
LIMITED CONTEXT RESTARTING 

AUTOMATA AND MCNAUGHTON 

FAMILIES OF LANGUAGES 

Friedrich Otto 

Peter Černo, František Mráz 



Introduction 

• Part I: Introduction, 

• Part II: Clearing and Δ-Clearing Restarting Automata, 

• Part III: Limited Context Restarting Automata, 

• Part IV: Confluent Limited Context Restarting Automata, 

• Part V: Concluding Remarks. 



Part I: Introduction 

• Restarting Automata: 

• Model for the linguistic technique of analysis by reduction. 

• Many different types have been defined and studied intensively. 

• Analysis by Reduction: 

• Method for checking [non-]correctness of a sentence. 

• Iterative application of simplifications. 

• Until the input cannot be simplified anymore. 

• Restricted Models: 

• Clearing, Δ-Clearing and Δ*-Clearing Restarting Automata, 

• Limited Context Restarting Automata. 



Part II: Clearing Restarting Automata 

• Let k  be a nonnegative integer. 

• k – context rewriting system (k-CRS )  

• Is a triple M = (Σ, Γ, I) : 

• Σ  … input alphabet, ¢, $ ∉ Σ,  

• Γ  … working alphabet, Γ ⊇ Σ, 

• I  … finite set of instructions (x, z → t, y) : 

• x ∊ {¢, λ}.Γ*,  |x|≤k (left context) 

• y ∊ Γ*.{λ, $},  |y|≤k (right context) 

• z ∊ Γ+, z ≠ t ∊ Γ*. 

• ¢  and $  … sentinels. 



Rewriting 

• uzv ⊢M  utv   iff  ∃ (x, z → t, y) ∊ I : 

• x  is a suffix of ¢.u   and  y  is a prefix of v.$ . 

 

 

 

 

 

• L(M) = {w ∊ Σ* | w ⊢*
M  λ}. 

• LC (M) = {w ∊ Γ* | w ⊢*
M  λ}.  



Empty Word 

• Note: For every k-CRS M: λ ⊢*
M  λ, hence λ ∊ L(M). 

• Whenever we say that a  k-CRS M   recognizes a 

language L, we always mean that L(M) = L ∪ {λ}. 

• We simply ignore the empty word in this setting. 

 



Clearing Restarting Automata 

• k – Clearing Restarting Automaton (k-cl-RA ) 
• Is a k-CRS  M = (Σ, Σ, I)  such that: 

• For each (x, z → t, y) ∊ I : z ∊ Σ+, t = λ. 

• k – Δ – Clearing Restarting Automaton (k-Δ-cl-RA ) 
• Is a k-CRS  M = (Σ, Γ, I)  such that:  

• Γ = Σ ∪ {Δ}  where Δ  is a new symbol, and  

• For each (x, z → t, y) ∊ I : z ∊ Γ+, t ∊ {λ, Δ}. 

• k – Δ* – Clearing Restarting Automaton (k-Δ*-cl-RA ) 
• Is a k-CRS  M = (Σ, Γ, I)  such that:  

• Γ = Σ ∪ {Δ}  where Δ  is a new symbol, and  

• For each (x, z → t, y) ∊ I : z ∊ Γ+, t = Δi , 0 ≤ i ≤ |z|. 



Example 1 

• L1 = {anbn | n > 0} ∪ {λ} : 

• 1-cl-RA M = ({a, b}, I) , 

• Instructions I  are: 
• R1 = (a, ab → λ, b) , 

• R2 = (¢, ab → λ, $) . 

 

 

 

 

 

• Note: 
• We did not use Δ. 



Example 2 

• L2 = {ancbn | n > 0} ∪ {λ} :  

• 1-Δ-cl-RA M = ({a, b, c}, I) , 

• Instructions I  are: 
• R1 = (a, c → Δ, b) , 

• R2 = (a, aΔb → Δ, b) ,  

• R3 = (¢, aΔb → λ, $) . 

 

 

 

 

• Note:  

• We must use Δ. 



Clearing Restarting Automata 

• Clearing Restarting Automata: 

• Accept all regular and even some non-context-free languages. 

• They do not accept all context-free languages ({ancbn | n > 0} ). 

• Δ-Clearing and Δ*-Clearing Restarting Automata: 

• Accept all context-free languages. 

• The exact expressive power remains open. 

• Here we establish an upper bound by showing that 

Clearing, Δ- and Δ*-Clearing Restarting Automata only 

accept languages that are growing context-sensitive 

[Dahlhaus, Warmuth]. 



Clearing Restarting Automata 

• Theorem: ℒ(Δ*-cl-RA) ⊆ GCSL. 

• Proof. 

• Let M = (Σ, Γ, I)  be a k-Δ*-cl-RA  for some k ≥ 0. 

• Let 𝛺 = Γ ∪ {¢, $, Y}, where Y  is a new letter. 

• Let S(M)  be the following string-rewriting system over 𝛺 :  

 S(M) = { xzy → xty | (x, z → t, y) ∊ I } ∪ { ¢$ → Y }. 

• Let g  be a weight function: g(Δ) = 1  and g(a) = 2  for all a ≠ Δ. 

• Claim: L(M)  coincides with the McNaughton language 

[Beaudry, Holzer, Niemann, Otto]  specified by (S(M), ¢, $, Y). 

• As S(M)  is a finite weight-reducing system, it follows 

that the McNaughton language L(M)  is a growing 

context-sensitive language, that is, L(M) ∊ GCSL.  ■ 



Clearing Restarting Automata 



Part III: Limited Context RA 

• Limited Context Restarting Automaton (lc-RA ): 
• Is defined exactly as Context Rewriting Systems, except that: 

• There is no upper bound k  on the length of contexts. 

• The instructions are usually written as: (x | z → t | y). 

• There is a weight function g  such that g(z) > g(t)  for all 

instructions (x | z → t | y)  of the automaton. 

 



Limited Context Restarting Automata 

• Restricted types: lc-RA M = (Σ, Γ, I)  is of type: 

• ℛ0’ , if I  is an arbitrary finite set of (weight-reducing) instructions, 

• ℛ1’ , if |t| ≤ 1 , 

• ℛ2’ , if |t| ≤ 1 , x ∊ {¢, λ} , y ∊ {λ, $} , 

• ℛ3’ , if |t| ≤ 1 , x ∊ {¢, λ} , y = $ , 

  for all (x | z → t | y) ∊ I . 

• Moreover, lc-RA M = (Σ, Γ, I)  is of type: 

• ℛ0  , ( ℛ1 , ℛ2  , ℛ3 , respectively) if it is of type: 

• ℛ0’ , ( ℛ1’ , ℛ2’ , ℛ3’ , respectively) and all instructions of M  are 

length-reducing (i.e. |z| > |t|  for all (x | z → t | y) ∊ I ). 

• We use the notation lc-RA[ ℛi’], lc-RA[ ℛi ]  to denote the 

corresponding class of the restricted lc-RA s. 



lc-RA[ ℛ0’]  and lc-RA[ ℛ0 ] 

• Theorem: ℒ(lc-RA[ ℛ0’]) = ℒ(lc-RA[ ℛ0 ]) = GCSL. 

• Proof. 

• For each lc-RA M = (Σ, Γ, I)  we can associate a finite weight-

reducing string-rewriting system S(M)  such that L(M)  is the 

McNaughton language specified by the four-tuple (S(M), ¢, $, Y). 

S(M) = { xzy → xty | (x | z → t | y) ∊ I } ∪ { ¢$ → Y } . 

• It follows that L(M) ∊ GCSL. 

• On the other hand, each growing context-sensitive language is 

accepted by an lc-RA[ ℛ0 ]. ■ 



lc-RA[ ℛ1’] 

• Theorem: ℒ(lc-RA[ ℛ1’]) = GCSL. 

• Proof. 

• Let G = (N, T, S, P)  be a weight-increasing context-sensitive 

grammar. By taking: 

• I(G)      =  { (u | x → A | v) | (uAv → uxv) ∊ P } ∪  

  { (¢ | r → λ | $) | (S → r) ∊ P }, 

• we obtain an lc-RA[ ℛ1’]  M(G) = ( T,  N ∪ T,  I(G) )  such that  

• L(M(G)) =  L(G) ∪ {λ} . 

• The class of languages generated by weight-increasing context-

sensitive grammars, which is known as the class ACSL (acyclic 

context-sensitive languages), coincides with the class GCSL 
[Niemann, Woinowski]. 

• Thus, ℒ(lc-RA[ ℛ1’]) ⊇ GCSL. ■ 



lc-RA[ ℛ1 ] 

• Theorem: ℒ(lc-RA[ ℛ1]) = GACSL. 

• Proof. 

• Let lc-RA M = (Σ, Γ, I)  be of type ℛ1 . 

• For all (x | z → t | y) ∊ I  :  |z| > |t|  and |t| ≤ 1 . 

• Lemma: It is possible to obtain an equivalent lc-RA M  such that: 

• For all (x | z → t | y) ∊ I  :  |z| > |t|  and |t| = 1  if x ≠ ¢  or y ≠ $ . 

• From string-rewriting system: R = { xty → xzy | (x | z → t | y) ∊ I } , 

• We construct a length-increasing context-sensitive grammar : 

• G = (Γ, Σ, S, R)  such that L(G) = ¢ . L(M) . $ . 

• The class of languages generated by length-increasing context-

sensitive grammars is known as the class GACSL ( growing 

acyclic context-sensitive languages). GACSL  ⊆ ACSL = GCSL . 

• ¢ . L(M) . $ ∊ GACSL , i.e. L(M) ∊ GACSL  [Buntrock]. Similarly ⊇ . ■ 



lc-RA[ ℛ2’]  and lc-RA[ ℛ2 ] 

• Theorem: ℒ(lc-RA[ ℛ2’]) = ℒ(lc-RA[ ℛ2 ]) = CFL. 

• Proof. 

• Let lc-RA M = (Σ, Γ, I)  be of type ℛ2’ . 

• For all (x | z → t | y) ∊ I  :  |t| ≤ 1 , x ∊ {¢, λ} , y ∊ {λ, $} . 

• We split R(M) = { xzy → xty | (x | z → t | y) ∊ I }  into 4 subsystems: 

 

 

 

 

• Take 

• Then A(M)  is a finite set. Let                                      . Then L(M) =   



lc-RA[ ℛ2’]  and lc-RA[ ℛ2 ] 

• Proof. (Continued). 

• Consider a mixed rewriting system: 

• Prefix-rewriting system: 

• Suffix-rewriting system: 

• String-rewriting system: 

• The rules of a prefix-rewriting system (suffix-rewriting system) 

are only applied to the prefix (suffix) of a word. 

• Apparently: 

• As P(M)  only contains generalized monadic rules, it follows that 

the language L(M)  is context-free  [Leupold, Otto]. 

• Moreover, it is easy to obtain from a given context-free grammar 

an equivalent lc-RA M = (Σ, Γ, I)  of the type ℛ2 . 

• Thus we have: CFL ⊆ ℒ(lc-RA[ ℛ2 ]) ⊆ ℒ(lc-RA[ℛ2’]) ⊆ CFL . ■ 



lc-RA[ ℛ3’]  and lc-RA[ ℛ3 ] 

• Theorem: ℒ(lc-RA[ ℛ3’]) = ℒ(lc-RA[ ℛ3 ]) = REG. 

• Proof. 

• Let lc-RA M = (Σ, Γ, I)  be of type ℛ3’ . 

• For all (x | z → t | y) ∊ I  :  |t| ≤ 1 , x ∊ {¢, λ} , y = $ . 

• We split R(M) = { xzy → xty | (x | z → t | y) ∊ I }  into 2 subsystems: 

 

 

• Now we take only the suffix-rewriting system P(M) = Psuf  , where: 

• Psuf  =  

• Apparently:         is regular. 

• Again, it is easy to obtain from a given regular grammar an 

equivalent lc-RA M = (Σ, Γ, I)  of the type ℛ3 . 

• Thus we have: REG ⊆ ℒ(lc-RA[ ℛ3 ]) ⊆ ℒ(lc-RA[ℛ3’]) ⊆ REG . ■ 



Limited Context Restarting Automata 

• Hierarchy of Language Classes: 



Part IV: Confluent lc-RA 

• Since lc-RA M  is a nondeterministic device, it is difficult 

to decide the membership in L(M). 

• Here we are interested in lc-RA M = (Σ, Γ, I)  for which all 

computations from ¢ w $  lead to ¢ $ , if w ∊ L(M). 

• The reduction relation ⊢M  corresponds to the single-step 

reduction relation ⇒R(M)  induced by the string-rewriting 

system R(M) = { xzy → xty | (x | z → t | y) ∊ I }  on ¢ Γ* $. 

• As it is undecideable whether R(M)  is confluent on the 

congruence class [¢ $]R(M) , we consider only confluence. 

• An lc-RA M = (Σ, Γ, I)  is called confluent if the 

corresponding string-rewriting system R(M)  is confluent. 

• We use the prefix con-  to denote confluent lc-RA. 



lc-RA[ con-ℛ0’]  and lc-RA[ con-ℛ0 ] 

• Theorem: ℒ(lc-RA[ con-ℛ0’]) = ℒ(lc-RA[ con-ℛ0 ]) = CRL. 

• Proof. 

• For each lc-RA[ con-ℛ0’]  M = (Σ, Γ, I) : S(M) = R(M)∪ { ¢$ → Y }  is a 

finite weight-reducing string-rewriting system that is confluent. 

• L(M)  is the McNaughton language specified by (S(M), ¢, $, Y), i.e. 

• L(M)  is a Church-Rosser language [McNaughton, Narendran, Otto]. 

• On the other hand, each Church-Rosser language L  is 

accepted by a length-reducing deterministic two-pushdown 

automaton A  [Niemann, Otto]. 

• Based on A  it is possible to construct a confluent lc-RA  of type ℛ0  

recognizing the language L. ■ 



lc-RA[ con-ℛ3’]  and lc-RA[ con-ℛ3 ] 

• Theorem: ℒ(lc-RA[ con-ℛ3’]) = ℒ(lc-RA[ con-ℛ3 ]) = REG. 

• Proof. 

• Apparently, ℒ(lc-RA[ con-ℛ3’]) ⊆ ℒ(lc-RA[ ℛ3’]) = REG. 

• Conversely, if L ⊆ Σ*  is regular then there exists DFA  A = (Q, Σ, q0 , 
F, δ)  that accepts LR. We define lc-RA M = (Σ , Σ ∪ Q , I), where I =  

 

 

• It is easy to see that L(M) = LR, and that the string-rewriting 

system R(M)  is confluent. By taking M’ = (Σ , Σ ∪ Q , I’), where: 

 

 

• We obtain a confluent lc-RA  of type ℛ3  that accepts L. ■ 



lc-RA[ con-ℛ2’]  and lc-RA[ con-ℛ2 ] 

• For other classes we have no characterization results. 

• We have only some preliminary results. 

• Lemma: ℒ(lc-RA[ con-ℛ2’]) ⊆ DCFL ∩ DCFLR. 

• Proof Idea.  

• Consider the leftmost derivation, which can be realized by a 

deterministic pushdown automaton. ■ 

• Lemma: The deterministic context-free language 

 

• Is not accepted by any lc-RA[ con-ℛ2’]. 

• Note: Both Lu  and Lu
R  are DLIN  languages. 

• Corollary: ℒ(lc-RA[ con-ℛ2’]) ⊂ DCFL ∩ DCFLR. 



lc-RA[ con-ℛ2’]  and lc-RA[ con-ℛ2 ] 

• Lemma: The nonlinear language { anbn cmdm | n, m ≥ 1 }  
is accepted by a confluent lc-RA  of type ℛ2 . 

• Corollary: The class of languages accepted by confluent 

lc-RA  of type ℛ2’   is incomparable to DLIN  and LIN. 

• These results also hold for the class of languages that are 

accepted by lc-RA[ con-ℛ2 ]. 

• The exact relationship of these classes of languages to 

the class of confluent [generalized] monadic McNaughton 

languages [Leupold, Otto] remains open. 



lc-RA[ con-ℛ1’]  and lc-RA[ con-ℛ1 ] 

• Lemma: The language Lexpo5 = { a 5 n | n ≥ 0 }  is accepted 

by an lc-RA[ con-ℛ1 ]. 

• Proof. Take Σ = {a}, Γ = {a, b, A, B, C, D},  and M = (Σ, Γ, I),  where I : 



lc-RA[ con-ℛ1’]  and lc-RA[ con-ℛ1 ] 

• As the language Lexpo5   is not context-free, we obtain: 

• Corollary: The class of languages accepted by confluent 

lc-RA  of type ℛ1   is incomparable to CFL. 

• In particular, lc-RA[ con-ℛ1 ] ⊃ lc-RA[ con-ℛ2 ]. 

• These results also hold for the class of languages that are 

accepted by lc-RA[ con-ℛ1’]. 



Confluent lc-RA 

• Hierarchy of Language Classes: 

 



Part V: Concluding Remarks 

• The class GCSL  forms an upper bound for all types of 

limited context restarting automata considered. 

• Under the additional requirement of confluence, the 

Church-Rosser languages form an upper bound. 

• For the most restricted types of lc-RA  we obtain regular 

languages, both in confluent and non-confluent case. 

• For the intermediate systems, the question for an exact 

characterization of the corresponding classes of 

languages remains open. 

• For the intermediate systems it even remains open 

whether the weight-reducing lc-RA  are more expressive 

than the corresponding length reducing lc-RA. 



References 
• BASOVNÍK, Learning restricted restarting automata using genetic algorithm.  

• Master's thesis, Charles University, MFF, Prague, 2010. 

• BASOVNÍK, MRÁZ, Learning limited context restarting automata by genetic algorithms.  
• In: J. DASSOW, B. TRUTHE (eds.), Theorietag 2011. Otto-von-Guericke-Universität, Magdeburg, 2011, 1-4. 

• BEAUDRY, HOLZER, NIEMANN, OTTO, McNaughton families of languages.  
• Theoret. Comput. Sci. 290 (2003), 1581-1628. 

• BOOK, OTTO, String-Rewriting Systems. Springer, New York, 1993. 

• BÜCHI, Regular canonical systems.  
• Arch. f. Math. Logik Grundlagenf. 6 (1964), 91-111. 

• G. BUNTROCK, Wachsende kontext-sensitive Sprachen.  
• Habilitationsschrift, Fakultät für Mathematik und Informatik, Universität at Würzburg, 1996. 

• BUNTROCK, OTTO, Growing context-sensitive languages and Church-Rosser languages.  
• Inform. and Comput. 141 (1998), 1-36. 

• ČERNO, MRÁZ, Clearing restarting automata. Fund. Inf. 104 (2010), 17-54. 

• ČERNO, MRÁZ, Δ-clearing restarting automata and CFL.  
• In: G. MAURI, A. LEPORATI (eds.), DLT 2011. LNCS 6795, Springer, Berlin, 2011, 153-164. 

• DAHLHAUS, WARMUTH, Membership for growing context-sensitive grammars is polynomial.  
• J. Comput. System Sci. 33 (1986), 456-472. 

• HOFBAUER, WALDMANN, Deleting string rewriting systems preserve regularity.  
• Theoret. Comput. Sci. 327 (2004), 301-317. 

• JANČAR, MRÁZ, PLÁTEK, VÖGEL, Restarting automata.  
• In: H. REICHEL (ed.), FCT'95. LNCS 965, Springer, Berlin, 1995, 283-292. 

• LEUPOLD, OTTO, On McNaughton families of languages that are specified by some variants of monadic string-rewriting systems. 
Fund. Inf. 112 (2011), 219-238. 

• MCNAUGHTON, NARENDRAN, OTTO, Church-Rosser Thue systems and formal languages.  
• J. Assoc. Comput. Mach. 35 (1988), 324-344. 

• NIEMANN, OTTO, The Church-Rosser languages are the deterministic variants of the growing context-sensitive languages.  
• Inform. and Comput. 197 (2005), 1-21. 

• NIEMANN, WOINOWSKI, The growing context-sensitive languages are the acyclic context-sensitive languages.  
• In: W. KUICH, G. ROZENBERG, A. SALOMAA (eds.), DLT 2002 . LNCS 2295, Springer, Berlin, 2002, 197-205. 

• OTTO, On deciding the congruence of a finite string-rewriting system on a given congruence class.  
• J. Comput. System Sci. 35 (1987), 285-310. 

• OTTO, Restarting automata.  
• In: Z. ÉSIK, C. MARTIN-VIDE, V. MITRANA (eds.), Recent Advances in Formal Languages and Applications. Studies in Computational Intelligence 25, Springer, Berlin, 

2006, 269-303. 



Thank You! 

• This presentation is available on the following website: 
    http://popelka.ms.mff.cuni.cz/cerno/files/otto_cerno_mraz_lcra_presentation.pdf 


