LIMITED CONTEXT RESTARTING AUTOMATA AND MCNAUGHTON FAMILIES OF LANGUAGES

Friedrich Otto Peter Černo, František Mráz

Introduction

- Part I: Introduction,
- Part II: Clearing and Δ-Clearing Restarting Automata,
- Part III: Limited Context Restarting Automata,
- Part IV: Confluent Limited Context Restarting Automata,
- **Part V**: Concluding Remarks.

Part I: Introduction

Restarting Automata:

- Model for the linguistic technique of *analysis by reduction*.
- Many different types have been defined and studied intensively.

• Analysis by Reduction:

- Method for checking [non-]correctness of a sentence.
- Iterative application of simplifications.
- Until the input cannot be simplified anymore.

<u>Restricted Models</u>:

- Clearing, Δ -Clearing and Δ *-Clearing Restarting Automata,
- Limited Context Restarting Automata.

Part II: Clearing Restarting Automata

- Let k be a nonnegative integer.
- <u>k-context rewriting system</u> (k-CRS)
- Is a triple $M = (\Sigma, \Gamma, I)$:
 - Σ ... input alphabet, ϕ , $\$ \notin \Sigma$,
 - Γ ... working alphabet, $\Gamma \supseteq \Sigma$,
 - I ... finite set of *instructions* $(x, z \rightarrow t, y)$:
 - $x \in \{\ell, \lambda\}.\Gamma^*, |x| \le k$ (left context)
 - $y \in \Gamma^*$.{ λ , \$}, $|y| \le k$ (right context)
 - $z \in \Gamma^+, z \neq t \in \Gamma^*$.
 - ¢ and \$... sentinels.

Rewriting

- $\underline{uzv} \vdash_M \underline{utv}$ iff $\exists (x, z \rightarrow t, y) \in I$:
- x is a suffix of *c.u* and y is a prefix of v.\$.

- $L(M) = \{ w \in \Sigma^* / w \vdash_M^* \lambda \}.$
- $L_C(M) = \{ w \in \Gamma^* / w \vdash_M^* \lambda \}.$

Empty Word

- <u>Note</u>: For every k-CRS M: $\lambda \vdash_{M}^{*} \lambda$, hence $\lambda \in L(M)$.
- Whenever we say that a *k*-*CRSM* recognizes a language L, we always mean that $L(M) = L \cup \{\lambda\}$.
- We simply *ignore the empty word* in this setting.

- <u>k Clearing Restarting Automaton</u> (k-cl-RA)
 - Is a k-CRS $M = (\Sigma, \Sigma, I)$ such that:
 - For each $(x, z \rightarrow t, y) \in I$: $z \in \Sigma^+, t = \lambda$.
- <u>k △ Clearing Restarting Automaton</u> (k-△-cl-RA)
 - Is a *k-CRS M* = (Σ, Γ, I) such that:
 - $\Gamma = \Sigma \cup \{\Delta\}$ where Δ is a new symbol, and
 - For each $(x, z \rightarrow t, y) \in I$: $z \in \Gamma^+, t \in \{\lambda, \Delta\}$.

• $k - \Delta^*$ - Clearing Restarting Automaton (k- Δ^* -cl-RA)

- Is a *k*-*CRS M* = (Σ, Γ, Ι) such that:
- $\Gamma = \Sigma \cup \{\Delta\}$ where Δ is a new symbol, and
- For each $(x, z \rightarrow t, y) \in I$: $z \in \Gamma^+, t = \Delta^i, 0 \le i \le |z|$.

Example 1

- $L_1 = \{a^n b^n / n > 0\} \cup \{\lambda\}$:
- $1-cl-RA M = (\{a, b\}, I),$
- Instructions I are:
 - $R1 = (a, \underline{ab} \rightarrow \lambda, b)$,
 - $R2 = (\emptyset, \underline{ab} \rightarrow \lambda, \$)$.

• <u>Note</u>:

• We did not use ⊿.

Example 2

- $L_2 = \{a^n c b^n / n > 0\} \cup \{\lambda\}$:
- $1 \Delta cl RA M = (\{a, b, c\}, I),$
- Instructions I are:
 - $R1 = (a, \underline{c} \rightarrow \Delta, b)$,
 - $R2 = (a, \underline{a\Delta b} \rightarrow \Delta, b)$,
 - $R3 = (\mathfrak{C}, \underline{a\Delta b} \rightarrow \lambda, \mathfrak{S})$.

• <u>Note</u>:

• We **must use ⊿**.

Clearing Restarting Automata:

- Accept all regular and even some non-context-free languages.
- They do **not** accept **all context-free** languages $(\{a^n cb^n | n > 0\})$.
- Δ -Clearing and Δ *-Clearing Restarting Automata:
 - Accept all context-free languages.
 - The exact expressive power remains open.

 Here we establish an upper bound by showing that Clearing, Δ- and Δ*-Clearing Restarting Automata only accept languages that are growing context-sensitive [Dahlhaus, Warmuth].

- <u>Theorem</u>: $\mathcal{L}(\Delta^*-cl-RA) \subseteq GCSL$.
- Proof.
 - Let $M = (\Sigma, \Gamma, I)$ be a $k \Delta^* cl RA$ for some $k \ge 0$.
 - Let $\Omega = \Gamma \cup \{ c, S, Y \}$, where Y is a *new letter*.
 - Let S(M) be the following string-rewriting system over Ω : $S(M) = \{xzy \rightarrow xty | (x, z \rightarrow t, y) \in I\} \cup \{ \notin S \rightarrow Y \}.$
 - Let g be a weight function: $g(\Delta) = 1$ and g(a) = 2 for all $a \neq \Delta$.
- <u>Claim</u>: *L(M)* coincides with the *McNaughton language* [Beaudry, Holzer, Niemann, Otto] specified by (S(M), ¢, \$, Y).
- As *S(M)* is a *finite weight-reducing system*, it follows that the *McNaughton language L(M)* is a *growing context-sensitive language*, that is, *L(M) ∈ GCSL*.

Part III: Limited Context RA

- Limited Context Restarting Automaton (*lc-RA*):
 - Is defined exactly as *Context Rewriting Systems*, except that:
 - There is *no upper bound k* on the length of contexts.
 - The instructions are usually written as: $(x/z \rightarrow t/y)$.
 - There is a weight function g such that g(z) > g(t) for all instructions $(x/z \rightarrow t/y)$ of the automaton.

Limited Context Restarting Automata

- <u>Restricted types</u>: lc- $RAM = (\Sigma, \Gamma, I)$ is of type:
 - \mathcal{R}_0 ', if *I* is an arbitrary finite set of (*weight-reducing*) instructions,
 - \mathcal{R}_1 ', if $/t/\leq 1$,
 - \mathcal{R}_2 , if $|t| \leq 1$, $x \in \{\ell, \lambda\}$, $y \in \{\lambda, \$\}$,
 - \mathcal{R}_3 ', if $|t| \leq 1$, $x \in \{\ell, \lambda\}$, y =\$,

for all $(x/z \rightarrow t/y) \in I$.

- <u>Moreover</u>, lc-RA $M = (\Sigma, \Gamma, I)$ is of type:
 - \mathcal{R}_0 , (\mathcal{R}_1 , \mathcal{R}_2 , \mathcal{R}_3 , respectively) if it is of type:
 - \mathcal{R}_0' , $(\mathcal{R}_1', \mathcal{R}_2', \mathcal{R}_3', \text{respectively})$ and all instructions of M are *length-reducing* (i.e. |z| > |t| for all $(x | z \to t | y) \in I$).
- We use the notation *lc-RA[R_i']*, *lc-RA[R_i]* to denote the corresponding class of the restricted *lc-RA*s.

$lc-RA[\mathcal{R}_0]$ and $lc-RA[\mathcal{R}_0]$

- <u>Theorem</u>: $\mathcal{L}(lc-RA[\mathcal{R}_0']) = \mathcal{L}(lc-RA[\mathcal{R}_0]) = GCSL$.
- Proof.
 - For each *lc-RA M* = (Σ, Γ, I) we can associate a *finite weight-reducing string-rewriting system S(M)* such that *L(M)* is the *McNaughton language* specified by the four-tuple (S(M), ¢, \$, Y).

 $S(M) = \{xzy \rightarrow xty | (x | z \rightarrow t | y) \in I\} \cup \{ \notin \mathcal{S} \rightarrow Y \}.$

- It follows that $L(M) \in GCSL$.
- On the other hand, each growing context-sensitive language is accepted by an *lc-RA[𝔅*].

$lc-RA[\mathcal{R}_1']$

- <u>Theorem</u>: $\mathcal{L}(lc-RA[\mathcal{R}_1']) = GCSL$.
- Proof.
 - Let G = (N, T, S, P) be a weight-increasing context-sensitive grammar. By taking:
 - $I(G) = \{(u | x \rightarrow A | v) | (uAv \rightarrow uxv) \in P\} \cup \{(v | r \rightarrow \lambda |) | (S \rightarrow r) \in P\},\$
 - we obtain an $lc-RA[\mathcal{R}_1'] M(G) = (T, N \cup T, I(G))$ such that
 - $L(M(G)) = L(G) \cup \{\lambda\}$.
 - The class of languages generated by weight-increasing contextsensitive grammars, which is known as the class ACSL (acyclic context-sensitive languages), coincides with the class GCSL [Niemann, Woinowski].
 - Thus, *L(lc-RA[R₁']) ⊇ GCSL*.

$lc-RA[\mathcal{R}_1]$

- <u>Theorem</u>: $\mathcal{L}(lc-RA[\mathcal{R}_1]) = GACSL$.
- Proof.
 - Let Ic- $RAM = (\Sigma, \Gamma, I)$ be of type \mathcal{R}_1 .
 - For all $(x/z \rightarrow t/y) \in I : |z| > |t|$ and $|t| \le 1$.
 - Lemma: It is possible to obtain an equivalent lc-RAM such that:
 - For all $(x/z \rightarrow t/y) \in I : |z| > |t|$ and |t| = 1 if $x \neq c$ or $y \neq$.
 - From string-rewriting system: $R = \{xty \rightarrow xzy | (x | z \rightarrow t | y) \in I\}$,
 - We construct a *length-increasing context-sensitive grammar* :
 - $G = (\Gamma, \Sigma, S, R)$ such that $L(G) = \emptyset \cdot L(M) \cdot \emptyset$.
 - The class of languages generated by *length-increasing context-sensitive grammars* is known as the class *GACSL* (*growing acyclic context-sensitive languages*). *GACSL* ⊆ *ACSL* = *GCSL*.
 - c.L(M). $s \in GACSL$, i.e. $L(M) \in GACSL$ [Buntrock]. Similarly \supseteq .

$lc-RA[\mathcal{R}_2']$ and $lc-RA[\mathcal{R}_2]$

- <u>Theorem</u>: $\mathcal{L}(lc-RA[\mathcal{R}_2']) = \mathcal{L}(lc-RA[\mathcal{R}_2]) = CFL$.
- Proof.
 - Let lc- $RAM = (\Sigma, \Gamma, I)$ be of type \mathcal{R}_2' .
 - For all $(x/z \rightarrow t/y) \in I : |t| \leq 1$, $x \in \{\emptyset, \lambda\}$, $y \in \{\lambda, \}$.
 - We split $R(M) = \{xzy \rightarrow xty | (x | z \rightarrow t | y) \in I\}$ into **4 subsystems**:

(a) $R_{bif} = \{ \mathfrak{e}x \$ \to \mathfrak{e}y \$ \mid (\mathfrak{e} \mid x \to y \mid \$) \in I \}$, the bifix rules of R(M), (b) $R_{pre} = \{ \mathfrak{e}x \to \mathfrak{e}y \mid (\mathfrak{e} \mid x \to y \mid \lambda) \in I \}$, the prefix rules of R(M), (c) $R_{suf} = \{ x \$ \to y \$ \mid (\lambda \mid x \to y \mid \$) \in I \}$, the suffix rules of R(M), (d) $R_{inf} = \{ x \to y \mid (\lambda \mid x \to y \mid \lambda) \in I \}$, the infix rules of R(M).

• Take $A(M) = \{ \alpha \in \Gamma^* \mid \mathfrak{c}\alpha \$ \in \operatorname{dom}(R_{bif}) \text{ and } \mathfrak{c}\alpha \$ \Rightarrow^*_{R(M)} \mathfrak{c}\$ \}$

• Then A(M) is a *finite set*. Let $R' = R_{pre} \cup R_{suf} \cup R_{inf}$. Then L(M) =

 $\{w \in \Sigma^* \mid \mathfrak{c}w\$ \Rightarrow^*_{R(M)} \mathfrak{c}\$\} = \{w \in \Sigma^* \mid \exists \alpha \in A(M) \cup \{\lambda\} : \mathfrak{c}w\$ \Rightarrow^*_{R'} \mathfrak{c}\alpha\$\}$

$lc-RA[\mathcal{R}_2']$ and $lc-RA[\mathcal{R}_2]$

- Proof. (Continued).
 - Consider a *mixed rewriting system*: $P(M) = P_{pre} \cup P_{suf} \cup P_{inf}$
 - Prefix-rewriting system: $P_{pre} = \{x \rightarrow y \mid (\mathfrak{e}x \rightarrow \mathfrak{e}y) \in R_{pre}\}$
 - Suffix-rewriting system: $P_{suf} = \{x \rightarrow y \mid (x \$ \rightarrow y \$) \in R_{suf}\}$
 - String-rewriting system: $P_{inf} = R_{inf}$
 - The rules of a prefix-rewriting system (suffix-rewriting system) are only applied to the prefix (suffix) of a word.
 - Apparently: $L(M) = \nabla^*_{P(M)}(A(M) \cup \{\lambda\}) \cap \Sigma^*$
 - As *P(M)* only contains *generalized monadic rules*, it follows that the language *L(M)* is *context-free* [Leupold, Otto].
 - Moreover, it is easy to obtain from a given **context-free grammar** an equivalent Ic- $RAM = (\Sigma, \Gamma, I)$ of the type \mathcal{R}_2 .
 - Thus we have: $CFL \subseteq \mathcal{L}(lc-RA[\mathcal{R}_2]) \subseteq \mathcal{L}(lc-RA[\mathcal{R}_2']) \subseteq CFL$.

$lc-RA[\mathcal{R}_3']$ and $lc-RA[\mathcal{R}_3]$

- <u>Theorem</u>: $\mathcal{L}(lc-RA[\mathcal{R}_3']) = \mathcal{L}(lc-RA[\mathcal{R}_3]) = REG.$
- Proof.
 - Let lc- $RAM = (\Sigma, \Gamma, I)$ be of type \mathcal{R}_{3}' .
 - For all $(x/z \rightarrow t/y) \in I : |t| \le 1$, $x \in \{\ell, \lambda\}$, y =.
 - We split $R(M) = \{xzy \rightarrow xty | (x/z \rightarrow t/y) \in I\}$ into **2** subsystems:

(a) $R_{bif} = \{ \mathfrak{e}x \$ \to \mathfrak{e}y \$ \mid (\mathfrak{e} \mid x \to y \mid \$) \in I \}$, the *bifix rules* of R(M), (b) $R_{suf} = \{ x \$ \to y \$ \mid (\lambda \mid x \to y \mid \$) \in I \}$, the *suffix rules* of R(M).

- Now we take only the suffix-rewriting system $P(M) = P_{suf}$, where:
- $P_{suf} = \{ y \rightarrow x \mid (x \$ \rightarrow y \$) \in R_{suf} \}$
- Apparently: $L(M) = \Delta^*_{P(M)}(A(M) \cup \{\lambda\}) \cap \Sigma^*$ is *regular*.
- Again, it is easy to obtain from a given *regular grammar* an equivalent Ic- $RAM = (\Sigma, \Gamma, I)$ of the type \mathcal{R}_3 .
- Thus we have: $REG \subseteq \mathcal{L}(lc-RA[\mathcal{R}_3]) \subseteq \mathcal{L}(lc-RA[\mathcal{R}_3']) \subseteq REG$.

Limited Context Restarting Automata

Hierarchy of Language Classes:

Part IV: Confluent Ic-RA

- Since *Ic-RA M* is a *nondeterministic* device, it is *difficult* to decide the membership in *L(M)*.
- Here we are interested in Lc-RA $M = (\Sigma, \Gamma, I)$ for which all computations from ψw lead to ψ , if $w \in L(M)$.
- The reduction relation \vdash_M corresponds to the single-step reduction relation $\Rightarrow_{R(M)}$ induced by the string-rewriting system $R(M) = \{xzy \rightarrow xty | (x | z \rightarrow t | y) \in I\}$ on $\notin \Gamma^*$.
- As it is *undecideable* whether *R(M)* is confluent on the congruence class [¢\$]_{R(M)}, we consider only *confluence*.
- An *lc-RA M = (Σ, Γ, I)* is called *confluent* if the corresponding *string-rewriting system R(M)* is *confluent*.
- We use the prefix con- to denote confluent lc-RA.

lc-RA[con-\mathcal{R}_0'] and *lc-RA[con-\mathcal{R}_0]*

- <u>Theorem</u>: $\mathcal{L}(lc-RA[con-\mathcal{R}_0']) = \mathcal{L}(lc-RA[con-\mathcal{R}_0]) = CRL.$
- Proof.
 - For each *lc-RA[con-\mathcal{R}_0'] M = (\Sigma, \Gamma, I): S(M) = R(M) \cup \{ \ c \ s \rightarrow Y \} is a <i>finite weight-reducing string-rewriting system* that is *confluent*.
 - L(M) is the McNaughton language specified by (S(M), ¢, \$, Y), i.e.
 - L(M) is a Church-Rosser language [McNaughton, Narendran, Otto].
 - On the other hand, each Church-Rosser language L is accepted by a length-reducing deterministic two-pushdown automaton A [Niemann, Otto].
 - Based on *A* it is possible to construct a *confluent lc-RA* of type \mathcal{R}_0 recognizing the language *L*.

$lc-RA[con-\mathcal{R}_3']$ and $lc-RA[con-\mathcal{R}_3]$

- <u>Theorem</u>: $\mathcal{L}(lc-RA[con-\mathcal{R}_3']) = \mathcal{L}(lc-RA[con-\mathcal{R}_3]) = REG.$
- Proof.
 - Apparently, $\mathcal{L}(lc-RA[con-\mathcal{R}_3']) \subseteq \mathcal{L}(lc-RA[\mathcal{R}_3']) = REG.$
 - **Conversely**, if $L \subseteq \Sigma^*$ is *regular* then there exists *DFA* $A = (Q, \Sigma, q_0, F, \delta)$ that accepts L^R . We define Ic- $RAM = (\Sigma, \Sigma \cup Q, I)$, where $I = \{(\mathfrak{e} \mid ab \to q \mid \lambda) \mid \delta(q_0, ab) = q\} \cup \{(\mathfrak{e} \mid qa \to q' \mid \lambda) \mid \delta(q, a) = q'\} \cup \{(\mathfrak{e} \mid q \to \lambda \mid \$) \mid q \in F\} \cup \{(\mathfrak{e} \mid a \to \lambda \mid \$) \mid a \in \Sigma \cap L^R\}.$
 - It is easy to see that $L(M) = L^R$, and that the *string-rewriting system R(M)* is *confluent*. By taking $M' = (\Sigma, \Sigma \cup Q, I')$, where: $I' = \{ (\lambda \mid u^R \to v^R \mid \$) \mid (\mathfrak{e} \mid u \to v \mid \lambda) \in I \} \cup \{ (\mathfrak{e} \mid u^R \to v^R \mid \$) \mid (\mathfrak{e} \mid u \to v \mid \$) \in I \},$

• We obtain a *confluent lc-RA* of type \mathcal{R}_3 that accepts L.

lc-RA[con-\mathcal{R}_2'] and *lc-RA[con-\mathcal{R}_2]*

- For other classes we have *no characterization results*.
- We have only some *preliminary results*.
- Lemma: $\mathcal{L}(lc-RA[con-\mathcal{R}_2']) \subseteq DCFL \cap DCFL^R$.
- Proof Idea.
 - Consider the *leftmost derivation*, which can be realized by a *deterministic pushdown automaton*.
- Lemma: The deterministic context-free language

 $L_u = \{ ca^n b^n c \mid n \ge 1 \} \cup \{ da^m b^{2m} d \mid m \ge 1 \}$

- Is not accepted by any lc-RA[con-R₂'].
- <u>Note</u>: Both L_u and L_u^R are *DLIN* languages.
- <u>Corollary</u>: $\mathcal{L}(lc-RA[con-\mathcal{R}_2']) \subset DCFL \cap DCFL^R$.

lc-RA[con-\mathcal{R}_2'] and *lc-RA[con-\mathcal{R}_2]*

- <u>Lemma</u>: The *nonlinear language* { $a^n b^n c^m d^m / n, m \ge 1$ } is accepted by a *confluent lc-RA of type* \mathcal{R}_2 .
- <u>Corollary</u>: The class of languages accepted by confluent *lc-RA* of type \mathcal{R}_2' is incomparable to *DLIN* and *LIN*.
- These results also hold for the class of languages that are accepted by *lc-RA[con-R₂]*.
- The exact relationship of these classes of languages to the class of confluent *[generalized]* monadic McNaughton languages *[Leupold, Otto]* remains open.

lc-RA[con-\mathcal{R}_1] and *lc-RA[con-\mathcal{R}_1]*

- Lemma: The language $L_{expo5} = \{a^{5^n} | n \ge 0\}$ is accepted by an *lc-RA[con-R₁]*.
- **Proof**. Take $\Sigma = \{a\}$, $\Gamma = \{a, b, A, B, C, D\}$, and $M = (\Sigma, \Gamma, I)$, where I:

Ι	$\mathbf{R}(M)$		
(1) $(\mathfrak{e}a^2 \mid a^2 \to B \mid a)$	ca^5	\rightarrow	ca^2Ba
(2) $(\mathfrak{e} \mid a^2 \to b \mid Ba)$	ca^2Ba	\rightarrow	bBa
(3) $(Aa^2 \mid a^2 \to B \mid a)$	Aa^5	\rightarrow	Aa^2Ba
$(4) \ (\lambda \mid Aa^2 \to b \mid Ba)$	Aa^2Ba	\rightarrow	bBa
(5) $(b \mid Ba \to A \mid \lambda)$	bBa	\rightarrow	bA
$(6) (\lambda \mid A \to \lambda \mid \$)$	A\$	\rightarrow	\$
(7) $(\lambda \mid b^2 \to C \mid b^3 \$)$	b^5 \$	\rightarrow	Cb^3 \$
$(8) (Cb \mid b^2 \to a \mid \$)$	Cb^3 \$	\rightarrow	Cba\$
(9) $(\lambda \mid Cb \rightarrow D \mid a)$	Cba	\rightarrow	Da
(10) $(\lambda \mid b^2 \to C \mid b^3D)$	b^5D	\rightarrow	Cb^3D
(11) $(Cb \mid b^2D \rightarrow a \mid \lambda)$	$Cb^{3}D$	\rightarrow	Cba
(12) ($\mathfrak{e} \mid D \to \lambda \mid \lambda$)	cD	\rightarrow	¢
(13) ($\mathfrak{e} \mid a \to \lambda \mid \$$)	$_{ca\$}$	\rightarrow	¢\$
$(14) (\mathfrak{e} \mid b \to \lambda \mid \$)$	b	\rightarrow	¢\$

lc-RA[con-\mathcal{R}_1'] and *lc-RA[con-\mathcal{R}_1]*

- As the language L_{expo5} is **not context-free**, we obtain:
- <u>Corollary</u>: The class of languages accepted by *confluent Ic-RA of type* \mathcal{R}_1 is incomparable to *CFL*.
- In particular, lc- $RA[con-\mathcal{R}_1] \supset lc$ - $RA[con-\mathcal{R}_2]$.
- These results also hold for the class of languages that are accepted by *lc-RA[con-R₁']*.

Confluent Ic-RA

Hierarchy of Language Classes:

Part V: Concluding Remarks

- The class GCSL forms an upper bound for all types of limited context restarting automata considered.
- Under the additional requirement of confluence, the Church-Rosser languages form an upper bound.
- For the most restricted types of *lc-RA* we obtain regular languages, both in confluent and non-confluent case.
- For the *intermediate systems*, the question for an exact characterization of the corresponding classes of languages *remains open*.
- For the *intermediate systems* it even *remains open* whether the *weight-reducing lc-RA* are more expressive than the corresponding *length reducing lc-RA*.

References

- BASOVNÍK, Learning restricted restarting automata using genetic algorithm.
 Master's thesis, Charles University, MFF, Prague, 2010.
- BASOVNÍK, MRÁZ, Learning limited context restarting automata by genetic algorithms.
 - In: J. DASSOW, B. TRUTHE (eds.), Theorietag 2011. Otto-von-Guericke-Universität, Magdeburg, 2011, 1-4.
- BEAUDRY, HOLZER, NIEMANN, OTTO, McNaughton families of languages.
 - Theoret. Comput. Sci. 290 (2003), 1581-1628.
- BOOK, OTTO, String-Rewriting Systems. Springer, New York, 1993.
- BÜCHI, Regular canonical systems.
 - Arch. f. Math. Logik Grundlagenf. 6 (1964), 91-111.
- G. BUNTROCK, Wachsende kontext-sensitive Sprachen.
 - Habilitationsschrift, Fakultät f
 ür Mathematik und Informatik, Universität at W
 ürzburg, 1996.
- BUNTROCK, OTTO, Growing context-sensitive languages and Church-Rosser languages.
 - Inform. and Comput. 141 (1998), 1-36.
- ČERNO, MRÁZ, Clearing restarting automata. Fund. Inf. 104 (2010), 17-54.
- ČERNO, MRÁZ, Δ-clearing restarting automata and CFL.
 - In: G. MAURI, A. LEPORATI (eds.), DLT 2011. LNCS 6795, Springer, Berlin, 2011, 153-164.
- DAHLHAUS, WARMUTH, Membership for growing context-sensitive grammars is polynomial.
 - J. Comput. System Sci. 33 (1986), 456-472.
- HOFBAUER, WALDMANN, Deleting string rewriting systems preserve regularity.
 - Theoret. Comput. Sci. 327 (2004), 301-317.
- JANČAR, MRÁZ, PLÁTEK, VÖGEL, Restarting automata.
 - In: H. REICHEL (ed.), FCT'95. LNCS 965, Springer, Berlin, 1995, 283-292.
- LEUPOLD, OTTO, On McNaughton families of languages that are specified by some variants of monadic string-rewriting systems. Fund. Inf. 112 (2011), 219-238.
- MCNAUGHTON, NARENDRAN, OTTO, Church-Rosser Thue systems and formal languages.
 J. Assoc. Comput. Mach. 35 (1988), 324-344.
- NIEMANN, OTTO, The Church-Rosser languages are the deterministic variants of the growing context-sensitive languages.
 Inform. and Comput. 197 (2005), 1-21.
- NIEMANN, WOINOWSKI, The growing context-sensitive languages are the acyclic context-sensitive languages.
 - In: W. KUICH, G. ROZENBERG, A. SALOMAA (eds.), DLT 2002 . LNCS 2295, Springer, Berlin, 2002, 197-205.
- OTTO, On deciding the congruence of a finite string-rewriting system on a given congruence class.
 - J. Comput. System Sci. 35 (1987), 285-310.
- **OTTO**, Restarting automata.
 - In: Z. ÉSIK, C. MARTIN-VIDE, V. MITRANA (eds.), Recent Advances in Formal Languages and Applications. Studies in Computational Intelligence 25, Springer, Berlin, 2006, 269-303.

Thank You!

• This presentation is available on the following website: http://popelka.ms.mff.cuni.cz/cerno/files/otto_cerno_mraz_lcra_presentation.pdf