
Feature extraction – a probabilistic approach

Onďrej Sýkora

November 18, 2010



Introduction

I Today, we will. . .
I . . . follow up with what Zuzka started last week, this time from

a probabilistic point of view
I . . . have a short overview of the NIPS challenge
I . . . review several methods for feature extraction, that are

based on the probability theory



Motivation

I The goal of feature extraction
I For a classification problem on a given dataset, find a

reasonably small (smallest) set of features that does not give
significantly worse classification results than the complete set
of features.

I Why feature extraction?
I Fewer features may lead to: faster classification, faster

learning, better generalization, easier obtaining of data, the
data use less space on disk, . . .

I The definition is somewhat ambiguous
I Let’s see, how it was implemented in the NIPS Challenge



NIPS Challenge 2003

I An international challenge in feature extraction
I The task: (binary) classification on 5 datasets with different

characteristics
I Very high dimensionality (500-100 000 features)

I . . . especially when compared to the numbers of samples

I Pre-processing: probes
I irrelevant (random) variables
I Independent on the class ⇒ should be removed by good

feature extraction algorithms

I The data sets were splitted into three sets:
I Training: class labels available to the participants
I Validation: class labels not available, immediate response to

the submitted data via challenge website
I Test: class labels not availabe, used to evaluate the

participants at the end of the competition



NIPS Challenge 2003
Datasets

Dataset Features Trn + Val + Tst
Arcene 10 000 100 + 100 + 700
Dexter 20 000 300 + 300 + 2000
Dorothea 100 000 800 + 350 + 800
Gisette 5 000 6000 + 1000 + 6500
Madelon 500 2000 + 600 + 1800



NIPS Challenge 2003
Evaluation

I Evaluation metrics:
I BER = 1

2 ( TP
TP+FN + TN

TN+FP )
I Ffeat = fraction of features selected by the classifier

(self-reported)
I Fprob = fraction of probes selected

I Tournament: each classification competes with each other
I If BER of the two classifiers are significantly different

(McNemar test, α = 0.05), the better one wins
I If the difference of Ffeat is greater than 0.05, the lower one wins
I If the difference of Fprob is greater than 0.05, the lower one

wins
I The algorithms are equally good
I Winner gets 1 point, loser gets −1; in case of draw, both get 0



NIPS Challenge 2003
Results



Bayesian Classification

I For a sample x , select the most probable hypothesis
H∗ = arg maxH P(H|x)

I Hypothesis Hi : sample x belongs to class Ci

I Problem: in most cases, P(H|x) is unknown, difficult to obtain

I Bayes rule:

P(H|x) =
P(x |H)P(H)

P(x)
=

P(x |H)P(H)∑
H P(x |H)P(H)

I P(x |H), P(H) and P(x) might be known, or easier to measure



Bayesian Classification
Naive Bayes Classifier

I Special case: x = (x1, x2, . . . , xn), and xi are conditionally
independent given H:
P(x |H) = P(x1, x2, . . . xn|H) = P(x1|H)P(x2|H) . . .P(xn|H)

I Classification using:

P(H|x) =
P(x1|H)P(x2|H) . . .P(xn|H)P(H)∑
H P(x1|H)P(x2|H) . . .P(xn|H)P(H)

I Advantage: very simple and efficient representation
I Disadvantage: conditional independence is a very strong

precondition
I Often used with good results even if the conditional

independence does not hold

I For binary classification: only calculate P(positive|x),
compare it to a threshold (e.g. 50 %)



Selective Naive Bayes Classifier

I Deals with the problem of redundant or strongly correlated
variables

I Question: how do we find them?
I The do not improve classification results!

I Algorithm:

1. Start with an empty set of features F
2. Train Naive Bayes classifier, only using features from F ,

measure its accuracy on the training set
3. For each feature f not in F :

I Train Naive Bayes classifier using features F ∪ {f }, measure
accuracy on the training set

4. Select the feature f ∗ that most improves accuracy of the
model; halt if adding any feature not in F degrades the
accuracy

5. Add f ∗ to F , go to step 2

I Performance comparable to Naive Bayes or better



Enhanced Selective Naive Bayes Classifier
with Optimal Discretization

I Improved version of Selective NB for the NIPS Challenge
I A different evaluation criterion:

I Accuracy replaced by AUC (Area Under lift Curve)
I Plot TP

TP+FP+TN+FN
against TP+FP

TP+FP+TN+FN
for all values of

threshold (remember NBC for binary classification)
I More sensitive than accuracy

I When the feature selection halts, the optimal threshold is
found using the lift curve

I the threshold with maximal value of TP
TP+FP+TN+FN



Enhanced Selective Naive Bayes Classifier
With Optimal Discretization!

I MODL - Bayes Optimal discretization
I Discretization model:

I There are m samples with J different class labels
I The class labels of the samples are ordered according to the

value of the variable being discretized
I The labels are separated into I intervales; Interval Ii contains

mi labels, mi,j of them are labels for class j .

I Optimal discretization – maximizes P(discretization|data)
I Three-stage prior – distribution over discretization models

I The number of intervals I is uniformly distributed between 1
and m

I For a given number of intervals I , each partitioning of the
samples to the intervals is equiprobable

I The distributions of class labels in each interval are
independent of each other



Enhanced Selective Naive Bayes Classifier
With Optimal Discretization!

I Given models distributed according to the three-stage prior,
the Bayes-optimal one minimizes

log(m) + log

(
m + I − 1

I − 1

)
+

I∑
i=1

log

(
mi + J − 1

J − 1

)
+

I∑
i=1

(
mi !

mi ,1! . . .mi ,J !

)
I To find the model, use a greedy bottom-up strategy



Input Variable Importance Definition based on Empirical
Data Probability Distribution

I A wrapper method, calculates importance based on difference
in classification results

I A classifier is treated as a black box or a mapping f from
samples to target values

I Notation:
I f (x) = f (x1, x2, . . . , xn) – output of the prediction model on

sample x
I Vij – value of j-th attribute of i-th sample
I PVj (v) – marginal probability distribution over the values of

j-th feature in the data
I Px(u) – distribution of the samples
I fj(x ; b) = f (x1, . . . , xj−1, b, xj+1, . . . , xn)



Input Variable Importance Definition based on Empirical
Data Probability Distribution

I Define importance of variable j for prediction model f

S(Vj |f ) =

∫ ∫
|f (u)− fj(u; v)|dPx(u)dPVj

(v)

=
1

m

m∑
i=1

1

m

m∑
i=1

|f (xi )− fj(xi ;Vkj)|

I Start with all features, in each step remove variable j with
minimal importance; re-train the model after removing each
variable

I In the NIPS Challenge, used with multilayer perceptron NN



Bayesian Neural Networks
Bayesian Learning

I Suppose we have:
I A classification model P(Y |X , θ) with parameter vector θ
I Set of training samples Xtrain with class labels Ytrain

I A classical approach is to choose such θ that maximizes
P(Ytrain|Xtrain, θ)

I Now suppose we have a prior distribution P(θ). Then, we can
use the Bayes rule:

P(θ|Ytrain,Xtrain) =
P(θ)P(Ytrain|Xtrain, θ)∫
P(θ)P(Ytrain|Xtrain, θ)dθ



Bayesian Neural Networks
Bayesian Learning

I Remember, we have a model P(Y |X , θ), prior P(θ) and
posterior distribution P(θ|Ytrain,Xtrain)

I Together, we get a new model:

P(Ynew |Xnew ,Xtrain,Ytrain) =

=

∫
P(Ynew |Xnew , θ)P(θ|Xtrain,Ytrain)dθ

I For fixed Xtrain and Ytrain, we have a classifier P(Ynew |Xnew )

I So far, so good, but where is feature selection?



Bayesian Neural Networks
An Example with Logistic Regression

I Consider the logistic model

P(Y = c |X = x) =
1

1 + e−(α+βT x)
, θ = (α, βT ) ∈ Rn+1

I How do we get the prior distribution P(θ)?
I A classical solution: we make one up!
I The prior is not that important, a reasonable one should work

well
I α and the elements of β should be independent
I For α, any broad enough distribution should be fine
I For β, use N(0, σ2In), where σ is another parameter
I With such choice of β, the probability distribution is spherical

around 0→ the output of the model is invariant to
orthonormal transformations of x and β



Bayesian Neural Networks
An Example with Logistic Regression

I Consider the logistic model

P(Y = c |X = x) =
1

1 + e−(α+βT x)
, θ = (α, βT ) ∈ Rn+1

I How do we get the prior distribution P(θ)?
I Now consider using N(0, diag(σ2

1 , σ
2
2 , . . . , σ

2
n))

I Let σ2
i = 0 for some i . Then the value of βi is forced to 0,

effectively eliminating the i-th feature
I Analogically, using small σ2

j for a feature j forces small values
of βj , giving a hint about the relevance if the j-th feature

I However, this introduces new parameters σ2
i that needs a value

I Use a reasonable prior and determine them using the Bayes
rule and maximum likelihood



Bayesian Neural Networks
Practical implementation

I The same approach can be used for bayesian learning of other
models

I For neural networks, use weights as the parameter vector
I Hyperparameters σ2

i can be used for weights to the input
neurons

I Practical notes
I Lots of complex mathematics, how to deal with that

I compute analytically whathever can be computed that way
I use numerical solvers for other integrals
I use Monte-Carlo Markov Chain for sampling of parameters
I create multiple instances of the classification model with

sampled parameters to produce the final result – “Bagging
done right”



Conclusions
Results



I Questions, comments?


