

28
20

.1
1

(1
9.

56
)

0.
31

46
.9

9
(3

4.
03

)
0.

33
11

1.
14

(7
4.

17
)

0.
5

1.
5

0.
12

3.
30

(3
.6

7)
0.

14
7.

11
(6

.6
6)

0.
16

16
.5

6
(1

6.
62

)
0.

20
45

.7
8

(3
9.

27
)

0.
5

3
0.

11
3.

63
(7

.3
4)

0.
10

4.
12

(5
.4

3)
0.

13
14

.0
1

(1
9.

37
)

0.
15

24
.5

6
(2

5.
04

)

0.
7

0.
5

0.
12

2.
51

(1
.8

6)
0.

13
4.

22
(3

.3
0)

0.
11

6.
02

(4
.0

9)
0.

09
9.

56
(7

.7
0)

0.
7

1.
5

0.
09

1.
65

(1
.3

5)
0.

08
2.

41
(1

.6
8)

0.
07

3.
22

(2
.3

0)
0.

05
3.

42
(2

.5
6)

0.
7

3
0.

07
1.

33
(0

.8
2)

0.
06

1.
75

(1
.2

2)
0.

06
3.

11
(5

.1
8)

0.
05

3.
92

(3
.2

6)

D
el

et
e-

fr
ee

M
ap

s

Sm
al

lD
F

M
ap

s
M

ed
iu

m
D

F
M

ap
s

L
ar

ge
D

F
M

ap
s

13
×

13
D

F
M

ap
s

Fr
ie

n
d

li
n

es
s

D
el

ay
E

xe
c.

/s
E

xe
c.

To
ta

l
E

xe
c.

/s
E

xe
c.

To
ta

l
E

xe
c.

/s
E

xe
c.

To
ta

l
E

xe
c.

/s
E

xe
c.

To
ta

l

0
0.

5
0.

25
9.

54
(1

0.
31

)
0.

26
6.

98
(4

.1
2)

0.
27

5.
26

(4
.0

3)
0.

26
6.

07
(3

.8
6)

0
1.

5
0.

14
3.

85
(3

.8
4)

0.
20

6.
09

(3
.7

9)
0.

19
4.

20
(2

.1
6)

0.
18

4.
93

(3
.0

8)
0

3
0.

11
2.

06
(1

.3
2)

0.
14

5.
56

(3
.5

6)
0.

15
4.

43
(2

.2
0)

0.
14

4.
13

(2
.2

0)

0.
15

0.
5

0.
40

45
.4

1
(2

9.
95

)
0.

47
74

.6
3

(2
5.

39
)

0.
54

13
6.

22
(2

9.
05

)
0.

55
49

1.
17

(2
59

.6
8)

0.
15

1.
5

0.
21

15
.9

4
(2

6.
23

)
0.

36
51

.1
9

(3
5.

88
)

0.
51

12
6.

91
(2

2.
34

)
0.

59
53

3.
98

(2
63

.7
4)

0.
15

3
0.

12
4.

67
(1

3.
70

)
0.

23
29

.3
0

(3
8.

10
)

0.
43

10
5.

06
(4

9.
28

)
0.

50
44

8.
74

(1
56

.1
5)

0.
3

0.
5

0.
31

23
.6

7
(2

4.
40

)
0.

40
58

.0
6

(2
9.

78
)

0.
52

13
1.

19
(2

7.
70

)
0.

44
38

9.
43

(1
94

.7
3)

0.
3

1.
5

0.
16

7.
02

(1
1.

34
)

0.
22

22
.8

7
(2

5.
56

)
0.

45
10

6.
76

(3
8.

86
)

0.
43

37
1.

76
(1

56
.3

0)
0.

3
3

0.
11

3.
80

(1
1.

82
)

0.
15

10
.8

9
(1

8.
41

)
0.

34
80

.9
8

(5
3.

76
)

0.
42

33
1.

63
(1

53
.0

2)

0.
5

0.
5

0.
20

7.
72

(8
.9

8)
0.

25
17

.1
9

(1
6.

68
)

0.
35

61
.2

4
(3

3.
94

)
0.

36
12

9.
13

(9
6.

39
)

0.
5

1.
5

0.
10

2.
13

(1
.4

9)
0.

13
6.

46
(5

.8
6)

0.
18

23
.1

7
(2

1.
38

)
0.

23
52

.3
1

(3
9.

89
)

0.
5

3
0.

10
2.

41
(4

.9
8)

0.
08

2.
83

(2
.7

2)
0.

13
15

.7
6

(2
1.

73
)

0.
15

28
.6

1
(2

9.
81

)

0.
7

0.
5

0.
12

2.
30

(1
.3

0)
0.

12
3.

76
(2

.1
4)

0.
11

6.
20

(4
.1

4)
0.

10
10

.3
3

(7
.1

1)
0.

7
1.

5
0.

09
1.

41
(0

.7
7)

0.
07

2.
19

(1
.5

2)
0.

06
3.

35
(2

.4
7)

0.
06

4.
56

(2
.6

4)
0.

7
3

0.
07

1.
22

(0
.5

0)
0.

07
2.

20
(1

.4
7)

0.
06

3.
69

(6
.3

9)
0.

05
4.

43
(3

.5
7)



74 COMPUTATIONAL INTELLIGENCE

TABLE 15. Comparison of success rate over all experiment runs in standard maps. The upper number
in each cell is the difference between success rate of the row agent and the column agent, below is p-value
for this difference. Solid fill represents significant difference in favour of the row agent (higher success rate),
dashed fill represents significant difference in favour of the column agent.

FF Probe SG Greedy Rand Inactive
0.00 0.03 0.00 0.00 0.10 0.28BB
1.00 < 10−3 1.00 0.96 < 10−3 < 10−3

—
0.03 0.00 0.00 0.10 0.28FF < 10−3 1.00 0.90 < 10−3 < 10−3

—
−0.03 −0.04 0.06 0.25Probe < 10−3 < 10−3 < 10−3 < 10−3

—
−0.01 0.10 0.28SG
0.81 < 10−3 < 10−3

—
0.10 0.29Greedy < 10−3 < 10−3

—
0.18Rand < 10−3



TO PLAN OR TO SIMPLY REACT? 75

TABLE 16. Comparison of the success rate in the standard maps by map size. The upper number in
each cell is the difference between the success rates of row and column agents, below is p-value for this
difference. Solid background represents a significant difference in favour of the row agent (higher success
rate), dashed background represents a significant difference in favour of the column agent.

Small maps
FF Probe SG Greedy Rand Inactive

0.00 0.04 0.00 0.19 0.16 0.55BB
1.00 0.05 1.00 < 10−3 < 10−3 < 10−3

—
0.04 0.00 0.19 0.16 0.55FF
0.04 1.00 < 10−3 < 10−3 < 10−3

—
−0.04 0.14 0.12 0.51Probe
0.06 < 10−3 < 10−3 < 10−3

—
0.19 0.16 0.55SG < 10−3 < 10−3 < 10−3

—
−0.03 0.36Greedy
0.36 < 10−3

—
0.39Rand < 10−3

Medium maps
FF Probe SG Greedy Rand Inactive

0.02 0.06 0.02 0.12 0.16 0.39BB
0.33 < 10−3 0.41 < 10−3 < 10−3 < 10−3

—
0.03 0.00 0.09 0.14 0.36FF
0.12 1.00 < 10−3 < 10−3 < 10−3

—
−0.03 0.06 0.10 0.33Probe
0.09 < 10−3 < 10−3 < 10−3

—
0.09 0.14 0.36SG < 10−3 < 10−3 < 10−3

—
0.05 0.27Greedy < 0.01 < 10−3

—
0.22Rand < 10−3

Large maps
FF Probe SG Greedy Rand Inactive

0.02 0.04 0.02 -0.05 0.10 0.18BB
0.06 < 10−3 0.25 < 10−3 < 10−3 < 10−3

—
0.01 0.00 -0.08 0.07 0.15FF
0.76 0.99 < 10−3 < 10−3 < 10−3

—
−0.02 -0.10 0.05 0.13Probe
0.38 < 10−3 < 10−3 < 10−3

—
-0.08 0.08 0.16SG < 10−3 < 10−3 < 10−3

—
0.16 0.24Greedy < 10−3 < 10−3

—
0.08Rand < 10−3

13 × 13 maps
FF Probe SG Greedy Rand Inactive

−0.02 −0.01 −0.04 −0.27 −0.01 0.01BB
0.44 0.87 0.03 < 10−3 0.87 0.80

—
0.00 −0.01 −0.25 0.00 0.04FF
0.99 0.92 < 10−3 0.99 0.01

—
−0.02 −0.26 0.00 0.03Probe
0.53 < 10−3 1.00 0.11

—
−0.23 0.02 0.05SG < 10−3 0.53 < 10−3

—
0.26 0.29Greedy < 10−3 < 10−3

—
0.03Rand
0.11



76 COMPUTATIONAL INTELLIGENCE

TABLE 17. Comparison of solution time in the standard maps by map size. The upper number in each
cell is the effect size (Hedge’s g) of the column agent compared to the row agent, below is p-value for the
hypothesis that their solution times are drawn from the same distribution. The time has been log transformed
to be closer to normal distribution. Solid background represents a significant difference in favour of the row
agent (shorter solution time), dashed background represents a significant difference in favour of the column
agent.

Small maps
FF Probe SG Greedy Rand Inactive

0.34 0.41 0.12 0.54 0.68 1.44BB < 10−3 < 10−3 0.12 < 10−3 < 10−3 < 10−3

—
0.05 −0.22 0.22 0.33 1.00FF
0.85 < 10−3 < 10−3 < 10−3 < 10−3

—
−0.29 0.17 0.28 0.98Probe < 10−3 < 0.01 < 10−3 < 10−3

—
0.43 0.56 1.29SG < 10−3 < 10−3 < 10−3

—
0.09 0.67Greedy
0.2 < 10−3

—
0.61Rand < 10−3

Medium maps
FF Probe SG Greedy Rand Inactive

0.11 0.29 0.13 0.47 0.62 0.9BB
0.48 < 10−3 0.14 < 10−3 < 10−3 < 10−3

—
0.17 0.07 0.36 0.50 0.76FF
0.17 0.99 < 10−3 < 10−3 < 10−3

—
−0.15 0.19 0.33 0.59Probe
0.53 < 10−3 < 10−3 < 10−3

—
0.34 0.49 0.75SG < 10−3 < 10−3 < 10−3

—
0.11 0.34Greedy < 10−3 < 10−3

—
0.24Rand < 10−3

Large maps
FF Probe SG Greedy Rand Inactive

0.08 0.33 0.15 0.45 0.51 0.59BB
0.49 0.02 0.4 < 10−3 < 10−3 < 10−3

—
0.24 0.06 0.36 0.42 0.50FF
0.80 0.99 < 10−3 < 10−3 < 10−3

—
−0.17 0.14 0.18 0.27Probe
0.88 < 10−3 < 10−3 < 10−3

—
0.30 0.35 0.44SG < 10−3 < 10−3 < 10−3

—
0.02 0.11Greedy < 10−3 < 10−3

—
0.10Rand < 10−3

13 × 13 maps
FF Probe SG Greedy Rand Inactive

−0.26 −0.01 −0.22 0.16 0.07 0.26BB < 10−3 < 10−3 < 10−3 0.99 < 10−3 < 10−3

— 0.25 0.03 0.41 0.33 0.54
FF < 10−3 0.96 < 10−3 < 10−3 < 10−3

— −0.21 0.17 0.08 0.28
Probe < 10−3 < 10−3 < 10−3 < 10−3

- 0.37 0.29 0.49
SG < 10−3 < 10−3 < 10−3

— −0.08 0.08
Greedy < 10−3 < 10−3

—
0.18Rand
0.24



TO PLAN OR TO SIMPLY REACT? 77

TABLE 18. Comparison of solution time in the standard maps by map size using the right-censored
accelerated failure-time survival model. The upper number in each cell is the effect size: the quotient of the
estimated mean solution time of the column agent to the estimated mean solution time of the row agent.
Below is p value for the hypothesis that their solution times, including failure to reach the goal, are drawn
from the same distribution. Solid background represents a significant difference in favour of the row agent
(quotient larger than 1), dashed background represents a significant difference in favour of the column agent.

Small maps
FF Probe SG Greedy Rand Inactive

1.20 1.26 1.04 1.77 1.74 4.99BB < 10−4 < 10−4 0.76 < 10−4 < 10−4 < 10−4

—
1.04 0.86 1.46 1.44 4.13FF
0.79 < 10−4 < 10−4 < 10−4 < 10−4

—
0.82 1.40 1.38 3.96Probe < 10−4 < 10−4 < 10−4 < 10−4

—
1.69 1.66 4.77SG < 10−4 < 10−4 < 10−4

—
0.98 2.82Greedy
0.99 < 10−4

—
2.86Rand < 10−4

Medium maps
FF Probe SG Greedy Rand Inactive

1.11 1.29 1.11 1.58 1.88 3.76BB
0.01 < 10−3 < 0.01 < 10−3 < 10−3 < 10−3

—
1.16 1.00 1.42 1.69 3.37FF < 10−3 1.00 < 10−3 < 10−3 < 10−3

—
0.86 1.22 1.45 2.91Probe < 10−3 < 10−3 < 10−3 < 10−3

—
1.41 1.68 3.36SG < 10−3 < 10−3 < 10−3

—
1.18 2.37Greedy < 10−3 < 10−3

—
1.99Rand < 10−3

Large maps
FF Probe SG Greedy Rand Inactive

1.15 1.31 1.14 1.05 1.65 2.22BB < 0.01 < 10−3 < 10−3 0.66 < 10−3 < 10−3

—
1.16 1.00 0.92 1.45 1.95FF < 10−3 0.99 0.2 < 10−3 < 10−3

—
0.86 0.79 1.25 1.68Probe < 10−3 < 10−3 < 10−3 < 10−3

—
0.91 1.44 1.94SG
0.11 < 10−3 < 10−3

—
1.56 2.11Greedy < 10−3 < 10−3

—
1.34Rand < 10−3

13 × 13 maps
FF Probe SG Greedy Rand Inactive

0.77 0.92 0.73 0.42 0.96 1.28
BB < 10−3 0.64 < 10−3 < 10−3 0.99 < 10−3

—
1.19 0.95 0.54 1.25 1.66FF < 0.01 0.96 < 10−3 < 10−3 < 10−3

—
0.79 0.45 1.04 1.38Probe < 10−3 < 10−3 0.95 < 10−3

— 0.57 1.31 1.73
SG < 10−3 < 10−3 < 10−3

— 2.30 3.04
Greedy < 10−3 < 10−3

—
1.32Rand < 10−3


