
Modular Behavior Trees: Language for Fast AI in
Open-World Video Games

Tomáš Plch 1,2 and Matěj Marko 1 and Petr Ondráček 1

Martin Černý 2 and Jakub Gemrot 2 and Cyril Brom 2

Abstract. As the graphical representation of computer games grad-
ually becomes comparable to cinema, previously neglected non-
graphical game aspects start to play an important role in maintain-
ing believability of the game world. One such aspect is the behavior
of non-player characters (NPCs), which should appear intelligent and
purposeful in the ideal case or not completely stupid at the very least.
A good and fast language to express the behaviors is vital for suc-
cess. We present a visual agent language inspired by behavior trees
that was approved for deployment at the core of AI system for an
upcoming high-budget open world game.

1 INTRODUCTION
Computer games are a very specific AI application area. A partic-
ularly interesting subclass of games are those featuring a large 3D
world that is open (the player may roam freely through the environ-
ment) and inhabited by a plenty of non-player characters (NPCs).

The NPC AI of a typical game may be divided into several main
components, although some of the components may be diminished
or absent. Combat AI is often the largest AI subsystem. It may be
further divided into enemy AI that guides NPCs opposing the player
and ally AI that controls NPCs trying to help the player in a fight.

Non-combat AI governs the rest of the NPC behavior. It may be
further divided into direct interactions with the player (e.g., dia-
logues, barter, . . . ) and ambient AI which covers the daily life of the
NPCs and other actions they perform on their own. It is the ambient
AI that makes the world appear alive to the player.

Enemy AI and direct interactions with the player are well managed
in contemporary games. The ally AI is more problematic, as the NPC
is required to be helpful to the player without being able to see “into
his head”. Nevertheless, multiple games have tackled this issue with
results that were workable, if not satisfactory.

Ambient AI appears to be the least developed of the aforemen-
tioned components. Contemporary games have very limited support
for ambient AI — in particular, almost all high-budget commercial
games do not actually simulate NPC behaviors outside the area di-
rectly surrounding the current player’s location.

This is not so surprising when we consider that the time available
for AI is severely limited: our system was required to spend at most
5ms per game frame using a single processor core (the game should
run at least 30 frames per second). Although handling hundreds of
NPCs in this time frame is possible on modern hardware, the NPC

1 Prague Game Studios, Czech Republic, email: tomas.plch@gmail.com,
MattEntrichel@gmail.com, petr.ondracek@warhorsestudios.cz

2 Charles University in Prague, Czech Republic email:
{cerny.m,jakub.gemrot}@gmail.com, brom@ksvi.mff.cuni.cz

deliberation must be very quick and therefore must use some kind of
reactive planning; more complex reasoning is not acceptable.

In this paper we present an agent-based language designed to han-
dle NPC AI easily and efficiently. The language also supports level
of detail (LOD) AI ([1]) to further decrease computational cost.

2 MODULAR BEHAVIOR TREES
Reactive planning has been at the core of several agent-based lan-
guages, notably POSH [2] which composes complex behaviors hier-
archically from simple primitives in a tree-like structure. A similar
approach with slightly different semantics, called behavior trees [4]
has gained popularity in the game AI community and has become a
de facto industry standard.

In plain BTs, evaluation of a node of the tree may return three
possible values: success, failure and running. The leaves
are atomic actions and conditions, they return success when the
action is done or condition is fulfilled, failure if the action fails
or condition is violated and running if more is to be done. The
internal nodes (called composites) are either selectors or sequences;
selectors return success when the first child node succeeds and
do not evaluate the rest of the children. They return failure only
after all children fail. Sequences need all of their children to succeed
in order to return success and fail with first failing child. Both
return running if the evaluated child returns running.

Further extensions to the behavior tree (BT) formalism including
decorator nodes altering the execution context of the subtree [5] and
parallel execution [3] were proposed.

We have however identified downsides to the basic idea and im-
proved both the syntax and the semantics of BTs to better express
complex behaviors. We call the augmented language modular behav-
ior trees (MBTs). The key issues we addressed were the execution
model, variable support, missing synchronization and communica-
tion mechanisms, no explicit time awareness and tool support.

2.1 Node execution
In a plain BT, the whole execution is stateless and the conditions
that guard the individual tasks are continually reevaluated. This in-
troduces high reactivity to external stimuli, but it may be compu-
tationally intensive. In some other implementations, the composites
have internal state and continue evaluating their children starting at
the first one that returned running in the previous iteration. How-
ever, reactivity may be greatly reduced this way. We have decided
to increase flexibility and let the individual nodes control what state
should be kept and how children are evaluated.



In stateless BT variants, there is no guarantee that an action node
that is running in the current update will be evaluated in the next
update. Thus a newly started action often finds the NPC in an inter-
mediate state and external mechanisms are needed to keep the NPC’s
state consistent.

In MBTs, nodes that were running in the previous update are no-
tified if they should stop executing due to an event higher in the tree
and they are allowed to clean up. We implemented two ways to inter-
rupt node execution: the node could either be suspended and retain
its state, or halted and clear its state. However, some behaviors may
not be interrupted abruptly without threatening consistency (e.g., a
priest should drop the book he is reading before switching to a com-
bat behavior). Thus MBTs allow for intermediate states that let the
node execute until it suspends or halts completely.

Once again, the individual nodes are in full control of how updates
and interrupt signals propagate to their children and how states of
their children affect their own state. For example, we have created a
decorator node that reacts to interrupts by evaluating a given clean-
up subtree. This further increases designer control over the behaviors
and eases maintaining behavioral consistency.

Among the other nodes we have created are stateful and state-
less variants of selectors and sequences, loops, decorators for time-
limited execution, parallel execution of multiple subtrees, “calls” of
external subtrees and decorators that alter the result returned by a
subtree. We also introduced support for creating finite state machines
[6] inside the trees.

Since the composites have full control over execution, they may
return control before an actual action is issued and continue consis-
tently in the next update. This has let us to enforce upper bounds
on time spent in MBT evaluation. The execution semantics also al-
low for good debugging support. In particular, breakpoints may be
attached to various transitions of the node state or to individual up-
dates.

2.2 Types and variables
In most engines, the data accessible from BT is limited to either a set
of hard coded states or values provided by the engine (e.g. a boolean
InDanger indicating a serious threat, or object reference FocusTarget
representing the game entity the NPC is looking at) or information in
a simple “key – value” pairing. In order to create more versatile data
model we have introduced a simple type system.

Every type definition is similar to a struct construct of the C lan-
guage. The individual members are either primitive types (boolean,
integer, float, string) or types defined previously. The MBT than de-
fines variables which may be substituted for any parameter of a node.

2.3 Synchronization and communication
We have introduced a powerful messaging system. Messages are sim-
ply data of a predefined type sent from one NPC to one or multiple
other NPCs. An NPC has a list of associated inboxes, each inbox has
a type of data it receives, priority and possibly further filtering logic.

The most common synchronization task in the game is the need
for multiple NPCs to start a task at the same moment. We have intro-
duced a special node that blocks at a semaphore until a specified
number of NPCs subscribe to the semaphore. Our extended node
execution model allows for consistent locking and releasing of the
semaphore in response to changes of the node state. Thus the NPC
may easily have a subtree executed in parallel to the synchronization
node and perform meaningful actions while waiting.

2.4 Other improvements
Plain behavior trees are internally unaware of passage of time and
handle time only at action level. Most notably, at most one action is
performed during a single tree execution. This leads to more compli-
cated design when updates to the tree are sparse due to LOD policy.
MBTs are implicitly time-aware as the time delta from previous exe-
cution is given to the nodes. Each action consumes a part of the delta
and the execution stops once the remaining delta is zero. This way
varying time flow rate for different NPCs is possible.

We have created a visual editor for MBTs with drag and drop sup-
port and debugging interface (breakpoints, variable introspection).

3 EVALUATION
We have performed a preliminary quantitative evaluation of the speed
of the whole system in two scenarios: In first scenario there were
200 NPCs. Each of them had a simple tree guiding the NPC to move
to random locations. The tree updates took 1.29 ms on average (sd
3.09). The second scenario was a production one - 16 NPCs carrying
out their daily routines (e.g., hoeing fields, visiting pub, eating). In
this case, the tree updates took 0.29 ms on average (sd 2.86). As all
the NPCs were updated every frame without any LOD optimization,
proper use of LOD should be enough to keep the system below the
5ms per frame limit in the envisioned production load.

4 CONCLUSIONS
We have presented an agent-based language that is the core of an AI
system for a large open world RPG game currently under develop-
ment. The language has been shown to handle the intrinsic complex-
ity of NPC behavior well without sacrificing performance. The sys-
tem has been approved by project leads for deployment in the game
and has replaced the system shipped with the game engine.

ACKNOWLEDGEMENTS
This research is partially supported by the Czech Science Foundation
under the contract P103/10/1287 (GAČR), by student grants GA UK
No. 559813/2013/A-INF/MFF and 655012/2012/A-INF/MFF and
partially supported by SVV project number 260 104.

REFERENCES
[1] Cyril Brom, Ondřej Šerý, and Tomáš Poch, ‘Simulation level of detail for

virtual humans’, in Intelligent Virtual Agents, pp. 1–14. Springer, (2007).
LNCS 4722.

[2] J. Bryson, Intelligence by Design: Principles of Modularity and Coor-
dination for Engineering Complex Adaptive Agents., Ph.D. dissertation,
Massachusetts Institute of Technology, 2001.

[3] A. Champandard, ‘Enabling concurrency in your behavior hierar-
chy’, AIGameDev.com, (2007). http://aigamedev.com/open/
article/parallel/ Last checked 2014-08-10.

[4] A. Champandard, ‘Understanding behavior trees’, AIGameDev.com,
(2007). http://aigamedev.com/open/article/
bt-overview/ Last checked 2014-01-05.

[5] A. Champandard, ‘Using decorators to improve behaviors’,
AIGameDev.com, (2007). http://aigamedev.com/open/
article/decorator/ Last checked 2014-08-10.

[6] D. Fu and R. Houlette-Stottler, ‘The ultimate guide to FSMs in games’,
in AI Game Programming Wisdom II, 283–302, Charles River Media,
(2004).


