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Title of the Talk:    
 

Deep Neural Networks and Their Role in the Quest for Human-Like Brain Power  
 
 
Abstract: 
 

The long-term interest in cognitive sciences has been enhanced by several strong impulses 
to contemporary computer science - in particular by large government initiated brain 
research projects. Other developments shift the area even more from the traditional von 
Neumann computing paradigm towards true connectionism implemented in silicon, too. 
New imaging technologies allow to follow the brain activity even at the individual neuron´s 
level. Inexpensive graphics processing units are becoming a common option for learning 
large-scale deep neural networks and currently unveiled brain-inspired chip architectures let 
us think of constructing complex cognitive algorithms mimicking the function of biological 
brains. 

Perhaps the first deep artificial neural network incorporating some neurophysiological 
insights was the Neocognitron. Recent brain-inspired models of artificial neural networks 
include especially the so-called Deep Belief Networks and Convolutional Neural Networks. 
Both types of networks comprise several layers of functional neurons and both of them 
proved to be able to beat human performance in various areas of 2D image recognition. 
These models are, however, expected to yield superior results also for many other tasks 
ranging from language understanding and translation to multimedia data processing, among 
others.  

While the majority of classical image processing techniques is based on carefully pre-
selected image features, deep neural networks are designed to learn local features 
autonomously with minimum or no advanced pre-processing. The representations formed in 
their hidden layers resemble a hierarchy combining simpler features found at lower layers 
into more complex features detected at higher layers. Deep networks can be moreover 
trained by means of unlabeled data collected, e.g., from the internet. The found features can 
then be used as common building blocks for new images if labeled data is scarce.  
 
 
Curriculum Vitae: 
 

Iveta Mrázová, PhD is Associate Professor and Head of Department of Theoretical Computer 
Science and Mathematical Logic at Faculty of Mathematics and Physics, Charles University in 
Prague, Czech Republic. She graduated from F. Schiller University in Jena, Germany in 1989 
and received her Ph.D. from the Institute of Computer Science of the Czech Academy of 
Sciences in Prague in 1997. During 2002-2003, she was a Fulbright fellow at Missouri 
University of Science and Technology in Rolla, USA. Her research interests include artificial 
intelligence, machine learning and data mining. She published more than 50 research papers 
focused mainly on the areas of artificial neural networks and knowledge extraction.  
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� Deep Neural Architectures 

� Applications 

� Conclusions 
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CAS 2015, San José 

Motivation 
 

 

 

� Large Government-Initiated Brain 
Research Projects 

� Connectionism Implemented in Silicon 
� New Imaging Technologies 
� New Neurobiological Discoveries  
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Large-Scale  
Brain Projects  

 

BRAIN Initiative - USA, April 2013   
~ Brain Research Through Advancing Innovative Neurotechnologies 
  on a par with the Apollo Program to land humans on the moon 

 http://www.whitehouse.gov/infographics/brain-initiative 
 

Goal:  understand the human mind and uncover new ways to treat, 
     prevent, and cure brain disorders like Alzheimer’s, 
     schizophrenia, autism, epilepsy, and traumatic brain injury 
 

Expected costs:   > 4 billion USD / 10 years 
Participants:  DARPA ~ Defense Advanced Research Projects Agency 

   IARPA ~ Intelligence Advanced Research Projects Activity 
   NIH ~ National Institutes of Health 
   NSF ~ National Science Foudation 
   FDA ~ Food and Drug Administration 
   private sector 
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Large-Scale Brain Projects 
 

HBP ~ Human Brain Project – EU, January 2013 
                 https://www.humanbrainproject.eu/  
  

Goal:  understand what makes us human (through brain–wide  
     analyses of neural network activity at the level of single  
     neurons), develop new treatments for brain disorders and 
     build revolutionary new computing technologies.  
13 Subprojects:  Strategic Mouse Brain Data  
   Strategic Human Brain Data  
   The Brain Simulation Platform,  
   The High Performance Computing Platform, etc.  

 

Expected costs:   1.3 billion USD /10 year 
Participants:        112 partners from 24 countries 
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Large-Scale Brain Projects 
 

Brain/MINDS Project - Japan, 2014  

 ~  Brain Mapping by Integrated Neurotechnologies for Disease Studies 
      http://brainminds.jp/en/ 
 

Goal:  study the neural networks controlling higher brain 
functions in the marmoset, to get new insights into 
information processing and diseases of the human 
brain such as dementia and depression 

 

Expected costs: 300 million USD / 10 years 
Participants:      RIKEN Brain Science Institute – Core Institute  
            Keio University – Partner Institute  
            Kyoto University – Partner Institute  
            … and several other institutions (mainly academic) 
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Large-Scale 
Brain Projects 
Government-Initiated: 
� China Brain Science Project, 2015  

~ is focused on developmental, psychiatric and neurodegene-
rative disorders and should promote breakthroughs in AI 
research to reshape country´s industry, military, and service 
structure for the new industrial revolution    

� huge projects launched also by Israel and Canada 
 

Other brain research projects include: 
� Allen Brain Atlas - Allen Institute for Brain Science, USA, 2003 

� BigBrain - Montreal Neurological Institute and German Forschungs- 
   zentrum Jülich, June 2013 

   https://bigbrain.loris.ca/main.php  
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 Connectionism Implemented 
in Silicon: Early Attempts 

 

 

 

8 The Daily Telegraph, 31 January 1950 



5 

 Connectionism Implemented  
in Silicon: The Mark I Perceptron 
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A visual pattern classifier: 
� 20x20 photosensitive input 

units modeling a small retina  
� 512 hidden units (stepping 

motors) each of which could 
take several excitatory and 
inhibitory inputs 

� 8 output (response) units  
� connections from the input to 

the hidden layer could be altered 
through plug-board wiring, 
but once wired they remained 
fixed for the experiment  

� connections from the hidden to 
the output layer were adjusted 
through perceptron training  
 The Mark I Perceptron, Cornell Aeronautical Laboratory, 1957-1959  

CAS 2015, San José 

 Connectionism Implemented  
in Silicon – the project SyNAPSE 
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~ Systems of Neuromorphic 
Adaptive Plastic Scalable 
Electronics 

� A DARPA program undertaken by 
HRL, HP and IBM (Dr. D. Modha) 

� Goal: develop a novel cognitive 
computing architecture inspired 
by the function, low power, and 
compact volume of the brain  

� non von Neumann architecture 
(neuromorphic computing) 

� applications, e.g., in image and 
video processing, NLP, composer 
recognition, collision avoidance 
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 Connectionism Implemented  
in Silicon – Neurosynaptic Chips 
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� neurosynaptic TrueNorth Chip (with 4096 neurosynaptic cores) 
� 1 million programmable neurons (cca 86 bn in human brains) 
� 256 million configurable synapses (cca 1014–1015 for humans) 
� efficient, scalable, flexible 

a circuit board with a 4×4 array 
of SyNAPSE-developed chips 

a neurosynaptic core 

CAS 2015, San José 

 Connectionism Implemented  
in Silicon – Data Storage 
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A new hand-sized tape cartridge can store 220 TB of data: 
� big data 
� cloud 
 computing  
� cheap 

 
 
 
 
 
 

� IBM, Sony, …  
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New Imaging Technologies: 
Lightsheet Microscopy 

� ZEISS Lightsheet Z.1:
� 32 TB Storage and Data Analysis Module 
� weights cca 500 lbs  
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Z1 was world´s first program-controlled computer  

New Imaging Technologies: 
Lightsheet Microscopy 

 
 
 
 
 
 
 
 
 
 
 

� based on the principles of ultramicroscope developed by 
Richard Adolf Zsigmondy in 1902 (Nobel Prize in 1925) 
 

http://www.nature.com/nmeth/journal/v10/n5/fig_tab/nmeth.2434_SV4.html  14 
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New Imaging Technologies: 
Lightsheet Microscopy – System Requirements 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 adapted from E. G. Reynaud et al.: Guide to Lightsheet Microscopy for 

Adventurous Biologists, Nature Methods, Vol. 12, pp. 30-34, 2015. 
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New Imaging Technologies: 
Lightsheet Microscopy 

16 

OpenSPIM (~ Open Source Selective Plane Illumination Microscopy) 
 
 
 
 
 
 

� portable 
� cheap  
      ~ 7000 EUR 

� easy to assemble  
     http://openspim.org 
� off-the-shelf components and 3D-printed parts 
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 Neurobiological Breakthroughs: 
Understanding of the visual system  

 

 

 

 
� based on the research of David H. Hubel and Torsten N. Wiesel 

on functional architecture in the cat's visual cortex in 1959 and 
1962 (Nobel Prize in 1981) 

� architecture of the visual system ~ individual cortical cells respond 
not to the presence of light, but rather to contours of specific 
orientation; feature-detecting cells form a hierarchy of multiple stages  

� ocular dominance ~ the preference of cells that process visual stimuli 
to respond to input from one or the other eye.  

 =>  therapy for children born with cataracts or strabismus 
 

17 http://cns-alumni.bu.edu/~slehar/webstuff/pcave/hubel.html 
https://youtu.be/IOHayh06LJ4 

          Hubel & Wiesel´s hierarchy of features 
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 Neurobiological Breakthroughs: 
Brain Connections  

Macaque brain long 
distance network 
https://youtu.be/YZTRxKyx410 

Connectograms:  
�  2D-graphs of long-distance   
    connections in the brain  
�  based on in vivo and non- 
    invasively obtained diffusion  
    magnetic resonance imaging 
    data (MRI) 
�  insight into pathologies 
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� Dharmendra S. Modha, Raghavendra Singh: Network architecture of the long-dist-
ance pathways in the macaque brain, PNAS 2010;107:13485-13490. 

 

 

©2010 by National Academy of Sciences 
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 Neurobiological Breakthroughs: 
Brain Connections in Autism 

� 46 healthy neurotypical children,  
� 16 children with classic autism,  
� 14 children whose autism is part of a 

genetic syndrome called TSC  
� 29 children with TSC but not autism  

� Both groups of children with TSC 
show fewer connections overall  

� Both groups with autism have 
more connections between adja-
cent areas of the brain and fewer 
connections across distant areas.  

JM Peters et al.:“Brain functional networks in 
syndromic and non-syndromic autism: a  
graph theoretical study of EEG connectivity,”  
BMC Medicine. Published online Feb. 27 2013 
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Connectivity between 19 different brain regions, based on EEG data: 
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 Neurobiological Breakthroughs: 
 

Connections and cortical measures of 110 normal, 
right-handed males, aged 25-36   

 
 
 
 
 
 
 

 
 

 
� Van Horn JD, Irimia A, Torgerson 

CM, Chambers MC, Kikinis R, et al. 
(2012) Mapping Connectivity 
Damage in the Case of Phineas 
Gage. PLoS ONE 7(5): e37454. 
doi:10.1371/journal.pone.0037454 
 

 20 
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 Neurobiological 
Breakthroughs  

Connectogram with cortical measures:  
�  110 normal, right-handed males, aged 25-36 
�  the left hemisphere is depicted on the left, the right hemisphere 
    on the right 
�  each cortical area is labeled with an abbreviation and assigned 
    its own color  
�  the concentric circles represent additional attributes of the  
    corresponding cortical region (grey matter volume, surface area, 
    degree of connectivity, etc.)  
�  inside the circles, lines connect regions that are structurally  
    connected 
�  the density (number of fibers) of the connections is reflected in  
    the opacity of the lines   

21 

 Neurobiological Breakthroughs: 
Neuron-Specific Optogenetic Control  

Optogenetics ~ brain control with light 
� allows for fine manipulation of neuronal activity to control the 

function of neuronal microcircuits in vitro and in vivo  
� only the genetically targeted cells will be under the control of 

the light while leaving other cells to function normally   
� optical stimulation (light in the UV to the IR wavelengths) can 

control (either excite or inhibit) genetically targeted neurons in 
the brain with a high spacial and temporal resolution 

Control of social / asocial behavior in mice amygdala 
� ChR2 Stimulation of MeApd Neurons Triggers Aggression toward a Female Intruder  
� ChR2 Stimulation of vGLUT2+ Neurons Promotes Repetitive Self-Grooming Behavior  
� ChR2 Stimulation of vGAT+ Neurons Suppresses Repetitive Self-Grooming Behavior 
� http://www.sciencedirect.com/science/article/pii/S0092867414010393 

 

 
22 W Hong, D-W Kim, DJ Anderson: Antagonistic Control of Social versus Repetitive Self-Grooming 

Behaviors by Separable Amygdala Neuronal Subsets, Cell 158 (6), 2014, 1348–1361. 
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Deep Neural Architectures 

� Motivated by biological neural networks 

� Some functions compactly represented with k 
(k>2) layers may require exponential size with  
2 layers 

� Hierarchy, structure, sparse coding and shared 
representations 

� Various approaches include: 
� Neocognitron 
� Multilayer Perceptrons and Error Back Propagation  
� Convolutional Neural Networks 
� Deep Belief Networks 

 23 

CAS 2015, San José 

Neocognitron 
 

� Proposed by Kunihiko Fukushima in 1980 
� Kunihiko Fukushima: Neocognitron: A Hierarchical Neural 

Network Capable of Visual Pattern Recognition, Neural 
Networks, Vol. 1, pp. 119-130, 1988. 
 

� Sparse hierarchical network structure  
� 1D-view of interconnections between                                          

the neurons from different layers 

 

 

24 
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Neocognitron:  
two types of neurons 

� C-cells:  
� support shift invariance in the input   
� fixed incoming weights  
� receive signals from several S-cells                                                    

extracting the same feature, but at                              
different positions  

� activated if at least some of these                                            
S-cell groups is active 

     25 

� S-cells:  

� extract features at certain 
positions  

� variable incoming weights         
reinforced during training 

 

 
 

     

K. Fukushima: Neocognitron: A Hierarchical Neural Network Capable of 
Visual Pattern Recognition, Neural Networks, Vol. 1, pp. 119-130, 1988. 

Neocognitron: 
the recall process  

� the cells are arranged into 2D-arrays                                 
(~ cell-planes) 

� alternating layers of S- and C-cells 

� simple features extracted in lower                                
layers are combined into more                                    more 
complex features at higher layers 

� the cells at higher layers process larger areas of the input  

� neighbouring cells receive similar signals 

� at the top layer, there is only 1 C-cell in each cell-plane  
� each of these C-cells is activated only by input patterns from the 

corresponding category   

 
26 K. Fukushima: Neocognitron: A Hierarchical Neural Network Capable of 

Visual Pattern Recognition, Neural Networks, Vol. 1, pp. 119-130, 1988. 
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Neocognitron:  
the training process 

 

Two main principles: 
1. Reinforcement of maximum output cells 

� Only the cell best responding to the training stimulus will 
be selected to have its weights reinforced 

� Once a cell is selected and its weights reinforced, it usually 
loses its responsivness to other features  

2. Development of iterative connections 
� All the S-cells in the cell-plane respond to the same 

feature, and the differences between them arise only from 
the difference in position of the feature to be extracted 
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Neocognitron - training 
 

1. Initialize the weights with small positive values.  

2. Repeat until convergence  
� present an input pattern to the network;  

� in each cell-plane, choose the S-cell with the strongest 
response (~ the seed cell);  

� reinforce the weights of the input connections for the 
selected “winning” S-cell to strengthen its response to the 
detected feature;  

� reinforce also the weights of the input connections for all 
other S-cells from the same cell-plane using the “winning” 
cell as a template.  

 28 
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Neocognitron: 
characteristic properties  

29 

� A pioneering neural network model capable                  
of learning to recognize 2D-visual patterns 

� Robust to errors in position, scale and distortion 
� Higher layers can be trained only after the training of 

preceding stages has been completely finished 
� Labeled seed cells are required for supervised      

training 
� During selforganization, maxi-                                

mum output cells are selected                     
automatically as seed cells  
 

??? 

Image courtesy  
 of A. J. Frazer 

K. Fukushima: Neocognitron: A Hierarchical Neural Network Capable of 
Visual Pattern Recognition, Neural Networks, Vol. 1, pp. 119-130, 1988. 
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Multilayer Perceptrons  
and the Error Back Propagation 

31 

� compute the actual response 
of the network and compare it 
with its desired response 
 
 
 
 
 

� Goal: minimize the error  
� adjust the weights and thresholds  
� from the output to the input 

O  U  T  P  U  T 

I  N  P  U  T 

� �2

,,
2

1 �� ��
p j

pjpj dyE
actual  
output 

desired output 

patterns 
output neurons 

Multilayer Perceptrons  
and Error Back Propagation 

� First used for gradient evaluation by Paul J. Werbos in 1974 
 

1:   Initialize the weights to small random values 
2:   Present a new training pattern in the form of: [input  x, desired output  y] 
3:   Calculate actual output:  in each layer, the activity of neurons is given by: 
 
 
 
4:   Weight adjustment:  start at the output layer and proceed back towards the 

             input layer according to: 
 
 
 
 
 
        
 
   for the weight  wij (t) from neuron i to neuron j in time t; learning/momentum rates α / αm ;  
       potential / local error on neuron j denoted as ξj / δj ; the index k for the neurons from the layer 
       above the neuron j and the slope of the transfer function λ   
5:   Repeat by going to step 2 

32 
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for an output neuron 

for a hidden neuron 

D. E. Rumelhart, G. E. Hinton, R. J. Williams: Learning Representations by 
Back-Propagating Errors, Nature, Vol. 323, pp. 533-536, 1986. 
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George´s Girls 
Task: guess if George will like that girl 
  

  hair   intelligence  sense of     blue   1.hidden  2. hidden   attractivity  
length                     humor      eyes    neuron    neuron

 

1. 0.84       0.39         0.78       0.79        0.64       1.00             0.42 
2. 0.91       0.19         0.33       0.77  0.00       1.00 0.20
3.    0.27       0.55         0.47       0.69        0.98       1.00             0.50 
4.    0.36       0.51         0.95       0.91        0.86       1.00             0.60 
5.    0.63       0.71         0.14       0.61        0.85       1.00             0.62 
6.    0.02       0.24         0.13       0.80        0.02       1.00             0.05 
7. 0.61       0.69         0.63       0.52 1.00       1.00            0.80
8.    0.49       0.97         0.29       0.77        0.59       1.00             0.40 

hair   intelligennce  sennse of     blue  h i i t lli f bl 1.hidden  2. hidden1 hidd 2 hidd attractivityytt ti it
length  huumor eyes neuron neuronn

1.1. 0.84       0.39         0.778       00.79        0.84 0.39 0.778 00.79 0.64       1.00             0.64 1.00 0.420.42
2. 0.91  0.19 0.333  00.77 0.00  1.00 0.20
3. 0.27       0.55         0.447       00.69       0.98       1.00             0.50
4. 0.36       0.51         0.995       00.91       0.86       1.00             0.60
5. 0.63       0.71         0.14       00.61       0.85       1.00             0.62
6. 0.02       0.24         0.13       00.80        0.02       1.00             0.05
7. 0.61  0.69 0.663  00.52 1.00  1.00 0.80
8. 0.49       0.97         0.229       00.77  0.59       1.00             0.40

CAS 2015, San José 

� activity interpretation 
for hidden neurons: 
 

        1           active          YES 
 

 
 

        0          passive         NO 
 
 
 
 
 
 
 
 

           0.5    silent           DON´T 
                KNOW 

 

� transparent structure 
� detection and pruning of 

redundant neurons 
� improved generalization I  N  P  U  T 

O  U  T  P  U  T 

Multilayer Perceptrons: 
what are the neurons really doing? 

34 
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George´s girls revisited 
How many neurons will George need to solve his problem? 
  

  hair   intelligence  sense of     blue   1.hidden  2. hidden   attractivity  
      length                    humor      eyes     neuron    neuron 
 

1. 0.84       0.39         0.78       0.79        0.64       1.00             0.42 
2.    0.91       0.19         0.33       0.77        0.00       1.00             0.20 
3.    0.27       0.55         0.47       0.69        0.98       1.00             0.50 
4.    0.36       0.51         0.95       0.91        0.86       1.00             0.60 
5.    0.63       0.71         0.14       0.61        0.85       1.00             0.62 
6.    0.02       0.24         0.13       0.80        0.02       1.00             0.05 
7.    0.61       0.69         0.63       0.52        1.00       1.00             0.80 
8.    0.49       0.97         0.29       0.77        0.59       1.00             0.40 

hair   intelligennce  sennse of     bluehair intelligennce sennse of blue 1.hidden  2. hidden1 hidden 2 hidden attractivityyattractivityy
length                    hummor      eyes    neuron    neuronn

1. 0.84       0.39         0.778       00.79        0.64       1.00             0.42
2.    0.91       0.19         0.333       00.77       0.00       1.00            0.20
3.    0.27       0.55         0.447       00.69        0.98       1.00             0.50
4.4    0.36       0.51         0.995       00.91       0 36 0 51 0 995 00 91 0.86       1.00             0 86 1 00 0.600 60
5.    0.63       0.71         0.14       00.61       0.85       1.00             0.62
6.    0.02       0.24         0.13       00.80       0.02       1.00             0.05
7.    0.61       0.69         0.663       00.52       1.00       1.00            0.80
8.    0.49       0.97         0.229       00.77       0.59       1.00             0.40
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The German Traffic Sign 
Competition (IJCNN 2011)  

� Convolutional Neural Networks performed best! 
� No need for custom-made image pre-processing  
� 98.98 % (Schmidhuber et al), 98.97 % (LeCun et al), 98.81 % 

(human performance)  
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CNN-networks 
(Convolutional neural networks) 

The LeNet-5 model (Yan LeCun et al. 1998) 

 
 
 
 
 

 

 

� Trained by back-propagation (sparse connectivity) 
� Local receptive fields, weight sharing and spatial sub-sampling 

(alternating convolutional and subsampling layers) 
� Invariant object recognition (up to a certain degree) 
X  Fixed number of feature maps in each layer! 
Y. LeCun, L. Bottou, Y. Bengio, P. Haffner: Gradient-Based Learning Applied to 
Document Recognition, Proc. of the IEEE, Vol. 86, pp. 2278–2399, 1998.  
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CNN-networks: 
the convolutional layer l 
� receptive fields of the same size               overlapping in            

rows/columns   

� neuron (i,j,f,l) at the position (i,j) in the feature map f of the layer l is  
thus connected to neurons  (i+�i, j+�j, f´, l-1)  from the layer l-1 by the 
weight                 for                                              ; the neurons from 
the feature map f take their input from a set of feature maps  

� The weights are shared for all the neurons from the same feature map 

� The potential         and output          of the neuron (i,j,f,l): 
 
 
 

� The size ml x nl of all feature maps from l is imposed by the size of the 
feature maps in layer l-1 and by the size of the receptive field  
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CNN-networks: 
the subsampling layer l 
� non-overlapping subsampling areas of the size               (usually 2x2) 

� multiplicative trainable coefficients af,l and additive trainable biases bf,l 

� The potential         and output          of the neuron (i,j,f,l): 
 
a) averaging: 

 

b) maximizing: 

 

 
 

� The size ml x nl of the feature maps from l :  
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DBN-networks 
(Deep Belief Networks) G.E. Hinton et al. 2006 

 
 
 
 
 

 

 
 
 
 

� Stacked Restricted Boltzmann Machines with a classifier 
� Unsupervised pre-training (layer-wise) 
� Short supervised fine-tuning 

G. E. Hinton, S. Osindero, Y.-W. Teh: A Fast Learning Algorithm for Deep 
Belief Nets, Neural Computation, Vol. 18, pp. 1527–1554, 2006. 
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RBM-networks 
(Restricted Boltzmann Machines) 

 
 
 
 
 

 

 
 

� A popular building block for deep architectures 
� A bipartite undirected graphical model 
� RBMs are universal approximators (with enough hidden units, they can 

perfectly model any discrete distribution) 
� Adding one hidden unit (with a proper choice of parameters) guarantees 

increasing likelihood 

hidden layer:  h=(h1, h2, …, hM) 
 
 
visible layer:   x=(x1, x2, …, xN) 
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N. Le Roux, Y. Bengio: Representational power of restricted Boltzmann machines 
and deep belief networks, Neural Computation, Vol. 20(6) pp. 1631–1649, 2008.  
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RBM-networks 
� Energy function:     E(x,h) = - ( xTWh + bTh + cTx ) 

 
� Probability of configuration (x,h): 

 
 

� Our goal:  p(x) = ptrain(x)    
    ==>  maximize the likelihood of the training data 

 

� As                                

 
 adjust the weights by: 
 (and similarly for the biases) 
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Applications 
 

 

� Image Classification / Processing 
� Signal and Multimedia Data 

Processing 
� Knowledge Extraction and 

Interpretation 
 

43 
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Recognition of handwritten digits 
accuracy of CNN-networks around 93 % (with M. Kukacka) 

44 

� Simple local primitives: e.g., background, background 
followed by an object from the right, diagonal line  
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Recognition of human faces  
accuracy of CNN-networks almost 93 % (with M. Kukacka) 

45 

Features:  
� light surfaces 

� dark surfaces 
� light-coloured 
  noses  
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Detection of Hockey Players  
accuracy of CNN-networks over 98.5 % (with M. Hrincar) 

Objective:  
�  Reliable online video processing for augmented reality 
Data: 
�  Records of broadcasted hockey matches (publicly available during 
    the World Championships 2011 and 2012)  
Results: 
�  http:tinyurl.com/hokejdetect  
  
�light surfaces 

� dark surfaces 
� light-coloured 
 noses  
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Detection of Hockey Players  
accuracy of CNN-networks over 98.5 % (with M. Hrincar) 

47 

� accuracy of a CNN-network trained on original data to 
Gaussian noise (with zero mean and growing variance) 
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Detection of Hockey Players  
accuracy of CNN-networks over 98.5 % (with M. Hrincar) 

48 

� internal representations in the feature maps filter out the noise 
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Deep Neural Networks for  
3D-data Processing (with J. Pihera and J. Veleminska) 

49  

� Detection of characteristic face features 

� Classification of 3D-face models according        
to the person´s gender 

CAS 2015, San José 50 

George´s Girls – Are That Girls? 
 
 
 
 
 
 
 
 

� Difficult to determine gender based on the face 

Model - Andrej Pejic 
(source: idnes.cz) 

Transsexual participant of 
Miss Universe Canada 
(source: idnes.cz) 

Miss Tiffany’s Universe 
trans-genders 
(source: super.cz) 

Human performance  
(accuracy) on 3D-face  
scan classification: 
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Data and models 

51 /14 

� 3D data – face models  
 (courtesy of the Department of Anthropology and Human Genetics, 

Faculty of Natural Sciences of the Charles University in Prague) 

� Theoretical model 
� Kohonen´s SOM 
� GNG (Growing Neural Gas) 
� Convolutional Neural Networks ~ an advanced model for shape 

recognition in 2D-images 

CAS 2015, San José 

Detection of characteristic 
face features  (with J. Pihera and J. Veleminska) 

52 

  

SOM, 20x20 neurons, 34 clusters GNG, 400 neurons, 40 clusters 

–  self-organizing neural network models trained on the face data 
–  clustering of the neurons and labeling of the clusters 
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Sexual Dimorphism – classification 
according to person´s gender   
 

(with J. Pihera and J. Veleminska) 

a 2D-transform: 
 

� a drawn 3D model (raw) 
� pre-processing by means 

of a SOM 
� images 

a 3D transform: 
 

� direct / clustered 
� pre-processing by means 

of a SOM 
� 3D tensors (223 voxels) 

53 

Examples of rotated and scaled patterns added to the training set. 
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Classification according 
to person´s gender – 2D  
(with J. Pihera and J. Veleminska)  

Raw: Pre-processed by a SOM: 
 

54 

Input and output of the first detection layer 
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� Convolutional neural 
networks were designed    
to process 2D-information 

� 3D tensors at the input 

� New model of ND-CNNs: 
� Extend the feature maps to 

process N-dimensional object 
information  

� Feature maps shrink very 
fast x combine the input 
from a large region 

� Complexity similar to CNNs 

Classification according  
to person´s gender – 3D  
 

(with J. Pihera and J. Veleminska) 

55 

3D-convolution of a 4x4x4 
feature map (right) with a 
3x3x3 receptive field.  
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Classification according  
to the person´s gender – results 
 

(with J. Pihera and J. Veleminska) 

56 

Transformation Error Standard 
deviation 

2D Raw 0.85% 0.48 

2D SOM 14.15% 1.43 

3D Direct 8.15% 1.63 

3D Direct, clustered 5.37% 1.52 

3D SOM 1.28% 0.47 

� Classification according to person´s gender is 
relatively precise 

� Raw transformation yields better results for 2D 
� Pre-processing by a SOM is better for 3D 
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Classification of 3D-face models: 
accuracy of CNNs around 98% against 64% in humans 
 

(with J. Pihera and J. Veleminska) 

stronger 
jaws 

sharper 
nose 

gentler 
features 

smaller 
nose 
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Conclusions  
 

� Understand the function of the brain 
� Stimuli for science and industry 
� Improved machine performance for at 

least some tasks should be very welcome 

…  but shall we really let the machines 
copy everything from us - even 
courage, joy, curiosity, …?  
 

58 
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Thank you for your attention! 
 

  

 

59 

Acknowledments:  This research was partially supported  
by the Czech Science Foundation under Grant No. 15-04960S. 

Images courtesy of A. J. Frazer 


