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†Warhorse Studios, Pernerova 53, Prague, Czech Republic
{tomas.plch,MattEntrichel}@gmail.com, petr.ondracek@warhorsestudios.cz
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Abstract
In recent years, computer games have reached unprece-
dented level of graphical fidelity to the real world. As
the non-player characters (NPCs) in the game world
look more and more realistic, players expect them to
manifest believable behavior as well. This is accented
especially in games that feature large open worlds,
which players may explore freely and it is thus not
possible to explicitly account for all possible player
interactions. In this paper we focus mainly on ambi-
ent AI — the logic behind day to day behaviors of
NPCs as they sleep, work and entertain themselves in
the virtual world. In this context, it is of great impor-
tance to build a system that handles many NPCs (up
to several hundreds) quickly. In this paper we report
on an implementation of a particular AI system that
was approved for deployment in an upcoming high-
budget game. The system features a hierarchy of con-
trol similar to the subsumption architecture and a visual
agent-based language inspired by behavior trees. We de-
scribe the challenges involved in building such a system
and specific design decisions we have made that let us
achieve a level of behavioral fidelity unmatched by ex-
isting games. Finally we evaluate the performance of
the system in a realistic setting.

Computer games are a very specific AI application area. A
particularly interesting subclass of games are those featuring
a large 3D world that is open (the player may roam freely
through the environment) and inhabited by a plenty of non-
player characters (NPCs). The interaction with the NPCs is
often at the core of the gameplay and demands a reasonable
NPC AI.

In a typical open world game, such as Grand Theft
Auto (Rockstar Games 2013) or The Elder Scrolls: Skyrim
(Bethesda Game Studios 2011), the NPC AI may be divided
into several main components, although some of the compo-
nents may not be present in a particular game. As fighting
enemies is still a major part of most contemporary games,
combat AI is often the largest AI subsystem. It may be fur-
ther divided into enemy AI that guides NPCs opposing the
player and ally AI that controls NPCs trying to help the
player in a fight. Non-combat AI governs the rest of the NPC
behavior. It may be further divided into direct interactions
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with the player (e.g., dialogues, barter, . . . ) and ambient AI
which covers the daily life of the NPCs and other actions
they perform on their own. It is the ambient AI that makes
the world appear alive to the player. In a particular game the
individual components may be further subdivided and other
components may be added to suit the needs of the game (e.g.
a component that coordinates groups of NPCs).

Enemy AI and direct interactions with the player are well
managed in contemporary games. The support of meaning-
ful ally AI is more problematic, as the NPC is required to
be helpful to the player without being able to see “into his
head”. Nevertheless, multiple games have tackled this issue
with results that were workable, if not satisfactory.

Ambient AI appears to be the least developed of the afore-
mentioned components. Contemporary games have very
limited support for ambient AI — in particular, almost all
high-budget commercial games do not actually simulate
NPC behaviors outside the area directly surrounding the cur-
rent player’s location. This leads to various disturbances of
the believability of the virtual world when the player reen-
ters a place he has already visited. The world state is either
completely conserved, which is implausible if the player was
away for a longer time, or randomly regenerated, which is
implausible if the player was away for just a few seconds.

In this paper we present an AI system for an upcoming
high-budget open world RPG game that allowed us to create
and manage a new level of ambient AI. The system consists
of multiple components connected in a manner similar to the
subsumption architecture (Brooks 1991). Most of the com-
ponents use a visual agent-based language to express behav-
ior logic. The system also supports level of detail (LOD) AI
(Brom, Šerý, and Poch 2007).

The rest of the paper is organized as follows: first the is-
sues that arise during ambient AI development are discussed
along with related work. Then the details of our system are
presented along with results of preliminary evaluation.

The Issues
What prevents games from having a more complex ambient
AI? There are three main reasons: performance, complex-
ity of transitions and financial budget. The main cause of
the performance issues are the high demands of graphical
rendering and physical simulation. Basically, the graphical
computations easily consume as much computing time as



they are allowed to and still ask for a little more to make that
one shadow look better. In this context, only little time is left
for AI. As the number of NPCs exceeds a few dozens, even
running A* regularly to find paths for the NPCs becomes a
serious performance issue.

Complexity of transitions is a different problem. As men-
tioned above, the NPC AI can be divided into compo-
nents which have different functions and may use different
deliberation mechanisms. It is thus necessary to regularly
switch between the individual components. The transitions
involved in switching between the components occur at sev-
eral levels. The most important are the animation, speech
and behavioral transitions. Although requirements for be-
havioral fidelity are not very high, cinema-like quality of
animations and speech is expected. For this reasons, the tran-
sitions are not trivial, as they need to look smooth and mean-
ingful: at minimum, transitional animations must be per-
formed (e.g. standing up for combat if the NPC was sitting)
and speech must be correctly terminated. Further technical
issues are involved such as handling items that are attached
to NPC’s hands. Simple ambient AI needs only simple tran-
sitions and thus is preferred in present-day games.

To create a large open world, many different behaviors
need to be developed. The time required to create the be-
haviors directly manifests in high budget requirements for
AI which are often simply not fulfillable. Cutting down the
costs of AI development is thus an important part of practi-
cal game AI application. Therefore it is vital to have good
development support and facilitate code reuse, modification
and debugging. From this perspective, AI is not only algo-
rithms, but also software engineering and tooling support.
Our previous research has shown that available tools have
significant impact on the success of an AI technology (Gem-
rot, Hlávka, and Brom 2012).

Related Work
Many high-budget open world games such as the very suc-
cessful GTA V (Rockstar Games 2013) only spawn non-
story NPCs once they become close to the player, let them
wander to a random location and destroy them once they get
further away. Other games, such as Dragon Age (BioWare
2011), have NPCs confined to a single place for the whole
game and the NPCs simply loop one or several animations
at that place.

The best (in terms of player experience) open world am-
bient AI we have met is present in Elder Scrolls V: Skyrim
(Bethesda Game Studios 2011). As we are not aware of
any official description of the Skyrim AI system, our as-
sumptions are based on our own reverse-analysis1. NPCs in
Skyrim divide the day into several timezones (morning, day,
evening, night). For each time zone they have several places
they visit. An NPC chooses one of the places and stays there
for a certain time, sequencing several possible animations.
Some of the behaviors assigned at one place may even in-
volve movement to a quite distant place carrying goods or

1Our notes on ambient AI in contemporary games may be found
online at http://popelka.ms.mff.cuni.cz/˜cerny/
AIOpenWorlds.pdf

a short conversation with another NPC. The selection of
the behaviors however seems to be completely random and
the actions have no lasting effect on the environment. The
NPCs are simulated only in direct proximity of the player
and randomly repositioned when player returns to the place.
Although the underlying logic is simple, the palette of the
behaviors the NPCs perform is relatively large. This results
in a good illusion of living world as long as the player does
not stay long at one place.

The S.T.A.L.K.E.R series on the other hand involves con-
tinual simulation of all NPCs in the game world, including
fighting other NPCs and monsters and limited ambient be-
havior (moving between locations and playing animations
at predefined places) (Iassenev and Champandard 2008).
S.T.A.L.K.E.R initially aimed for more complex ambient
behaviors, but due to the arising complexity and interactions
with the game’s story line, the development team decided to
stick with simpler ambient AI. The ambient AI also has a
narrow palette of behaviors.

Compared to Skyrim our system aims at creating more
believable experience — simulating the whole world for the
whole time and adding purpose and a bit more order to the
behaviors of the NPCs. In respect to S.T.A.L.K.E.R we want
to enforce stricter designer control and to enrich the ambient
behaviors with regular daily routines and interactions with
objects in the world (e.g. taking and using tools).

The System
There were several use cases we had in mind while design-
ing the system. We needed fluent and intelligent combat be-
havior and interactions with the player, fully controlled by
game designers, i.e. programmable in some scripting envi-
ronment. Moreover, we aimed for complex ambient AI —
for example a fully simulated pub. In such a pub, customers
enter and leave as they wish, choose a place to sit, order
beer or food, have their request heard and handled by the
innkeeper who brings them the desired goods, which are in
turn consumed. Beer consummation should result in change
of NPCs’ behavior (intoxication). The pub is fully simulated
to seamlessly handle changes in the game world and inter-
actions between the player and the NPCs. E.g., when the
player prevents the innkeeper from handling guest requests
in a timely manner, they complain and leave the pub.

While the pub scenario might seem simple, it is to be
noted that to achieve cinema-like quality there are lots of
details to deal with. Especially it is necessary to precisely
synchronize animations so that the innkeeper does not put
beer on the table through a NPCs head and NPCs are cor-
rectly aligned for sitting on a chair. Moreover, any of the be-
haviors may be interrupted when a high priority event must
be handled (e.g., the NPC is attacked, or a player wants to
talk to it).

Due to financial and human resources constraints, the peo-
ple actually creating the behaviors in game industry — the
scripters — are not fully qualified programmers. Scripters
usually have general computer science background and mi-
nor programming knowledge but they are not always effec-
tive at creating and debugging complex code. Thus scripters
need to be equipped with good higher level tools that would



let them focus on expressing the behavior logic instead of
the syntax and technical details of the system.

Since the system runs inside a game-engine, it needs to
adhere to the engine’s execution model. The engine provides
control to subsystems (e.g. renderer, AI engine, physics sim-
ulator, network interface etc.) and relies on receiving the
control as soon as possible to pass it on to the next sub-
system. The individual executions of the subsystems (called
updates) must be fast enough for the engine to maintain il-
lusion of continuous movement of the scene. To get the best
of the player’s hardware, new update is performed immedi-
ately after the previous one has finished and the subsystems
update their internals based on the delta — how much time
has passed since the last update — e.g., the animation sys-
tem interpolates the drawn animation. Generally at least 30
updates per second must be performed for the game to be
considered to run smoothly.

This cooperative multitasking design is used because
it avoids synchronization which is computationally costly.
This architecture is generally kept in multiprocessor envi-
ronment. In this case some of the lengthy tasks are sched-
uled to their own threads and updates to some subsystems
are run in parallel.

As the available computing time is very limited (our sys-
tem was required to spend at most 5ms per update using a
single processor core), the NPC action selection mechanism
must feature some kind of reactive planning; more complex
reasoning is not acceptable.

The AI system must respect the interface the game en-
gine provides to the world. In game engine, there are no high
level actions. The only available actions are movement and
playing animations. The AI system may also directly alter
the world state (create / destroy objects, etc.). For example,
picking up an item is composed of movement to a desired
place, playing a picking animation and removing the taken
object from the game world and adding it to the inventory.
The animation must be precisely positioned for the NPC’s
hand to actually touch the item during its movement.

Hierarchy of Control
In our system, every NPC has a brain. The purpose of the
brain is to distribute updates to individual AI components,
which we call subbrains. The brain also decides which sub-
brain may become active — multiple subbrains may run in
parallel, as long as they do not conflict (e.g. during walk-
ing command issued by one specific subbrain, another sub-
brain may trigger a waving animation for the hands of the
NPC). As of now, there is a combat subbrain, an ambient AI
subbrain, a subbrain running our situation system (Cerny et
al. 2014a) and specific subbrains for non-NPC AI entities.
We further envision a quest subbrain that becomes active
if the NPC got a role in a quest, a subbrain for reacting to
non-combat high-priority events (crime, fire, . . . ) and a sub-
brain for dialogues and other non-combat interactions with
the player.

The subbrains are ordered by priority and a hierarchy
of control similar to the subsumption architecture (Brooks
1991) is used. Unlike subsumption architecture, subbrains
are not interrupted immediately when a higher-priority sub-

Figure 1: Graph of subbrain state transitions.

brain tries to run. Instead, the interrupted subbrain cooper-
ates on the transition behavior and must terminate its opera-
tion before the interrupting subbrain is allowed to run.

We have not implemented non-cooperative stopping of
subbrains as this may introduce huge issues in the context of
a game engine. The most serious trouble arise from the inter-
action of physics and character animations. Improper termi-
nation of animation may lead to undesirable consequences
including the NPC being stuck “inside a table” or ejecting
the NPC high above the ground.

There are three groups of states the subbrain may take: in-
active, active and running. In running states, the subbrain is
in control of the NPC. Active states signal that the subbrain
wants to enter a running state and control the NPC. In the
inactive state, the subbrain does not compete for control of
the NPC, it only checks whether conditions for its activation
are met. Transitions between inactive and active states are in
full control of the subbrain while the brain controls the tran-
sitions to running states. The complete transition graph of
subbrain states is given in Figure 1. This system is inspired
by previous academic research (Plch 2009).

When a subbrain is interrupted by a higher priority sub-
brain it may either stop completely or it may become sus-
pended. Suspended subbrain retains its internal state and is
scheduled for execution as soon as all of the higher prior-
ity subbrains cease to be active. There is also mandatory
“Switch In” and “Switch Out” phase of execution to ensure
proper initialization and cleanup. If the subbrains cooper-
ate on a switch (i.e. there is a special transition behavior
between the two subbrains), the Switch Out phase runs in
parallel to Switch In phase of the newly active subbrain.

By entering the “Activated” state, the subbrain signals to
the brain that it wants to compete for execution. If no sub-
brain is running, the brain lets it run directly. If the running
subbrain is of lower priority, the activated subbrain is transi-
tioned to the “Queued” state which signalizes to the subbrain
that it is scheduled for execution once the running subbrain
switches out.



Modular Behavior Trees
For easy development of behaviors, our system features
a visual agent-based language inspired by behavior trees
(Champandard 2007b). We call this system modular behav-
ior trees (MBTs)2. In plain behavior trees, the behavior code
consists of a tree. The leaves of the tree are atomic actions
and senses while the internal nodes (called composites) rep-
resent structure and decision logic of the behavior. Evalua-
tion of a node may return three possible values: success,
failure and running.

Actions return success when the NPC has finished the
action, running if more is to be done and failure if the
action cannot complete. Senses evaluate a condition in the
world and succeed if it is true and fail otherwise. Composites
are either selectors or sequences; both evaluate their children
in order and when the evaluated child returns running ,
they also return running. Selectors return successwhen
the first child node succeeds and do not evaluate the rest of
the children. Sequences on the other hand need all of their
children to succeed in order to return success. To perform
more complex logic or computations, some kind of scripting
language may be invoked by tree nodes; in our case we used
LUA (Schuytema and Manyen 2005).

This simple formalism allows for easy coding of quite
complex behaviors and variations of behavior trees have be-
come a de facto industry standard. The actions and senses
are directly implemented by programmers in the game en-
gine and thus are quick to evaluate. Another advantage is
that subtrees may be easily reused among different behav-
iors. Similar reactive planning approaches have been pre-
viously evaluated in academia (Bryson 2001). Further ex-
tensions to the formalism including decorator nodes alter-
ing the execution context (Champandard 2007c) of the sub-
tree and parallel execution (Champandard 2007a) were pro-
posed.

We have however identified downsides to the basic idea
and improved both the syntax and the semantics of the trees
to better express complex behaviors. The key issues were
the node execution model, limited variable support, miss-
ing synchronization and communication mechanisms, no ex-
plicit time awareness and tool support.

Node Execution. In a plain behavior tree, the whole ex-
ecution is stateless and the senses that guard the individual
tasks are continually reevaluated. This introduces high reac-
tivity to external stimuli, but it may be computationally in-
tensive. In some other implementations, the composites have
internal state and continue evaluating their children starting
at the first one that returned running in the previous iter-
ation. However, the reactivity may be greatly reduced this
way.

We have decided to allow for more flexibility and let the
individual node decide what state should be kept and how
children are evaluated and how their state influences the state
of the composite. In this way, it is the designer who chooses,
which decisions need to be reactive and which should main-

2MBTs have been briefly introduced in our previous work (Plch
et al. 2014), here we present more details of their inner workings.

tain state. Apart from stateful and stateless variants of selec-
tors and sequences, this allowed us to introduce more types
of composites to the language, many of them corresponding
to constructs of classical programming languages.

Most notably we introduced loops, time-limited execu-
tion, parallel execution of multiple subtrees, “calls” of ex-
ternal subtrees and decorators that alter the result returned
by a subtree. We have even introduced support for creating
finite state machines (Fu and Houlette-Stottler 2004) inside
the trees. While state machines are difficult to maintain for
complex behaviors, they are very good at expressing simple
stateful behaviors. By including state machines at the low-
est level of the MBTs we are able to take the best of both
approaches.

Since the composites have full control over execution,
they may return control before an actual action is issued
(e.g., if the time budget for decision making has run out).
This further facilitates performance guarantees of the sys-
tem and the locality of decisions allows the nodes to easily
maintain consistency and have clear semantics. The execu-
tion semantics also allow for good debugging support. In
particular, breakpoints may be attached to various transitions
of the node state or to individual updates.

A node starts in the none state. Prior to execution, there
is a mandatory initialization phase which has to be atomic
and immediate. Succesful initialization transitions the node
to the initialized state, if the node cannot be executed for
some reason, it transitions to the failure state instead.

When node starts performing the actual work, it transi-
tions to the running state. Once the work is done — which
may be in the same update as the work has started — the
node transitions to either success or failure state. Before the
node is executed again, a mandatory atomic cleanup is per-
formed, transitioning the node back to the none state.

As nodes have state, there are two ways to interrupt node
execution. The node could either become suspended and re-
tain its state, or halted and clear its state. However, as was
already mentioned, some behaviors may not be interrupted
abruptly. Thus the MBT allows for intermediate states (halt-
ing, suspending) that signal that the node is being halted or
suspended, but still needs further updates. In a symmetrical
fashion, prior the node leaves the suspended state, it passes
through an intermediate resuming state that lets the node to
prepare for further execution and may also last for multi-
ple updates. Once the node enters resumed state, it is transi-
tioned back to the running state. Since the nodes are in full
control of the execution, we were able to create decorator
nodes that evaluate a subtree that cleans up once the child
has been suspended or halted (e.g., drops items the NPC
has held in hands) or a subtree that checks consistency af-
ter resuming. This further increases designer control over
the behaviors and eases maintaining behavioral consistency.
The complete graph of possible node states and transitions
is given in Figure 2.

Subbrains and MBTs. Most of our subbrains use MBTs
while in running states, but the subbrains for various AI
components are not technically the same. They differ in con-
ditions for activation, frequency of updates and the way they



Figure 2: States of the node execution. The appearance of
the states is only a visual aid to highlight the most important
transition sequences.

obtain the tree to execute.
The execution of the root MBT node and its updates are

controlled by the subbrain. In particular, the subbrain de-
cides whether switching out the subbrain should result in
suspending or halting the MBT.

While subbrain switching bears resemblance to MBT
node execution, the subbrain system could not be modeled
by single larger MBT, because some of the subbrains do not
use MBT at all or wrap them in special logic that could not
be easily expressed with MBTs. Moreover it maintains a
clear separation between AI components and lets different
scripters focus on different aspects of AI behavior.

Types and Variables. In most engines, the data accessible
from the NPCs behavior tree is limited to either a set of hard-
coded states or values provided by the engine (e.g. a boolean
InDanger that indicates that the NPC faces a serious threat)
or only information in a simple “key — value” pairing. In
order to create a versatile data model we have introduced a
simple type system.

Every type definition is similar to a struct construct of
the C language. The individual members are either primitive
types (boolean, integer, float, string, and any representing
any possible type) or types defined previously. It is also pos-
sible to create a new type by extending an already defined
type and adding new members. Both indexed and associa-
tive arrays are supported but nesting of arrays is prohibited
to keep the code clean and running fast.

The MBT may define unlimited number of variables
which may be substituted for any parameter of a node. Basic
arithmetical expressions are evaluated.

Synchronization and Communication. To create com-
plex behaviors, synchronization and communication be-
tween NPCs or between two branches of the same tree (in
case of parallel execution) are necessary and support for
both was added in MBTs. Messages are simply data of a
predefined type sent from one NPC to one or multiple other
NPCs. Each NPC has a list of associated inboxes, each in-
box has a type of data it receives, priority and possibly fur-
ther filtering logic. For each inbox (ordered by priority) type
compatibility is checked with the type of the message and

filtering rules are applied. If the message matches the inbox,
it is put inside the message queue in the inbox.

Special MBT nodes are introduced to send messages with
various types of target selection and for both blocking and
non-blocking reading of messages from specified inbox into
a tree variable.

Since the messaging system is synchronized among
NPCs, it would be, in theory, sufficient to implement NPC
synchronization. This however would not be very practical.
Since the most common synchronization task in the game
is the need for multiple NPCs to start a task at the same
moment, we have introduced special nodes to handle just
that. The nodes block at shared semaphores until a specified
number of NPCs subscribe to the semaphore. The execution
model of the nodes allows for consistent acquire and release
of the semaphore in response to suspending or halting the
node. Thus the NPC may easily wait for the lock in a paral-
lely executed subtree of the behavior and perform meaning-
ful actions while waiting.

Time Awareness. In plain behavior trees, time is consid-
ered only at the action level (e.g. to correctly update NPC an-
imation) but not in the internal nodes. Most notably, at most
one action of a sequence is performed in every update. This
leads to more complicated design if a game requires consis-
tency of execution even when a LOD policy is in place and
the NPC is updated scarcely; e.g., if an NPC playing cards
(and cheating) should win a coin every minute, but is up-
dated in 3 minute intervals, it should receive 3 coins in each
update. Note however, that updates may be scarce only if the
NPC is not visible to the player, otherwise animation and
movement actions could not be performed instantaneously
without the player noticing glitches.

To resolve this issue, the MBT tracks the interval since
its last update (called delta) and action nodes estimate the
game time they will need to finish. If this estimated time is
less than delta, the effects of the action are performed im-
mediately and the estimated time is subtracted from delta.
The execution of the MBT than continues until the delta is
reduced to zero, i.e. until an action consumes the rest of the
delta without finishing.

If there is not enough computing time to evaluate nodes
that would consume the whole delta, the delta is kept and
added to the next update. This is also useful if a multi-step
computation is taking place inside the tree (e. g., iterating
over neighbouring NPCs to find a good action target) —
multiple steps may be performed in one update, if comput-
ing time is available. This way varying time flow rate for
different NPCs is possible and upper bounds on MBT eval-
uation time may be imposed. Example time flow is given in
Figure 3.

The Tools. Our previous research has indicated that good
tool support is vital for success of a technology (Gemrot,
Hlávka, and Brom 2012). We have created a visual editor for
MBTs with drag and drop support and direct editing of node
parameters. This way scripters need not worry about the tree
syntax and search for names of parameters. The editor also
highlights execution states of the nodes by different colors to
ease debugging and displays current values of all variables.



Figure 3: Example of time flow during node execution. The
NPC is updated only scarcely with delta = 3s. 2 µs CPU
time limit is imposed on every update. For simplicity, move-
ment and animation is considered to consume 0 CPU time.
In Update 1 first action is finished and second one is started,
because delta is large enough. In Update 2 and 3 the CPU
budget is exceeded due to a lengthy computation and the un-
consumed delta is stored. Thus in Update 4, the total delta is
7s, letting the last action to finish immediately.

A breakpoint may be added to a node for various phases of
its execution. When a breakpoint is hit, the whole virtual
environment is paused and the user may explore states of all
NPCs in the game including values of all variables.

Evaluation
In our evaluation we focused on the MBT system which is
crucial for good standalone ambient AI. We have performed
two types of evaluation with MBTs: qualitative evaluation
where scripters tried to implement the same scenario with
different tools and a preliminary quantitative evaluation of
the speed of the whole system. We have also tested the
subbrain switching which, in combination with the cleanup
mechanisms inside MBTs has proved powerful enough for
seamless switching between AI components.

Qualitative Evaluation of MBTs
We envisioned two basic scenarios we considered adequate
for testing MBTs. Two of our scripters implemented them
with MBTs in various stages of the development. They also
tried to implement the scenarios with two previously de-
ployed technologies within our game engine. The first one
was plain behavior trees with conditions evaluating only
boolean variables and allowing for finite state machines as
leaves of the tree (BT1), the second one was behavior trees
with boolean based conditions (i.e. no relational operations)
retaining node states (BT2). Both technologies had support
for communicating with LUA scripts.

Pub. The first tested scenario was a pub. The pub is an
area, where NPC can come in and sit at a free table. There
is no guarantee about how many and which seats are avail-
able and how many and which NPCs will arrive to the pub at
any given time. The pub has two inhabitants: an innkeeper
and a waitress. If a customer NPC comes into the pub and
sits down at a table, orders a beer, drinks it and then either

continues with another beer or leaves. The innkeeper drafts
the beer from the tap while the waitress serves them to the
guests. The waitress reduces the walking distance by han-
dling the customers who are close together in one go, ignor-
ing in part the order in which requests were made. If an NPC
does not receive its order in a reasonable time, it will get an-
gry and leave the pub. Finally if a special NPC arrives (a rich
and valued guest), it is served as quickly as possible.

The solution for this scenario builds upon the idea of a
“governor” of the area. In first iterations the innkeeper was
the governor, but later we switched to governor being a sep-
arate disembodied entity communicating with both guests
and the innkeeper. When an NPC enters the pub, it asks
the governor (through a message) for a free place to sit. If
it orders a beer, it plays a waving animation and sends a
message to the governor. The governor keeps the waitress
informed about the incoming orders and available beers to
deliver. The waitress internally reorders the requests and de-
livers the beers to tables to minimize the travel distance. Im-
portant advantage of this solution is that only the governor
needs to know where the places to sit are.

Our scripters tried to model this in BT1 but they did not
succeed. With BT1 the code got complicated and large and
the absence of variables prevented some of the features to
be achieved at all. It finally went to a point, where most of
the logic was shifted from BT1 into LUA scripts which was
hard to debug and maintain while the NPCs were rigid and
predictable. Utilizing BT2 has led to better looking behav-
iors but with similar issues. All NPCs were largely written
in LUA, shared almost all their internal variables in a global
LUA table, leading to a rather unreadable and unsafe code.

Our architecture allowed scripters to utilize variables for
specifying internal NPC data, such as the amount of ordered
beers, the time spent waiting for the waitress, the currently
closest table etc. The message system was utilized as a natu-
ral communication medium between the NPCs. The typed
messages allowed to encode information like “who is re-
questing a seat” and “how long am I waiting” etc. without
any hard-coded enums or preset data. The parallelization of
execution was used to receive and evaluate messages while
executing animations to make the scene more life-like. We
also noticed that while with the prior system the frame rate
dropped considerably with more than about 8 NPCs present,
our system managed to scale properly.

Shop. Our second scenario was a shop. NPCs visit the
shop where they have to stand in a queue and are one by
one served by the shop keeper. A NPC can run out of pa-
tience and leave the shop earlier. A key notion here is that
the code should not have hard-coded maximal length of the
available queue, so a small shop could have the same code as
a large one. It is required that the NPCs in the queue move to
the next position if NPC at any point leaves the queue. The
shopkeeper was designated the governing entity in the shop
and managed the queue.

The shop scenario proved even harder to manage with
both BT1 and BT2, since it was not possible to encode the
varying length of the queue and advances if someone had
left the queue. Once again, the behaviors were almost com-



Table 1: The results of the quantitative evaluation. The table displays mean and .99 quantile / maximum (in brackets) times
taken by individual components of the AI system. All times in ms per frame.

Scenario NPCs MBTs Brain Sensation Other Total

simple
100 0.33 (0.6 / 1.7) 0.09 (0.2 / 0.5) 0.02 (0.2 / 0.4) 0.34 (0.6 / 1.7) 0.79 (1.3 / 3.9)
200 0.53 (0.9 / 2.5) 0.20 (0.3 / 0.5) 0.03 (0.3 / 0.7) 0.42 (0.8 / 1.8) 1.19 (2.0 / 4.3)
300 0.75 (1.1 / 4.0) 0.30 (0.5 / 3.3) 0.05 (0.4 / 1.1) 0.59 (1.0 / 4.0) 1.71 (2.6 / 6.8)

daycycles
10 0.39 (0.7 / 1.4) 0.12 (0.2 / 0.6) 0.02 (0.1 / 0.5) 0.22 (0.5 / 1.0) 0.76 (1.1 / 2.0)
20 0.46 (0.7 / 1.6) 0.12 (0.2 / 0.4) 0.02 (0.6 / 2.8) 0.22 (0.6 / 2.8) 0.84 (1.4 / 3.4)
30 0.56 (0.9 / 1.8) 0.14 (0.2 / 0.5) 0.02 (0.1 / 0.3) 0.23 (0.7 / 2.7) 0.96 (1.6 / 3.9)

pletely specified in a hard-to-manage lengthy LUA code.
Our architecture managed well, since the code for the

shopkeeper to keep track of the queue could be specified
without LUA. When the queue advanced, the shopkeeper
sent messages to the affected NPCs. The other NPCs simply
waited for the messages and notified the shopkeeper when-
ever they entered or left the shop.

Both our scenarios show where the limits of plain behav-
ior trees without any typed variables or message passing lie.
Our architecture was capable of solving the issues robustly,
since adding a table in the pub or changing the size of the
shop required only change of data but not of the actual be-
havior code. In contrast, code created with the other tech-
nologies was too specifically tailored to the given task and
had to be rewritten if scenario conditions changed. More-
over the scripters considered MBTs relatively easy to learn
and did not have trouble understanding its semantics. They
were also very fond of the debugging features which were
superior to the other systems as well as to the LUA imple-
mentation we use.

In the end we started instructing our scripters to use LUA
as little as possible for two reasons: first, invoking LUA en-
vironment was computationally expensive and second, LUA
code was less readable to the scripters than the visual struc-
ture of MBTs. On the other hand LUA nodes proved very
useful as a tool to prototype new functionality that will later
be added as a specialized MBT node.

Quantitative Evaluation of MBTs
In first set of scenarios (simple) there were many NPCs with
a simple tree (10 nodes, depth 4). The NPCs moved to ran-
dom positions at various speeds, while the tree was enlarged
by spurious decorators and composites. The second set of
scenarios (daycycles) were production ones — lower num-
ber of NPCs carrying out their daily routines, including hoe-
ing fields, visiting pub and eating (trees with 60+ nodes
and maximal depth > 10). Aside from the NPCs, the envi-
ronment in the daycycles scenarios contained also 142 non-
NPC entities (so called smart objects and smart areas) which
are primarily repositories of behaviors the NPCs use but a
smaller part of them also has some internal logic (expressed
by MBTs) to coordinate NPCs with a specific behavior (sim-
ilar to the governor in the pub scenario).

Both scenario sets were tested with different number of
NPCs, see Table 1 for the results. All NPCs were updated

every frame (no LOD). To keep the results meaningful, no
CPU budgeting restrictions were enforced — the trees al-
ways run until an action was executed. Data was gathered
running the game for 3 minutes, resulting in 3000 - 6650
captured frames. To reduce noise caused by interrupts from
the operating system or other processes, up to 10 outlying
frames were removed from each measured category.

The project leads gave us a budget of 5ms per frame (on a
single core) for the whole AI system. Even with plenty NPCs
on the scene, the average and the .99 quantile performance
is far below the limit, although the peak performance is not
satisfactory. But as there are high peaks in MBT evaluation,
enforcing CPU budget restrictions should effectively cut the
peaks, postponing some of the workload to next frame. Since
at maximum 1 in 100 frames is over the limit, this will not
have any detrimental effect on the resulting behavior. Proper
use of LOD to limit the number of frequently updated NPCs
should be enough to keep the system within bounds in the
envisioned production load.

Conclusions
We have presented an overall structure of an AI system for
a large open world RPG game currently under development.
The system has been shown to handle the intrinsic complex-
ity of NPC behavior well without sacrificing performance.
The system has been approved by project leads for deploy-
ment in the game and has replaced the system shipped with
the game engine. The flexibility of the system allowed us
to extend the AI with further components, such as smart ar-
eas (Cerny et al. 2014b) to further mitigate complexity and
increase modularity.

As a future work we plan to extend the system with ele-
ments of virtual storytelling and experiment with adversarial
search for real-time decisions within the combat subbrain.
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