## INFORMATION THEORY METHODS FOR FEATURE SELECTION

Zuzana Reitermanová



Department of Computer Science Faculty of Mathematics and Physics

Charles University in Prague, Czech Republic

Diplomový a doktorandský seminář I. – 11.11.2010

## Outline



Feature extraction

### 2 Feature selection

- Basic approaches
- Filter methods
- Wrapper methods
- Embedded methods
- Ensemble learning
- NIPS 2003 Challenge results

### 3 Conclusion

References

Information theory methods for feature selection Introduction Feature extraction

### Introduction

#### Feature extraction

• An integral part of the data mining process.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

#### Two steps

- Feature construction
- Feature selection

Information theory methods for feature selection Introduction Feature extraction

## Introduction

#### Feature extraction

• An integral part of the data mining process.

#### Two steps

- Feature construction
  - Preprocessing techniques standardization, normalization, discretization,...
  - Part of the model (ANN),...
  - Extraction of local features, signal enhancement,...
  - Space-embedding methods PCA, MDS (Multidimensional scaling),...

- Non-linear expansions
- ...
- Feature selection

Information theory methods for feature selection Feature selection

## Feature selection

#### Why to employ feature selection techniques?

- ... to select relevant and informative features.
- ... to select features that are useful to build a good predictor

#### Moreover

- General data reduction decrease storage requirements and increase algorithm speed
- Feature set reduction save resources in the next round of data collection or during utilization
- Performance improvement increase predictive accuracy
- Better data understanding
- ...

#### Advantage

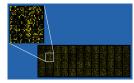
• Selected features retain the original meanings.

Information theory methods for feature selection Feature selection

## Feature selection

#### **Current challenges in Feature selection**

- Unlabeled data
- Knowledge-oriented sparse learning
- Detection of feature dependencies / interaction
- Data-sets with a huge number of features (100 1000000) but relatively few instances (  $\leq$  1000)
  - microarrays, transaction logs, Web data,...



Information theory methods for feature selection Feature selection

## Feature selection

#### **Current challenges in Feature selection**

- Unlabeled data
- Knowledge-oriented sparse learning
- Detection of feature dependencies / interaction
- Data-sets with a huge number of features (100 1000000) but relatively few instances (  $\leq$  1000)
  - microarrays, transaction logs, Web data,...

### NIPS 2003 challenge:

| Dataset  | Domain              | Type          | #Fe    | %Pr | #Tr  | #Val | #Te  |
|----------|---------------------|---------------|--------|-----|------|------|------|
| Arcene   | Mass Spectrometry   | Dense         | 10000  | 30  | 100  | 100  | 700  |
| Dexter   | Text classification | Sparse        | 20000  | 50  | 300  | 300  | 2000 |
| DOROTHEA | Drug discovery      | Sparse binary | 100000 | 50  | 800  | 350  | 800  |
| GISETTE  | Digit recognition   | Dense         | 5000   | 30  | 6000 | 1000 | 6500 |
| MADELON  | Artificial          | Dense         | 500    | 96  | 2000 | 600  | 1800 |

Information theory methods for feature selection Feature selection

Basic approaches

### Feature selection

#### Basic approaches to Feature selection

- Filter models
  - Select features without optimizing the performance of a predictor
  - Feature ranking methods provide a complete order of features using a relevance index
- Wrapper models
  - Use a predictor as a black box to score the feature subsets

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

- Embedded models
  - Feature selection is a part of the model training
- Hybrid approaches

Information theory methods for feature selection Feature selection Filter methods

## Filter methods

#### Feature ranking methods

- Provide a complete order of features using a relevance index.
- Each feature is treated separately.

### Many many various relevance indices

- Correlation coefficients linear dependencies: Pearson:  $R(i) = \frac{cov(X_i, Y)}{\sqrt{var(X_i)var(Y)}}$ Estimate:  $R(i) = \frac{\sum_k (x_k^i - \bar{x^i})(y_k - \bar{y})}{\sqrt{\sum_k (x_k^i - \bar{x^i})^2 \sum_k (y_k - \bar{y})^2}}$
- Classical test statistics T-test, F-test,  $\chi^2$ -test,...
- Single variable predictors (for example decision trees) risk of overfitting
- Information theoretic ranking criteria non-linear dependencies → ...

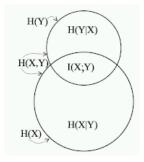
Feature selection

Filter methods

# Relevance Measures Based on Information Theory

### **Mutual information**

- (Shannon) Entropy:  $H(X) = -\int_{x} p(x) \log_2 p(x) dx$
- Conditional entropy:  $H(Y|X) = \int_X p(x)(-\int_Y p(y|x)\log_2 p(y|x))dx$
- Mutual information:  $MI(Y, X) = H(Y) - H(Y|X) = \int_{X} \int_{Y} p(x, y) \log_2 \frac{p(x, y)}{p(x)p(y)} dxdy$
- Is MI for classification Bayes optimal?
  - $\frac{H(Y|X)-1}{\log_2 K} \le e_{bayes}(X) \le 0.5 * H(Y|X)$
  - Kullback-Leibler divergence:  $MI(X, Y) \simeq D_{KL}(p(x, y) || p(y)p(x)),$ where  $D_{KL}(p_1 || p_2) = \int_X p_1(x) log_2 \frac{p_1(x)}{p_2(x)} dx$



Feature selection

Filter methods

## Relevance Measures Based on Information Theory

#### **Mutual information**

 $MI(Y, X) = H(Y) - H(Y|X) = \int_x \int_y p(x, y) \log_2 \frac{p(x, y)}{p(x)p(y)} dxdy$ **Problem:** p(x), p(y), p(x, y) are unknown and hard to estimate from the data

### **Classification with nominal or discrete features**

- The simplest case we can estimate the probabilities from the frequency counts
- This introduces a negative bias
- Harder estimate with larger numbers of classes and feature values

Feature selection

Filter methods

## Relevance Measures Based on Information Theory

### **Mutual information**

 $MI(Y, X) = H(Y) - H(Y|X) = \int_{X} \int_{Y} p(x, y) log_2 \frac{p(x, y)}{p(x)p(y)} dxdy$ **Problem:** p(x), p(y), p(x, y) are unknown and hard to estimate from the data

### Classification with nominal or discrete features

• MI corresponds to the Information Gain (IG) for Decision trees

- Many modifications of IG (avoiding bias towards the multivalued features)
  - Information Gain Ratio  $IGR(Y, X) = \frac{MI(Y, X)}{H(X)}$ ,
  - Gini-index, J-measure,....
- Relaxed entropy measures are more straightforward to estimate:
  - Renyi Entropy  $H_{\alpha}(X) = \frac{1}{1-\alpha} log_2(\int_{X} p(x)^{\alpha}) dx$
  - Parzen window approach

Feature selection

Filter methods

## Relevance Measures Based on Information Theory

### **Mutual information**

 $MI(Y, X) = H(Y) - H(Y|X) = \int_{X} \int_{Y} p(x, y) log_2 \frac{p(x, y)}{p(x)p(y)} dxdy$ **Problem:** p(x), p(y), p(x, y) are unknown and hard to estimate from the data

from the data

### **Regression with continous features**

- The hardest case
- Possible solutions:
  - Histogram-based discretization:
    - MI is overestimated depending on the quantization level

- MI should be overestimated the same for all features
- Approximation of the densities (Parzen window,...)
  - $\bullet~$  Normal distribution  $\rightarrow$  correlation coefficient
  - Computational complexity
- ...

Feature selection

Filter methods

## Filter methods - Feature ranking methods

#### **Advantages**

- Simple and cheap methods, good empirical results.
- Fast and effective even in the case when the number of samples is smaller than the number of features.
- Can be used as preprocessing for more sophisticated methods.

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

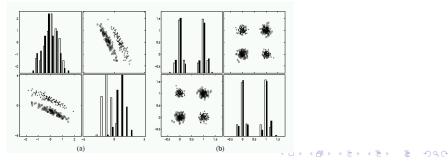
Feature selection

Filter methods

# Filter methods - Feature ranking methods

### Limitations

- Which relevance index is the best?
- Select a redundand subset of features.
- A variable individually relevant may not be useful because of redundancies.
- A variable useless by itself can be useful together with others:



Information theory methods for feature selection Feature selection

Filter methods

## Mutual information for multivariate feature selection

#### How to exclude both irrelevant and redundant features?

- Greedy selection of variables may not work well when there are dependencies among relevant variables.
- multivariate filter  $MI(Y, \{X_1, ..., X_n\})$  is hard to approximate and compute

ullet ightarrow approximative MIFS algorithm and its variants:

### **MIFS** algorithm

• 
$$X^* = \operatorname{argmax}_{X \in A} MI(X, Y),$$
  
 $F \leftarrow \{X^*\}, A \leftarrow A \setminus X^*$ 

② Repeat until 
$$|F|$$
 is desired:  
 $X^* = argmax_{X \in A}[MI(X, Y) - \beta \sum_{X' \in F} MI(X, X')],$   
 $F \leftarrow F \cup \{X^*\}, A \leftarrow A \setminus X$ 

Feature selection

Filter methods

### Multivariate relevance criteria

### **Relief algorithms**

- Based on the k-nearest neighbor algorithm.
- Relevance of features in the context of oders.
- Example of the ranking index (for multi-classification):  $R(X) = \frac{\sum_{i} \sum_{k=1}^{K} |x_i - x_{M_k(i)}|}{\sum_{i} \sum_{k=1}^{K} |x_i - x_{H_k(i)}|}, \text{ where } x_{M_k(i)}, k = 1, ..., K \text{ K closest examples of the same class (nearest misses) in the original feature space } x_{H_k(i)}, k = 1, ..., K \text{ K closest examples of a different class (nearest hits)}$

• Popular algorithm, low bias (NIPS 2003)

Feature selection

Wrapper methods

# Wrapper methods

### Multivariate feature selection

- Maximize the relevance of a subset of features  $\bar{X}$ :  $R(Y, \bar{X})$
- Use a predictor to measure the relevance (i.e. accuracy).
  - A validation set must be used to achieve a useful estimate
  - K-fold cross-validation,...
  - A useful accuracy estimate on a separate testing set
- Employ a search strategy
  - Exhaustive search
  - Sequential search (growing/prunning),...
  - Stochastiic search (Simulated Annealing, GA,...)

### Limitations

- Slower than the filter methods
- Tendency to overfitting discrepancy between the evaluation score and the ultimate performance
- No valid good empirical results (NIPS 2003)
- High variance of the results

Information theory methods for feature selection Feature selection Embedded methods

## Embedded methods

- Feature selection depends on the predictive model (SVM, ANN, DT,...)
- Feature selection is a part of the model training
  - Forward selection methods
  - Backward elimination methods
  - Nested methods
  - Optimization of scaling factors over the compact interval [0, 1]<sup>n</sup> – regularization techniques

#### **Advantages and limitations**

- Slower than the filter methods
- Tendency to overfitting if not enough data is available
- Outperform filter methods if enough data is available
- High variance of the results

Information theory methods for feature selection Feature selection Ensemble learning

## Ensemble learning

- Help the model-based (wrapper and embedded) methods
  - fast, greedy and unstable base learners (Decision trees, Neural networks,...)

- Robust variable selection
  - Improve feature set stability.
  - Improve stability generalization stability.

### Parallel ensembles

- Variance reduction
- Bagging
  - Random forest,...

### **Serial ensembles**

- Reduction of both bias and variance
- Boosting
  - Gradient tree boosting,...

Feature selection

Ensemble learning

## Random forests for variable selection

### Random forest (RF)

- Select a number  $n \sim \sqrt{N}$ , N is the number of variables.
- Each decision tree is trained on a bootstrap sample (about two-third of the training set).
- Each decision tree has maximal depth and it is not pruned.
- At each node, *n* variables are randomly chosen and the best split is considered on these variables.

- CART algorithm
- Grow trees until no more generalization improvement.

Feature selection

Ensemble learning

## Random forests for variable selection

#### Variable importance measure for RF

- Compute an importance index for each variable and for each tree M(X<sub>i</sub>, T<sub>j</sub>) = ∑<sub>t∈T<sub>i</sub></sub> △I<sub>G</sub>(x<sub>i</sub>, t),
  - $\triangle I_G(x_i, t)$  is the decrease of impurity due to an actual (or potential) split on variable  $x_i$ :  $\triangle I_G(x_i, t) = I(t) - p_L I(t_L) - p_r I(t_R)$ ,
  - Impurity for regression:  $I(t) = \frac{1}{N(t)} \sum_{s \in t} (y_s \bar{y})^2$
  - Impurity for classification:  $I(t) = Gini(t) = \sum_{y_i \neq y_j} p_i^{t} p_j^{t}$
- Compute the average importance of each variable over all trees: M(x<sub>i</sub>) = 1/N<sub>T</sub> Σ<sup>N<sub>T</sub></sup><sub>j=1</sub> M(x<sub>i</sub>, T<sub>j</sub>)
- Optimal number of features is selected by trying "cut-off points"

Feature selection

Ensemble learning

## Random forests for variable selection

### Advantages

• Avoid over-fitting in the case when there are more features than examples.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

• More stable results.

Information theory methods for feature selection Feature selection NIPS 2003 Challenge results

## NIPS 2003 Challenge results

- Top ranking challengers used a combination of filters and embedded methods.
- Very good results of methods using only filters, even simple correlation coefficients.
- Search strategies were generally unsophisticated.
- The winner was a combination of Bayesian neural networks and Dirichlet diffusion trees
- Ensemble methods (Random trees) were on the second and third position.

Feature selection

NIPS 2003 Challenge results

### NIPS 2003 Challenge results

| (a) December 1 <sup>st</sup> 2003 challenge results.                                                                                                                                            |                                                              |                                                                                                                                                  |                                                                                                                                                            |                                                                                              |                                                                                            |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|--|
| Method (Team)                                                                                                                                                                                   | Score                                                        | BER                                                                                                                                              | AUC                                                                                                                                                        | $\mathbf{Fe}$                                                                                | $\mathbf{Pr}$                                                                              |  |
| BayesNN-DFT (Neal/Zhang)<br>BayesNN-DFT (Neal/Zhang)<br>BayesNN-small (Neal)<br>BayesNN-large (Neal)<br>RF+RLSC (Torkkola/Tuv)<br>final2 (Chen)<br>SVMBased3 (Zhili/Li)<br>SVMBased4 (Zhili/Li) | 88.0<br>86.2<br>68.7<br>59.6<br>59.3<br>52.0<br>41.8<br>41.1 | $\begin{array}{ccccc} 6.84 & (1) \\ 6.87 & (2) \\ 8.20 & (3) \\ 8.21 & (4) \\ 9.07 & (7) \\ 9.31 & (9) \\ 9.21 & (8) \\ 9.40 & (10) \end{array}$ | $\begin{array}{cccc} 97.22 & (1) \\ 97.21 & (2) \\ 96.12 & (5) \\ 96.36 & (3) \\ 90.93 & (29) \\ 90.69 & (31) \\ 93.60 & (16) \\ 93.41 & (18) \end{array}$ | $\begin{array}{r} 80.3\\ 80.3\\ 4.7\\ 60.3\\ 22.5\\ 24.9\\ 29.5\\ 29.5\\ 29.5\\ \end{array}$ | $\begin{array}{r} 47.8 \\ 47.8 \\ 2.9 \\ 28.5 \\ 17.5 \\ 12.0 \\ 21.7 \\ 21.7 \end{array}$ |  |
| final1 (Chen)<br>transSVM2 (Zhili)<br>BayesNN-E (Neal)<br>Collection2 (Saffari)<br>Collection1 (Saffari)                                                                                        | 40.4<br>36.0<br>29.5<br>28.0<br>20.7                         | $\begin{array}{c} 10.38 \ (23) \\ 9.60 \ (13) \\ 8.43 \ \ (5) \\ 10.03 \ (20) \\ 10.06 \ (21) \end{array}$                                       | 89.62 (34)<br>93.21 (20)<br>96.30 (4)<br>89.97 (32)<br>89.94 (33)                                                                                          | 6.2<br>29.5<br>96.8<br>7.7<br>32.3                                                           | $\begin{array}{c} 6.1\\ 21.7\\ 56.7\\ 10.6\\ 25.5 \end{array}$                             |  |

#### (b) December 8<sup>th</sup> 2003 challenge results.

| Method (Team)             | Score | BER       | AUC        | $\mathbf{Fe}$ | $\mathbf{Pr}$ |
|---------------------------|-------|-----------|------------|---------------|---------------|
| BayesNN-DFT (Neal/Zhang)  | 71.4  | 6.48 (1)  | 97.20 (1)  | 80.3          | 47.8          |
| BayesNN-large (Neal)      | 66.3  | 7.27 (3)  | 96.98 (3)  | 60.3          | 28.5          |
| BayesNN-small (Neal)      | 61.1  | 7.13 (2)  | 97.08 (2)  | 4.7           | 2.9           |
| final_2-3 (Chen)          | 49.1  | 7.91 (8)  | 91.45(25)  | 24.9          | 9.9           |
| BayesNN-large (Neal)      | 49.1  | 7.83 (5)  | 96.78 (4)  | 60.3          | 28.5          |
| final2-2 (Chen)           | 40.0  | 8.80 (17) | 89.84 (29) | 24.6          | 6.7           |
| Ghostminer1 (Ghostminer)  | 37.1  | 7.89 (7)  | 92.11(21)  | 80.6          | 36.1          |
| RF+RLSC (Torkkola/Tuv)    | 35.4  | 8.04 (9)  | 91.96(22)  | 22.4          | 17.5          |
| Ghostminer2 (Ghostminer)  | 35.4  | 7.86 (6)  | 92.14(20)  | 80.6          | 36.1          |
| RF+RLSC (Torkkola/Tuv)    | 34.3  | 8.23(12)  | 91.77(23)  | 22.4          | 17.5          |
| FS+SVM (Lal)              | 31.4  | 8.99 (19) | 91.01(27)  | 20.9          | 17.3          |
| Ghostminer3 (Ghostminer)  | 26.3  | 8.24(13)  | 91.76(24)  | 80.6          | 36.1          |
| CBAMethod3E (CBAGroup)    | 21.1  | 8.14 (10) | 96.62(5)   | 12.8          | 0.1           |
| CBAMethod3E (CBAGroup)    | 21.1  | 8.14 (11) | 96.62 (6)  | 12.8          | 0.1           |
| Nameless (Navot/Bachrach) | 12.0  | 7.78 (4)  | 96.43 (9)  | 32.3          | 16.2          |

▶ ▲ 臣 ▶ 臣 • • •

Information theory methods for feature selection Feature selection NIPS 2003 Challenge results

## NIPS 2003 Challenge results

### Other (surprising) results

- Some of the top ranking challengers used almost all the probe features.
- Very good results for methods using only filters, even simple correlation coefficients.
- Non-linear classifiers outperformed the linear classifiers. They didn't overfit.
- The hyper-parameters are important. Several groups were using the same classifier (e.g. SVM) and reported significantly different results.

Information theory methods for feature selection Conclusion

## Conclusion

• Many different approaches to feature selection

Best results obtained by hybrid methods

#### Advancing research

- Knowledge-based feature extraction
- Unsupervised feature extraction
- ...

Information theory methods for feature selection Conclusion References

### References

- Guyon, I. M., Gunn, S. R., Nikravesh, M. and Zadeh, L., eds., Feature Extraction, Foundations and Applications. Springer, 2006.
- Huan Liu, Hiroshi Motoda, Rudy Setiono, Zheng Zhao, Feature Selection: An Ever Evolving Frontier in Data Mining, in JMLR: Workshop and Conference Proceedings, volume 10, pages 4–13, 2010
- Isabelle Guyon, André Elisseeff, An Introduction to Variable and Feature Selection, in JMLR: Workshop and Conference Proceedings, volume 3, pages 1157–1182, 2003
- Journal of Machine Learning Research, http://jmlr.csail.mit.edu/

Information theory methods for feature selection Conclusion References

### References

- R. Battiti, Using mutual information for selecting features in supervised neural net learning, in: Neural Networks, volume 5(4), pages 537–550, July 1994.
- Kari Torkkola, Feature extraction by non parametric mutual information maximization, in: The Journal of Machine Learning Research, volume 3, pages 1415 1438, 2003.
- Francois Fleuret, Fast Binary Feature Selection with Conditional Mutual Informationin, in: The Journal of Machine Learning Research, volume 4, pages 1531 – 1555, 2004.
- Kraskov, Alexander; Stögbauer, Harald; Grassberger, Peter,
   Estimating mutual information, Physical Review E, volume 69, Issue 6, 16 pages, 2004