LIMITED CONTEXT RESTARTING AUTOMATA AND MCNAUGHTON FAMILIES OF LANGUAGES

Friedrich Otto
Peter Černo, František Mráz

Introduction

- Part I: Introduction,
- Part II: Clearing and Δ-Clearing Restarting Automata,
- Part III: Limited Context Restarting Automata,
- Part IV: Confluent Limited Context Restarting Automata,
- Part V: Concluding Remarks.

Part I: Introduction

- Restarting Automata:
- Model for the linguistic technique of analysis by reduction.
- Many different types have been defined and studied intensively.
- Analysis by Reduction:
- Method for checking [non-]correctness of a sentence.
- Iterative application of simplifications.
- Until the input cannot be simplified anymore.
- Restricted Models:
- Clearing, Δ-Clearing and Δ^{*}-Clearing Restarting Automata,
- Limited Context Restarting Automata.

Part II: Clearing Restarting Automata

- Let k be a nonnegative integer.
- \underline{k}-context rewriting system (k-CRS)
- Is a triple $M=(\Sigma, \Gamma, I)$:
- Σ... input alphabet, $\downarrow, \$ \notin \Sigma$,
- $\Gamma \ldots$ working alphabet, $\Gamma \supseteq \Sigma$,
- I ... finite set of instructions ($x, z \rightarrow t, y$):
- $x \in\{q, \lambda\} . \Gamma^{*},|x| \leq k \quad$ (left context)
- $y \in \Gamma^{*}:\{\lambda, \$\},|y| \leq k \quad$ (right context)

- $z \in \Gamma^{4}, z \neq t \in \Gamma^{*}$.
- $\mathbb{4}$ and $\$ \ldots$ sentinels.

Rewriting

- uZVV \vdash_{M} utv iff $\exists(x, z \rightarrow t, y) \in I:$
- x is a suffix of $\downarrow . u$ and y is a prefix of $v_{a} \$$.

- $L(M)=\left\{w \in \Sigma^{*} / w \vdash^{*}{ }_{M} \lambda\right\}$.
- $L_{C}(M)=\left\{w \in \Gamma^{*} / W \vdash^{*}{ }_{M} \lambda\right\}$.

Empty Word

- Note: For every k-CRS $M: \lambda \vdash^{*}{ }_{M} \lambda$, hence $\lambda \in L(M)$.
- Whenever we say that a k-CRS M recognizes a language L, we always mean that $L(M)=L U\{\lambda\}$.
- We simply ignore the empty word in this setting.

Clearing Restarting Automata

- $\underline{k-C l e a r i n g ~ R e s t a r t i n g ~ A u t o m a t o n ~(~} k-c l-R A$)
- Is a k-CRS $M=(\Sigma, \Sigma, I)$ such that:
- For each $(x, z \rightarrow t, y) \in I: z \in \Sigma^{+}, t=\lambda$.

- $\underline{k-\Delta}$-Clearing Restarting Automaton ($k-\Delta-c l-R A$)
- Is a k-CRS $M=(\Sigma, \Gamma, I)$ such that:
- $\Gamma=\Sigma \cup\{\Delta\}$ where Δ is a new symbol, and
- For each $(x, z \rightarrow t, y) \in I: z \in \Gamma^{4}, t \in\{\lambda, \Delta\}$.

- $\underline{k-\Delta^{*}}$ - Clearing Restarting Automaton ($k-\Delta^{*}-c l-R A$)
- Is a k-CRS $M=(\Sigma, \Gamma, I)$ such that:
- $\Gamma=\Sigma \cup\{\Delta\}$ where Δ is a new symbol, and
- For each $(x, z \rightarrow t, y) \in I: z \in \Gamma^{4}, t=\Delta^{i}, 0 \leq i \leq|z|$.

Example 1

- $L_{1}=\left\{a^{n} b^{n} / n>0\right\} \cup\{a\}:$
- $1-c l-R A M=(\{a, b\}, I)$,
- Instructions I are:
- $R 1=(a, \underline{a b} \rightarrow \lambda, b)$,
- $R 2=(\phi, \underline{a b} \rightarrow \lambda, \$)$.
- Note:
- We did not use Δ.

Example 2

- $L_{2}=\left\{a^{n} c b^{n} / n>0\right\} \cup\{\lambda\}:$
-1-U-cl-RA $M=(\{a, b, c\}, I)$,
- Instructions I are:
- $R 1=(a, \underline{c} \rightarrow \Delta, b)$,
- $R 2=(a, \underline{a \Delta b} \rightarrow \Delta, b)$,
- $R 3=(\$, \underline{a \Delta b} \rightarrow \lambda, \$)$.

Note:

- We must use Δ.

Clearing Restarting Automata

- Clearing Restarting Automata:
- Accept all regular and even some non-context-free languages.
- They do not accept all context-free languages ($\left\{a^{n} c b^{n} / n>0\right\}$).
- Δ-Clearing and Δ^{*}-Clearing Restarting Automata:
- Accept all context-free languages.
- The exact expressive power remains open.
- Here we establish an upper bound by showing that Clearing, Δ - and Δ^{*}-Clearing Restarting Automata only accept languages that are growing context-sensitive [Dahlhaus, Warmuth].

Clearing Restarting Automata

- Theorem: $\mathcal{L}\left(\Delta^{*}-c l-R A\right) \subseteq G C S L$.
- Proof.
- Let $M=(\Sigma, \Gamma, I)$ be a $k-\Delta^{*}-c l-R A$ for some $k \geq 0$.
- Let $\Omega=\Gamma \cup\{\phi, \$, Y\}$, where Y is a new letter.
- Let $S(M)$ be the following string-rewriting system over Ω :

$$
S(M)=\{x z y \rightarrow x t y /(x, z \rightarrow t, y) \in I\} \cup\{\phi \phi \rightarrow Y\} .
$$

- Let g be a weight function: $g(\Delta)=1$ and $g(a)=2$ for all $a \neq \Delta$.
- Claim: $L(M)$ coincides with the McNaughton language [Beaudry, Holzer, Niemann, Otto] specified by ($S(M), \Varangle, \$, Y$).
- As $S(M)$ is a finite weight-reducing system, it follows that the McNaughton language $L(M)$ is a growing context-sensitive language, that is, $L(M) \in G C S L$.

Clearing Restarting Automata

Part III: Limited Context RA

- Limited Context Restarting Automaton (Ic-RA):
- Is defined exactly as Context Rewriting Systems, except that:
- There is no upper bound k on the length of contexts.
- The instructions are usually written as: $(x / z \rightarrow t / y)$.
- There is a weight function g such that $g(z)>g(t)$ for all instructions $(x / z \rightarrow t / y)$ of the automaton.

Limited Context Restarting Automata

- Restricted types: $I c-R A M=(\Sigma, \Gamma, I)$ is of type:
- $\mathcal{R}_{0}{ }^{\prime}$, if I is an arbitrary finite set of (weight-reducing) instructions,
- $\mathcal{R}_{1}{ }^{\prime}$, if $/ t / \leq 1$,
- $\mathcal{R}_{2}{ }^{\prime}$, if $/ t \mid \leq 1, x \in\{d, \lambda\}, y \in\{\lambda, \$\}$,
- $\mathcal{R}_{3}{ }^{\prime}$, if $/ t \mid \leq 1, x \in\{d, \lambda\}, y=\$$, for all $(x / z \rightarrow t / y) \in I$.
- Moreover, Ic-RA M=($\Sigma, \Gamma, I)$ is of type:
- $\mathcal{R}_{0},\left(\mathcal{R}_{1}, \mathcal{R}_{2}, \mathcal{R}_{3}\right.$, respectively) if it is of type:
- $\mathcal{R}_{0}{ }^{\prime},\left(\mathcal{R}_{1}{ }^{\prime}, \mathcal{R}_{2}{ }^{\prime}, \mathcal{R}_{3}{ }^{\prime}\right.$, respectively) and all instructions of M are length-reducing (i.e. $|z />| t /$ for all $(x / z \rightarrow t / y) \in I)$.
- We use the notation $I c-R A\left[\mathcal{R}_{\mathrm{i}}{ }^{\prime}\right], I c-R A\left[\mathcal{R}_{\mathrm{i}}\right]$ to denote the corresponding class of the restricted $I c-R A$ s.

$I c-R A\left[\mathcal{R}_{0}{ }^{\prime}\right]$ and $/ c-R A\left[\mathcal{R}_{0}\right]$

- Theorem: $\mathcal{L}\left(l c-R A\left[\mathcal{R}_{0}{ }^{\prime}\right]\right)=\mathcal{L}\left(I c-R A\left[\mathcal{R}_{0}\right]\right)=G C S L$.
- Proof.
- For each Ic-RA $M=(\Sigma, \Gamma, I)$ we can associate a finite weightreducing string-rewriting system $S(M)$ such that $L(M)$ is the McNaughton language specified by the four-tuple ($S(M), \downarrow, \$, Y$).

$$
S(M)=\{x z y \rightarrow x t y /(x / z \rightarrow t / y) \in I\} \cup\{\phi \$ \rightarrow Y\} .
$$

- It follows that $L(M) \in G C S L$.
- On the other hand, each growing context-sensitive language is accepted by an Ic-RA[$\left.\mathcal{R}_{0}\right]$.

Ic-RA[$\left.\mathcal{R}_{1}{ }^{\prime}\right]$

- Theorem: $\mathcal{L}\left(I c-R A\left[\mathcal{R}_{1}{ }^{\prime}\right]\right)=G C S L$.
- Proof.
- Let $G=(N, T, S, P)$ be a weight-increasing context-sensitive grammar. By taking:
- $I(G)=\{(u / X \rightarrow A / v) /(u A v \rightarrow u x v) \in P\} \cup$ $\{(\$ / r \rightarrow \lambda / \$) /(S \rightarrow r) \in P\}$,
- we obtain an $I c-R A\left[\mathcal{R}_{1}{ }^{\prime}\right] M(G)=(T, N \cup T, I(G))$ such that
- $L(M(G))=L(G) \cup\{\lambda\}$.
- The class of languages generated by weight-increasing contextsensitive grammars, which is known as the class ACSL (acyclic context-sensitive languages), coincides with the class GCSL [Niemann, Woinowski].
- Thus, $\mathcal{L}\left(I c-R A\left[\mathcal{R}_{1}{ }^{\prime}\right]\right) \supseteq G C S L . ■$

$\operatorname{lc}-R A\left[\mathcal{R}_{1}\right]$

- Theorem: $\mathcal{L}\left(I c-R A\left[\mathcal{R}_{1}\right]\right)=G A C S L$.
- Proof.
- Let Ic-RA $M=(\Sigma, \Gamma, I)$ be of type \mathcal{R}_{1}.
- For all $(x / z \rightarrow t / y) \in I:|z|>/ t /$ and $/ t \mid \leq 1$.
- Lemma: It is possible to obtain an equivalent lc-RA M such that:
- For all $(x / z \rightarrow t / y) \in I:|z|>|t|$ and $/ t /=1$ if $x \neq \emptyset$ or $y \neq \$$.
- From string-rewriting system: $R=\{x t y \rightarrow x z y /(x / z \rightarrow t / y) \in I\}$,
- We construct a length-increasing context-sensitive grammar :
- $G=(\Gamma, \Sigma, S, R)$ such that $L(G)=\phi . L(M) . \$$.
- The class of languages generated by length-increasing contextsensitive grammars is known as the class GACSL (growing acyclic context-sensitive languages). GACSL \subseteq ACSL $=$ GCSL .
- ф. $L(M) . \$ \in G A C S L$, i.e. $L(M) \in G A C S L$ [Buntrock]. Similarly \supseteq.

$I c-R A\left[\mathcal{R}_{2}{ }^{\prime}\right]$ and $I c-R A\left[\mathcal{R}_{2}\right]$

- Theorem: $\mathcal{L}\left(I c-R A\left[\mathcal{R}_{2}{ }^{\prime}\right]\right)=\mathcal{L}\left(I c-R A\left[\mathcal{R}_{2}\right]\right)=C F L$.

Proof.

- Let $l c-R A M=(\Sigma, \Gamma, I)$ be of type $\mathcal{R}_{2}{ }^{\prime}$.
- For all $(x / z \rightarrow t / y) \in I:|t| \leq 1, x \in\{d, \lambda\}, y \in\{\lambda, \$\}$.
- We split $R(M)=\{x z y \rightarrow x t y /(x / z \rightarrow t / y) \in I\}$ into 4 subsystems:
(a) $R_{b i f}=\{₫ x \$ \rightarrow ₫ y \$ \mid(\Phi|x \rightarrow y| \$) \in I\}$, the bifix rules of $R(M)$,
(b) $R_{\text {pre }}=\{₫ x \rightarrow ₫ y \mid(\Phi|x \rightarrow y| \lambda) \in I\}$, the prefix rules of $R(M)$,
(c) $R_{\text {suf }}=\{x \$ \rightarrow y \$ \mid(\lambda|x \rightarrow y| \$) \in I\}$, the suffix rules of $R(M)$,
(d) $R_{\text {inf }}=\{x \rightarrow y \mid(\lambda|x \rightarrow y| \lambda) \in I\}$, the infix rules of $R(M)$.
- Take $A(M)=\left\{\alpha \in \Gamma^{*} \mid \mathbb{\Phi} \alpha \$ \in \operatorname{dom}\left(R_{b i f}\right)\right.$ and $\left.₫ \alpha \$ \Rightarrow_{R(M)}^{*} \oplus \$\right\}$
- Then $A(M)$ is a finite set. Let $R^{\prime}=R_{\text {pre }} \cup R_{\text {suf }} \cup R_{\text {inf }}$. Then $L(M)=$ $\left\{w \in \Sigma^{*} \mid \llbracket w \$ \Rightarrow_{R(M)}^{*} \leftarrow \$\right\}=\left\{w \in \Sigma^{*} \mid \exists \alpha \in A(M) \cup\{\lambda\}: \varangle w \$ \Rightarrow_{R^{\prime}}^{*} \uparrow \alpha \$\right\}$

$I c-R A\left[\mathcal{R}_{2}{ }^{\prime}\right]$ and $I c-R A\left[\mathcal{R}_{2}\right]$

- Proof. (Continued).
- Consider a mixed rewriting system: $P(M)=P_{\text {pre }} \cup P_{\text {suf }} \cup P_{\text {inf }}$
- Prefix-rewriting system: $P_{\text {pre }}=\left\{x \rightarrow y \mid(\leftarrow x \rightarrow ष y) \in R_{\text {pre }}\right\}$
- Suffix-rewriting system: $P_{\text {suf }}=\left\{x \rightarrow y \mid(x \$ \rightarrow y \$) \in R_{\text {suf }}\right\}$
- String-rewriting system: $P_{\text {inf }}=R_{\text {inf }}$
- The rules of a prefix-rewriting system (suffix-rewriting system) are only applied to the prefix (suffix) of a word.
- Apparently: $L(M)=\nabla_{P(M)}^{*}(A(M) \cup\{\lambda\}) \cap \Sigma^{*}$
- As $P(M)$ only contains generalized monadic rules, it follows that the language $L(M)$ is context-free [Leupold, Otto].
- Moreover, it is easy to obtain from a given context-free grammar an equivalent $1 c-R A M=(\Sigma, \Gamma, I)$ of the type \mathcal{R}_{2}.
- Thus we have: $C F L \subseteq \mathcal{L}\left(I c-R A\left[\mathcal{R}_{2}\right]\right) \subseteq \mathcal{L}\left(I c-R A\left[\mathcal{R}_{2}{ }^{\prime}\right]\right) \subseteq C F L$.

$I c-R A\left[\mathcal{R}_{3}{ }^{\prime}\right]$ and $I c-R A\left[\mathcal{R}_{3}\right]$

- Theorem: $\mathcal{L}\left(I c-R A\left[\mathcal{R}_{3}{ }^{\prime}\right]\right)=\mathcal{L}\left(I c-R A\left[\mathcal{R}_{3}\right]\right)=R E G$.

Proof.

- Let $l c-R A M=(\Sigma, \Gamma, I)$ be of type $\mathcal{R}_{3}{ }^{\prime}$.
- For all $(x / z \rightarrow t / y) \in I:|t| \leq 1, x \in\{\phi, \lambda\}, y=\$$.
- We split $R(M)=\{x z y \rightarrow x t y /(x / z \rightarrow t / y) \in I\}$ into 2 subsystems:
(a) $R_{b i f}=\{₫ x \$ \rightarrow థ y \$ \mid(\Phi|x \rightarrow y| \$) \in I\}$, the bifix rules of $R(M)$,
(b) $R_{\text {suf }}=\{x \$ \rightarrow y \$ \mid(\lambda|x \rightarrow y| \$) \in I\}$, the suffix rules of $R(M)$.
- Now we take only the suffix-rewriting system $P(M)=P_{\text {suf }}$, where:
- $P_{\text {suf }}=\left\{y \rightarrow x \mid(x \$ \rightarrow y \$) \in R_{\text {suf }}\right\}$
- Apparently: $L(M)=\Delta_{P(M)}^{*}(A(M) \cup\{\lambda\}) \cap \Sigma^{*}$ is regular.
- Again, it is easy to obtain from a given regular grammar an equivalent $I c-R A M=(\Sigma, \Gamma, I)$ of the type \mathcal{R}_{3}.
- Thus we have: $R E G \subseteq \mathcal{L}\left(I c-R A\left[\mathcal{R}_{3}\right]\right) \subseteq \mathcal{L}\left(I c-R A\left[\mathcal{R}_{3}{ }^{\prime}\right]\right) \subseteq R E G$.

Limited Context Restarting Automata

- Hierarchy of Language Classes:

Part IV: Confluent Ic-RA

- Since Ic-RAM is a nondeterministic device, it is difficult to decide the membership in $L(M)$.
- Here we are interested in Ic-RA $M=(\Sigma, \Gamma, I)$ for which all computations from $\not \subset w \$$ lead to $\phi \$$, if $w \in L(M)$.
- The reduction relation \vdash_{M} corresponds to the single-step reduction relation $\Rightarrow_{R(M)}$ induced by the string-rewriting system $R(M)=\{x z y \rightarrow x t y /(x / z \rightarrow t / y) \in I\}$ on $\downarrow \Gamma^{*} \phi$.
- As it is undecideable whether $R(M)$ is confluent on the congruence class $[\phi \$]_{R(M)}$, we consider only confluence.
- An Ic-RA M = ($\Sigma, \Gamma, I)$ is called confluent if the corresponding string-rewriting system $R(M)$ is confluent.
- We use the prefix con- to denote confluent lc-RA.

Ic-RA[con- $\left.\mathcal{R}_{0}{ }^{\prime}\right]$ and Ic-RA[con- $\left.\mathcal{R}_{0}\right]$

- Theorem: $\mathcal{L}\left(I c-R A\left[\right.\right.$ con $\left.\left.-\mathcal{R}_{0}{ }^{\prime}\right]\right)=\mathcal{L}\left(I c-R A\left[\right.\right.$ con $\left.\left.-\mathcal{R}_{0}\right]\right)=C R L$.
- Proof.
- For each Ic-RA[con- $\left.\mathcal{R}_{0}{ }^{\prime}\right] M=(\Sigma, \Gamma, I): S(M)=R(M) \cup\{\phi \$ \rightarrow Y\}$ is a finite weight-reducing string-rewriting system that is confluent.
- $L(M)$ is the McNaughton language specified by $(S(M), 屯, \$, Y$, i.e.
- $L(M)$ is a Church-Rosser language [McNaughton, Narendran, Otto].
- On the other hand, each Church-Rosser language L is accepted by a length-reducing deterministic two-pushdown automaton A [Niemann, Otto].
- Based on A it is possible to construct a confluent lc-RA of type \mathcal{R}_{0} recognizing the language L.■

Ic-RA[con- $\left.\mathcal{R}_{3}{ }^{\prime}\right]$ and Ic-RA[con- $\left.\mathcal{R}_{3}\right]$

- Theorem: $\mathcal{L}\left(I c-R A\left[\right.\right.$ con $\left.\left.-\mathcal{R}_{3}{ }^{\prime}\right]\right)=\mathcal{L}\left(I c-R A\left[\right.\right.$ con $\left.\left.-\mathcal{R}_{3}\right]\right)=R E G$.
- Proof.
- Apparently, $\mathcal{L}\left(I c-R A\left[\right.\right.$ con- $\left.\left.\mathcal{R}_{3}{ }^{\prime}\right]\right) \subseteq \mathcal{L}\left(I c-R A\left[\mathcal{R}_{3}{ }^{\prime}\right]\right)=R E G$.
- Conversely, if $L \subseteq \Sigma^{*}$ is regular then there exists $D F A A=\left(Q, \Sigma, q_{0}\right.$, $F, \delta)$ that accepts L^{R}. We define $I c-R A M=(\Sigma, \Sigma \cup Q, I)$, where $I=$
$\left\{(\mathbb{\Phi}|a b \rightarrow q| \lambda) \mid \delta\left(q_{0}, a b\right)=q\right\} \cup\left\{\left(\mathbb{\Phi}\left|q a \rightarrow q^{\prime}\right| \lambda\right) \mid \delta(q, a)=q^{\prime}\right\} \cup$ $\{(\mathbb{C}|q \rightarrow \lambda| \$) \mid q \in F\} \quad \cup\left\{(\mathbb{\mathbb { C }}|a \rightarrow \lambda| \$) \mid a \in \Sigma \cap L^{R}\right\}$.
- It is easy to see that $L(M)=L^{R}$, and that the string-rewriting system $R(M)$ is confluent. By taking $M^{\prime}=\left(\Sigma, \Sigma \cup Q, I^{\prime}\right)$, where:

$$
\begin{aligned}
I^{\prime}= & \left\{\left(\lambda\left|u^{R} \rightarrow v^{R}\right| \$\right) \mid(\mathbb{\Phi}|u \rightarrow v| \lambda) \in I\right\} \cup \\
& \left\{\left(\mathbb{\Phi}\left|u^{R} \rightarrow v^{R}\right| \$\right) \mid(\mathbb{\Phi}|u \rightarrow v| \$) \in I\right\}
\end{aligned}
$$

- We obtain a confluent Ic-RA of type \mathcal{R}_{3} that accepts L. ■

Ic-RA[con- $\left.\mathcal{R}_{2}{ }^{\prime}\right]$ and Ic-RA[con- $\left.\mathcal{R}_{2}\right]$

- For other classes we have no characterization results.
- We have only some preliminary results.
- Lemma: $\mathcal{L}\left(I c-R A\left[\right.\right.$ con $\left.\left.-\mathcal{R}_{2}{ }^{\prime}\right]\right) \subseteq D C F L \cap D C F L{ }^{R}$.
- Proof Idea.
- Consider the leftmost derivation, which can be realized by a deterministic pushdown automaton. ■
- Lemma: The deterministic context-free language

$$
L_{u}=\left\{c a^{n} b^{n} c \mid n \geq 1\right\} \cup\left\{d a^{m} b^{2 m} d \mid m \geq 1\right\}
$$

- Is not accepted by any Ic-RA[con- \mathcal{R}_{2} '].
- Note: Both L_{u} and $L_{u}{ }^{R}$ are DLIN languages.
- Corollary: $\mathcal{L}\left(I c-R A\left[\right.\right.$ con $\left.\left.-\mathcal{R}_{2}{ }^{\prime}\right]\right) \subset D C F L \cap D C F L{ }^{R}$.

lc-RA[con- $\left.\mathcal{R}_{2}{ }^{\prime}\right]$ and Ic-RA[con- $\left.\mathcal{R}_{2}\right]$

- Lemma: The nonlinear language $\left\{a^{n} b^{n} c^{m} d^{m} / n, m \geq 1\right\}$ is accepted by a confluent lc-RA of type \mathcal{R}_{2}.
- Corollary: The class of languages accepted by confluent Ic-RA of type $\mathcal{R}_{2}{ }^{\prime}$ is incomparable to DLIN and LIN.
- These results also hold for the class of languages that are accepted by Ic-RA[con- $\left.\mathcal{R}_{2}\right]$.
- The exact relationship of these classes of languages to the class of confluent [generalized] monadic McNaughton languages [Leupold, Otto] remains open.

Ic-RA[con- \mathcal{R}_{1} '] and Ic-RA[con- $\left.\mathcal{R}_{1}\right]$

- Lemma: The language $L_{\text {expo }}=\left\{a^{5^{n}} / n \geq 0\right\}$ is accepted by an Ic-RA[con- $\left.\mathcal{R}_{1}\right]$.
- Proof. Take $\Sigma=\{a\}, \Gamma=\{a, b, A, B, C, D\}$, and $M=(\Sigma, \Gamma, I)$, where I :

I	$\mathbf{R}(M)$		
(1) $\left(\Varangle a^{2}\left\|a^{2} \rightarrow B\right\| a\right)$	$\pm a^{5}$	\rightarrow	$\pm a^{2} B a$
(2) $\left(\mathbb{\Phi}\left\|a^{2} \rightarrow b\right\| B a\right)$	$¢ a^{2} B a$	\rightarrow	$\uparrow b B a$
(3) $\left(A a^{2}\left\|a^{2} \rightarrow B\right\| a\right)$	$A a^{5}$	\rightarrow	$A a^{2} B a$
(4) $\left(\lambda\left\|A a^{2} \rightarrow b\right\| B a\right)$	$A a^{2} B a$	\rightarrow	$b B a$
(5) $(b\|B a \rightarrow A\| \lambda)$	$b B a$	\rightarrow	$b A$
(6) $(\lambda\|A \rightarrow \lambda\| \$)$	$A \$$	\rightarrow	\$
(7) $\left(\lambda\left\|b^{2} \rightarrow C\right\| b^{3} \$\right)$	$b^{5} \$$	\rightarrow	$C b^{3} \$$
(8) $\left(C b\left\|b^{2} \rightarrow a\right\| \$\right)$	$C b^{3} \$$	\rightarrow	$C b a \$$
(9) $(\lambda\|C b \rightarrow D\| a)$	$C b a$	\rightarrow	Da
(10) $\left(\lambda\left\|b^{2} \rightarrow C\right\| b^{3} D\right)$	$b^{5} D$	\rightarrow	$C b^{3} D$
(11) $\left(C b\left\|b^{2} D \rightarrow a\right\| \lambda\right)$	$C b^{3}$ D	\rightarrow	$C b a$
(12) $\quad(¢\|D \rightarrow \lambda\| \lambda)$	${ }_{¢}$ D	\rightarrow	¢
(13) $\quad(\mathbb{C}\|a \rightarrow \lambda\| \$)$	¢ $a \$$	\rightarrow	¢\$
(14) $(\mathbb{C}\|b \rightarrow \lambda\| \$)$	¢ $6 \$$	\rightarrow	¢\$

$I c-R A\left[\operatorname{con}-\mathcal{R}_{1}{ }^{\prime}\right]$ and $I c-R A\left[\operatorname{con-} \mathcal{R}_{1}\right]$

- As the language $L_{\text {expo5 }}$ is not context-free, we obtain:
- Corollary: The class of languages accepted by confluent Ic-RA of type \mathcal{R}_{1} is incomparable to CFL.
- In particular, Ic-RA[con- $\left.\mathcal{R}_{1}\right]$ כIc-RA[con- $\left.\mathcal{R}_{2}\right]$.
- These results also hold for the class of languages that are accepted by $l c-R A\left[\operatorname{con}-\mathcal{R}_{1}{ }^{\prime}\right]$.

Confluent Ic-RA

- Hierarchy of Language Classes:

Part V: Concluding Remarks

- The class GCSL forms an upper bound for all types of limited context restarting automata considered.
- Under the additional requirement of confluence, the Church-Rosser languages form an upper bound.
- For the most restricted types of $I c-R A$ we obtain regular languages, both in confluent and non-confluent case.
- For the intermediate systems, the question for an exact characterization of the corresponding classes of languages remains open.
- For the intermediate systems it even remains open whether the weight-reducing lc-RA are more expressive than the corresponding length reducing lc-RA.

References

BASOVNÍK, Learning restricted restarting automata using genetic algorithm.
Master's thesis, Charles University, MFF, Prague, 2010.
BASOVNÍK, MRÁZ, Learning limited context restarting automata by genetic algorithms.
In: J. DASSOW, B. TRUTHE (eds.), Theorietag 2011. Otto-von-Guericke-Universität, Magdeburg, 2011, 1-4.
BEAUDRY, HOLZER, NIEMANN, OTTO, McNaughton families of languages.
Theoret. Comput. Sci. 290 (2003), 1581-1628.
BOOK, OTTO, String-Rewriting Systems. Springer, New York, 1993.
BÜCHI, Regular canonical systems.
Arch. f. Math. Logik Grundlagenf. 6 (1964), 91-111.
G. BUNTROCK, Wachsende kontext-sensitive Sprachen.

Habilitationsschrift, Fakultät für Mathematik und Informatik, Universität at Würzburg, 1996.
BUNTROCK, OTTO, Growing context-sensitive languages and Church-Rosser languages. Inform. and Comput. 141 (1998), 1-36.
ČERNO, MRÁZ, Clearing restarting automata. Fund. Inf. 104 (2010), 17-54.
ČERNO, MRÁZ, Δ-clearing restarting automata and CFL.
In: G. MAURI, A. LEPORATI (eds.), DLT 2011. LNCS 6795, Springer, Berlin, 2011, 153-164.
DAHLHAUS, WARMUTH, Membership for growing context-sensitive grammars is polynomial.
J. Comput. System Sci. 33 (1986), 456-472.

HOFBAUER, WALDMANN, Deleting string rewriting systems preserve regularity.
Theoret. Comput. Sci. 327 (2004), 301-317.
JANČAR, MRÁZ, PLÁTEK, VÖGEL, Restarting automata.
In: H. REICHEL (ed.), FCT'95. LNCS 965, Springer, Berlin, 1995, 283-292.
LEUPOLD, OTTO, On McNaughton families of languages that are specified by some variants of monadic string-rewriting systems. Fund. Inf. 112 (2011), 219-238.
MCNAUGHTON, NARENDRAN, OTTO, Church-Rosser Thue systems and formal languages.
J. Assoc. Comput. Mach. 35 (1988), 324-344.

NIEMANN, OTTO, The Church-Rosser languages are the deterministic variants of the growing context-sensitive languages.
Inform. and Comput. 197 (2005), 1-21.
NIEMANN, WOINOWSKI, The growing context-sensitive languages are the acyclic context-sensitive languages.
In: W. KUICH, G. ROZENBERG, A. SALOMAA (eds.), DLT 2002 . LNCS 2295, Springer, Berlin, 2002, 197-205.
OTTO, On deciding the congruence of a finite string-rewriting system on a given congruence class.
J. Comput. System Sci. 35 (1987), 285-310.

OTTO, Restarting automata.
In: Z. ÉSIK, C. MARTIN-VIDE, V. MITRANA (eds.), Recent Advances in Formal Languages and Applications. Studies in Computational Intelligence 25, Springer, Berlin, 2006, 269-303.

Thank You!

- This presentation is available on the following website:
http://popelka.ms.mff.cuni.cz/cerno/files/otto_cerno_mraz_Icra_presentation.pdf

