
A New Sensitivity-Based Feature Selection Technique for
Feed-Forward Neural Networks That Improves Generalization

Iveta Mrázová and Zuzana Reitermanová
Faculty of Mathematics and Physics, Charles University in Prague

Malostranské náměstı́ 25, 118 00 Prague, Czech Republic
email: iveta.mrazova@mff.cuni.cz, zuzana.reitermanova@matfyz.cz

Abstract

Multi-layer neural networks of the back-propagation type became already a well-established tool
used successfully in various application areas. Efficient solutions to complex tasks currently dealt
with obviously require sufficient generalization capabilities of the formed networks and an easy inter-
pretation of their function. For this reason, we will introduce here a new feature selection technique
called SCGSIR inspired by the fast method of scaled conjugate gradients (SCG) and sensitivity ana-
lysis.

Enforced internal knowledge representation supports an easy interpretation of the formed net-
work structure. Network sensitivity inhibited during training impacts successful pruning of input
neurons and optimization of network structure, too. Experiments performed so far on the problem
of binary addition and on real data obtained from the World Bank yield promising results outper-
forming reference techniques when considering both their ability to find networks with and optimum
architectures and generalization capabilities of the trained networks. 1

1 Introduction

Artificial neural networks represent a widely acknowledged means applicable to many emerging areas
like data and web mining or multimedia information processing. Reliable solutions to such large-scale
tasks require, however, adequate generalization of the extracted knowledge. Good generalization means
a correct behavior also for previously unseen or noisy patterns.

From the literature, it is well known that smaller networks with smoother functions, lower curvature
and a larger margin set along the separating hyper-planes are expected to reduce the VC-dimension of
the final network and generalize better [1], [2], [3] [4], [8], [14], [16], [20]. Unfortunately, even if
the optimum size of the network were known, it might be difficult to train such a network completely
from scratch [15]. Namely, standard BP-networks usually do not tend to develop a transparent network
structure. For such networks, it is extremely difficult to “guess” the real meaning of every particular
hidden or even input neuron for a proper network output. Such networks often use small differences
of neuron outputs to distinguish between the presented patterns. Pruning techniques applied to larger
already trained networks might represent a viable option in such a case [12].

In this paper, we will therefore develop a new sensitivity-based feature selection technique inspired
by the SCGIR-training algorithm using a fast optimization approach of scaled conjugate gradients (SCG).
The following Section 2 discusses relevant pruning and feature selection techniques based on sensitivity
analysis and enforced internal representation. In Section 3, we will outline the idea the new sensitivity-
based feature selection technique inspired by the algorithm for learning internal representation with
scaled conjugate gradients (SCGSIR). Section 4 is devoted to experimental results obtained so far for
the problem of binary addition of two 3-bit numbers and for real data provided by the World Bank. The
concluding Section 5 summarizes the achieved results.

1This research was partially supported by the Grant Agency of Charles University in Prague under Grant-No. 17608, by
the Czech Science Foundation under Grant-No. P103/10/0783, Grant-No. P202/10/1333 and Grant-No. 201/09/H057, and by
SVV project number 263 314.

1

2 Related works

To keep the paper self-contained, we will first describe briefly also the well-known back-propagation
algorithm (BP) used to train fully-connected feed-forward neural networks (BP-networks). Although we
will in this paper restrict our consideration to two-layer BP-networks the obtained results can be easily
generalized also to networks with more hidden layers. For the BP-training algorithm, the training set T
is a finite non-empty set of P ordered pairs of input/output patterns:

T = { [~x1 , ~d1], . . . , [~xP , ~dP] } . (1)

A neuron with the weights (w1, . . . , wn), the threshold ϑ and the input vector ~z = (z1, . . . , zn), computes
its potential value ξ as ξ =

∑n
i=0 ziwi, where w0 = ϑ and z0 = 1. For the output neurons, we will

consider the linear transfer function y = f(ξ) = ξ with the derivative equal to one: f ′(ξ) = 1. For the
output of hidden neurons, we will consider the hyperbolic tangent transfer function of the form:

y = f(ξ) =
1 − e− 2 ξ

1 + e− 2 ξ
. (2)

Its derivative f ′(ξ) equals to:

f ′(ξ) = (1 + y) (1 − y) = 1 − y2 . (3)

The aim of the standard BP-training algorithm [13] is to find a set of weights that ensure that for each
input pattern the actual output produced by the network is the same as (or sufficiently close to) the output
pattern. The desired behavior is evaluated by the objective function E:

E =
1

2

∑
p

∑
v

(yv,p − dv,p)2 , (4)

where p is an index over all training patterns, v is an index over all output neurons, y is their actual and d
is their desired output value. Omitting the index p for the desired and actual neuron output values d and
y, the weights of the network are adjusted iteratively after presenting each respective training pattern by:

wij(t+ 1) = wij(t) + αδjyi . (5)

The terms for δj correspond to:

δj =

dj − yj for an output neuron

(1 + yj) (1 − yj)
∑

k δk wjk

for a hidden neuron,

(6)

i and k index neurons in the layers below and above the neuron j, respectively. t + 1 and t index next
and present weights, respectively, α stands for the learning rate.

2.1 Learning internal representation

In order to clarify the role of hidden neurons, the method enforcing the so-called condensed internal
representation [11] groups the outputs of the hidden neurons around three possible values 1, −1 and 0
corresponding to active, passive and to the so-called silent states. In the AI-terminology, this corresponds
to creating rules of an expert system, where active neuron states (output close to 1) indicate “yes”, passive
states (output close to −1) “no” and the so-called silent states stand for those cases where “no decision
is possible.” The criterion for developing a condensed internal representation will be formulated as an
additional term of the objective function to be minimized during training:

F =
∑
p

∑
h

(1 + yh,p)s (1 − yh,p)s y2
h,p , (7)

2

where p is an index over all training patterns and h an index over all hidden neurons, y represents their
output value. The respective terms achieve their minima for one of the values 1, −1 and 0. s tunes the
shape of the representation error function F (a recommended value is s = 4). Now, the new objective
function has the form:

Ĥ = E + cF F , (8)

where E represents the standard BP-error function and F stands for the above defined representation
error function. cF reflects the trade-off between the influence ofE and F in Ĥ . To minimize Ĥ , gradient
descent can be applied as well by adjusting the weights according to:

wij(t+ 1) = wij(t) + α δj yi + αr %j yi . (9)

In this formula, δj is defined by the term (6) and

%j =

0 for an output neuron

2
[
(s+ 1)y2

j − 1
]

(1 + yj)
s(1− yj)syj

for a hidden neuron,

(10)

w stands for the weights. i indexes the neuron connected with neuron j via the weight wij . yj is the
actual output value of the neuron j. s tunes the shape of the representation error function. t + 1 and t
index next and present weights, respectively. α and αr represent the particular learning rates.

In spite of the significant advantages provided by the enforced internal representation, its combi-
nation with the standard BP-algorithm can be relatively slow for large-scale real data. An extremely
efficient alternative to standard BP-training represents, however, the method of scaled conjugate gradi-
ents (SCG) [9]. Although SCG uses second order information from the neural network, it requires only
O(N) memory usage withN being the number of weights in the network and shows super-linear conver-
gence for most problems. Therefore, we implemented the described strategy of internal representation
enforcement as an enhancement of the SCG-training algorithm [10].

2.2 Dimensionality reduction and sensitivity analysis

Very often, practical implementations of neural networks face a serious problem of an excessive task
dimensionality. Ideally, the system should learn to ignore redundant and irrelevant inputs by itself. But
in practice, superfluous inputs may lead to worse generalization. Intuitively, the intrinsic generalization
of an input pattern ~xp includes all the input patterns ~xq, q 6= p that cannot be distinguished from ~xp under
the (low-dimensional) internal representation r: r(~xp) = r(~xq). Quite naturally, one would like to group
all the patterns from each class into a small number of equivalence classes, with each class having its
cardinality as large as possible. A lower number of equivalence classes implies reduced dimensionality
of trained networks resulting into a lower VC-dimension and improved generalization [18]. This general
idea has inspired several cluster-based feature selection techniques as well.

Other techniques like PCA try to identify mutual correlations among the input features. Yet in prin-
ciple, PCA can namely detect just linear dependencies among the data. A strategy capable of detecting
also non-linear dependencies among the data is discussed in [6]. The method called Feature Subset Se-
lection (FSS) is based on the main principles of sensitivity analysis. The sensitivity coefficients Sij are
computed as the mean absolute value of the derivatives of the j-th output with respect to the i-th input
over all of the P input patterns:

Sij =
1

P

P∑
p=1

|∂ yj,p/∂xi,p | (11)

and express how and how much the solution to a given problem depends on the data. Input neurons with
low sensitivity coefficients are considered to be less important and can be pruned from the network.

The concept of network sensitivities can be used also for learning. The Sensitivity-Based Linear
Learning Method (SBLLM) [5] proposed for two-layer feed-forward neural networks, calculates the

3

weights by solving a system of linear equations. Assuming that the applied non-linear transfer functions
are invertible, the method minimizes for each pattern the difference between the actual and desired
neuron potentials. For both the hidden and output neurons, the desired potential value can be determined
as the value of the inverse transfer function of their desired outputs. During training, the error Q of the
network is evaluated as the sum of the errorQHID (determined as the difference between the desired and
actual potential values over all hidden neurons h) and QOUT (determined as the difference between the
desired and actual potential values over all output neurons v):

Q = QHID +QOUT , (12)

QHID =
∑
p

∑
h

(∑
u

wuhxu,p − f−1
h (yh,p)

)2

, (13)

QOUT =
∑
p

∑
v

(∑
h

whvyh,p − f−1
v (yv,p)

)2

, (14)

This leads to a system of linear equations to be solved for both considered layers. Afterwards, the
sensitivity terms for the sensitivity of the error QHID of the hidden neuron potentials to actual outputs
of the hidden neurons ∂QHID

∂yh,p
and for the sensitivity of the error QOUT of the output neuron potentials

to actual outputs of the hidden neurons ∂QOUT

∂yh,p
are computed and then also used to adjust the estimated

“desired” output values for the hidden neurons:

∂QHID

∂yh,p
= −

2
(∑

uwuhxu,p − f
−1
h (yh,p)

)
f
′
h(yh,p)

; ∀p, h (15)

∂QOUT

∂yh,p
= 2

∑
v

(∑
h

whvyh,p − f−1
v (yv,p)

)
whv ; ∀p, h (16)

These sensitivities allow then for an efficient and extremely fast iterative gradient-based update of the
“desired” hidden neuron states to be applied. This method reaches a minimum error in a few epochs
of training. This behavior is very convenient when dealing with huge data sets and large networks.
However, when the training set is not representative enough, the few iterations employed by the method
make it very difficult to avoid overtraining with techniques like early stopping.

A usual technique to avoid over-fitting is regularization that consists in adding a penalty term to the
loss function. Therefore, a generalization of the SBLLM method [7] uses a regularization term based
on the well-known weight decay regularizer that is defined as the sum of squares of all the weights
and thresholds in the network. As a result, the weights of both layers are calculated independently by
minimizing a new objective function Q̂(l) for each of the respective layers, l:

Q̂(l) = L(l) + α
∑
i

∑
j

w2
ij , (17)

where

L(l) =
∑
p

∑
j

(
f
′
j(yp,j)εp,j

)2
=
∑
p

∑
j

(
f
′
j(yp,j)

(∑
i

wijxp,i − f−1
j (yp,j)

))2

. (18)

In the above equations (17) and (18), α is the regularization parameter, the second term on the right-hand
side of (17) is the regularization term, and i, and j are the indexes over the inputs and outputs of the
considered layer l, yp,j is the desired output for the neuron j. The term L(l) measures the training error
also as the sum of squared errors before the non-linear transfer functions. However, as big differences of
the potentials matter more around zero desired potentials, a scaling term to the sensitivity loss function
has been introduced that multiplies it by the derivative of the transfer function applied to the desired layer
output, f

′
j(yp,j). This equalizes the errors calculated before and after the non-linearities.

4

3 Sensitivity-based SCGSIR-training

Although the above-sketched sensitivity-based techniques exhibit fast convergence, they are primarily
aimed at training instead of feature selection and pruning. Due to the character of the networks found
by solving a system of linear equations, they might also tend to overtrain. However, our main goal is
to develop a training algorithm likely to find an adequate network structure automatically during train-
ing. At the same time, the network should generalize well and support an easy interpretation of the
extracted knowledge, e.g. by means of the formed internal representations. Moreover, the algorithm
should optimize the sensitivity of the entire network and not just of its parts.

For the above reasons, the new method of the so-called SCGSIR-training is inspired also by the pre-
viously developed SCGIR-algorithm enforcing condensed internal representation [10]. The SCGSCIR-
algorithm is, however, further enhanced by sensitivity control already during training. In essence, there
are two main options for sensitivity control in the networks – sensitivity can be either inhibited or en-
forced. Both variants are assumed to increase the differences among the achieved sensitivity coefficients
of the respective neurons and restrict the space of candidate hypotheses for the wanted network function.
Anyway, we expect that BP-networks with an inhibited sensitivity might yield better results due to their
smoother function.

In general, the sensitivity of network output towards its input can be characterized by means of the
function G:

G =
1

2

∑
p

∑
u

∑
v

(
∂yv,p
∂xu,p

)2

. (19)

For a given input pattern p, the term ∂yv,p/∂xu,p corresponding to the sensitivity Suv,p of the output
value yv,p of the output neuron v to the u-th element of the input can be derived for the considered
network architecture as:

Suv,p =
∂yv,p
∂xu,p

=
∂yv,p
∂ξv,p

∂ξv,p
∂xu,p

=

=
∂yv,p
∂ξv,p

∑
h

∂ξv,p
∂yh,p

∂yh,p
∂ξh,p

∂ξh,p
∂xu,p

=

=
∑
h

(1 − y2
h,p) wuh whv , (20)

where h indexes the network’s hidden neurons. As a result, the sensitivity criterion to be optimized
simultaneously with the above-considered network performance already during training has the following
form of:

G =
1

2

∑
p

∑
u

∑
v

(
∂yv,p
∂xu,p

)2

=

=
1

2

∑
p

∑
u

∑
v

[∑
h

(1− y2
h,p)wuhwhv

]2

, (21)

where p is an index over all training patterns, v is an index over all output neurons, u is an index
over all input neurons and h is an index over all hidden neurons. y denotes the actual output value of
the respective neuron while x corresponds to the considered element of the presented training pattern.
In the SCGSIR-algorithm, we will thus use the following modification of the objective function H:
H(~w) = E(~w) + cFF (~w) + cGG(~w) with H ′(~w) = E′(~w) + cFF

′(~w) + cGG
′(~w). E represents

here the standard BP-error function, F stands for the above defined representation error function and G
corresponds to the new-proposed network sensitivity criterion to be optimized (∼ usually minimized)
during training. cF and cG are coefficients reflecting the trade-off between the influence of E, F and G
inH . For the considered networks,H(~w) can be evaluated for the SCGSIR-training algorithm according

5

to:

H(~w) =
1

2

∑
p

∑
v

(yv,p − dv,p)2 +

+ cF
∑
p

∑
h

(1 + yh,p)
s (1− yh,p)s y2

h,p +

+ cG
1

2

∑
p

∑
u

∑
v

[∑
h

(1− y2
h,p)wuhwhv

]2

, (22)

where p goes over all training patterns, j and h are indexes over all output and hidden neurons, respec-
tively. y denotes the actual output of a neuron while d is its desired output value. s is a parameter for
tuning the shape of the representation error function. To minimize H, we will minimize E, F and G
simultaneously. The terms used to adjust the weights with respect to the error function E and the rep-
resentation error function F were already stated above in Equation (6) and (10). To minimize also the
sensitivity control function G, we have to change each weight, wij , by an amount ∆Gwij proportional
to the negative partial derivative of G with respect to this weight, − ∂G/∂wij . By omitting the index p
for both the actual neuron output values y and the elements of the feature vectors, x, we obtain:

∆Gwij = − ∂

∂wij

1

2

∑
v,u

[∑
h

(1− y2
h)wuhwhv

]2
 =

= −
∑
v

∑
u

[∑
h

(1− y2
h) wuh whv

]
·

·

[
∂

∂wij

(∑
h

(1− y2
h)wuhwhv

)]
, (23)

where u denotes the input neurons and v indicates the output neurons. For the output layer, ∆Gwij thus
corresponds to:

∆Gwij = −
∑
v

∑
u

[∑
h

(1− y2
h)wuhwhv

]
· (1− y2

i) wui
∂wiv
∂wij

=

= − (1− y2
i)
∑
u

wui

[∑
h

(1− y2
h)wuhwhj

]
=

= − (1− y2
i)
∑
u

wui Suj . (24)

And for the hidden layer we obtain:

∆Gwij = −
∑
v

∑
u

[∑
h

(1− y2
h)wuhwhv

]
·

·

[∑
h

whv (
∂(1− y2

h)

∂wij
wuh + (1− y2

h)
∂wuh
∂wij

)

]
=

= −
∑
v

[∑
h

(1− y2
h)wihwhv

]
(1− y2

j)wjv +

+ 2
∑
v

∑
u

[∑
h

(1− y2
h) wuh whv

]
· yj (1− y2

j) xi wuj wjv =

= − (1− y2
j)
∑
v

wjv Siv + 2yj(1− y2
j)xi

∑
v

∑
u

Suv wuj wjv . (25)

6

In the above derivations, w stands for weights. i indexes the neuron connected with neuron j via the
weight wij . h indexes the hidden neurons and yj denotes the actual output value of the neuron j. The
elements ∂H/∂wij of H ′(w) = (∂H/∂w11, . . . , ∂H/∂wmlastm) correspond to:

∂H

∂wij
=

−(dj − yj)yi − cG(1− y2
i)
∑

uwuiSuj

for output neurons

−{
∑

k δkwjk + cF

[
2(s+ 1)y2

j − 1
]
· (1 + yj)

s−1(1− yj)s−1yj } ·

·(1 + yj)(1− yj)yi −

−cG
[
(1− y2

j)
∑

k wjk Sik + 2yj(1− y2
j)xi

∑
k

∑
u Suk wuj wjk

]
for hidden neurons

w stands for weights. i indexes neurons connected with neuron j via the weight wij . k indexes the
neurons from the layer above the neuron j, u indexes the neurons from the layer below the neuron j, m
and mlast denote the number of output and hidden neurons, respectively. yj is the actual output value of
the neuron j. s is the parameter for tuning the shape of the representation error function. cF and cG are
constants representing the influence of the respective error terms. δk can be determined according to (6).

The entire process of sensitivity-based training by means of scaled conjugate gradients with enforced
internal representation and controlled sensitivity (SCGSIR) is stated in detail in the algorithm box below.

4 Supporting experiments

In our experiments, we wanted to assess the benefits of the new-proposed method (SCGSIR) when com-
pared with other techniques – pure scaled conjugate gradients (SCG) and SCG with enforced condensed
internal representation (SCGIR). More variants of the SCGSIR method were tested – SCGSIR-W (sen-
sitivity is inhibited), SCGSIR-S (sensitivity is enforced), SCGS-W, SCGS-S (variants with cF = 0).

In particular, we were interested in answering the following questions:

1. Can the cluster-based feature selection techniques provide features relevant for the processed data
and what relevance measures do best?

2. What is the speed of sensitivity-based training and how well do the trained networks generalize?

3. Are the SCGS and SCGSIR-trained networks more likely to develop an optimum architecture than
their SCG-trained counterparts?

The performance of the discussed methods has been evaluated on two kinds of problems. The first
illustrative one is the binary addition of two 3-bit numbers. The second one deals with real-world data
obtained from the World Bank. Several input features generated randomly with a uniform distribution
were added to the data sets to examine, whether the methods are able to recognize the relevant input
features.

In both kinds of tests, we used the bipartite model. During all the tests, the weights were randomly
initialized from the interval [−1; 1]. When comparing the methods, we use the following notation: ncorr
is the number of networks with no errors on the training, validation and testing sets, epochs is the number
of training epochs, t(s) is the training time in seconds, nH / nI is the average number of hidden / input
neurons after training. ncH / ncI is the number of networks that achieved the optimum number of hidden
/ input neurons. The tests were performed on a 2.8 GHz quad core processor, 12 GB RAM. Our system
was implemented in Matlab 7.0.1 and used a single processor and 2 GB RAM.

The training process with pruning consists of two repetitive steps: a) train the network with early
stopping (stop training, if the error on the validation set grows five times in a row), b) prune the network.
Stop, if no further pruning is possible, and select the network with the lowest error on the test set to be the

7

Sensitivity-based training with scaled conjugate gradients and an enforced internal representation (SCGSIR):

1. Initialize the weight vector ~w1 with small random values, set scalars such that 0 < σ ≤ 10−4 , 0 < λ1 ≤ 10−8 and
λk = 0 . Set ~r1 = ~g1 = −H′(~w1) , success = true and the discrete time variable k equal to 1 .

2. If success = true , then calculate the second-order information:

σk =
σ

‖ ~gk ‖
, ~sSCGSIRk =

H′ (~wk + σk ~gk) − H′ (~wk)

σk
and δSCGSIRk = ~gk

T ~sSCGSIRk

3. Scale ~sSCGSIRk , δ SCGSIRk : ~sSCGSIRk = ~sSCGSIRk + (λk − λk) ~gk

δ SCGSIRk = δ SCGSIRk + (λk − λk) ‖ ~gk ‖2

4. If δ SCGSIRk < 0 then make the Hessian matrix positive definite by setting:

~sSCGSIRk = ~sSCGSIRk +

(
λk − 2

δSCGSIRk

‖ ~gk ‖2

)
~gk , λk = 2

(
λk −

δSCGSIRk

‖ ~gk ‖2

)
,

δSCGSIRk = − δSCGSIRk + λk ‖ ~gk ‖2 and λk = λk

5. Calculate step size αSCGSIRk : µk = ~gTk ~rk ; αSCGk = µk

δ SCGSIR
k

6. Calculate the comparison parameter ∆SCGSIR
k : ∆SCGSIR

k =
2 δSCGSIR

k [H(~wk)−H(~wk +αSCGSIR
k ~gk)]

µ2
k

7. If ∆SCGSIR
k ≥ 0 then a successful reduction in the value of the objective function H can be made:

~wk+1 = ~wk + αSCGSIRk ~gk , ~rk+1 = − H′ (~wk+1) , λk = 0 and success = true

(a) If k mod N = 0 then restart the algorithm by setting: ~gk+1 = ~rk+1.

else create a new conjugate direction: βk =
~gTk · (~gk − ~gk−1)

‖ ~gk−1 ‖2
and ~gk+1 = ~rk+1 + βk ~gk

(b) If ∆SCG
k > 0.75 then reduce the scale parameter: λk = 1

4
λk.

else reduction in error is not possible: λk = λk ; success = false.

8. If ∆SCGSIR
k < 0.25 then increase the scale parameter: λk = λk +

δ SCGSIR
k (1 − ∆ SCGSIR

k)

‖ ~gk ‖2

9. If steepest descent direction ~rk 6= 0 , set k = k + 1 and go to step 2)
else terminate and return the weight vector ~wk as the desired minimum for the objective function H.

8

final one. Two kinds of pruning were performed: a) pruning of the hidden neurons based on the internal
representation [11], b) pruning of the hidden and input neurons based on the sensitivity analysis. For a
neuron i from the hidden or input layer, let Sij,p be the sensitivity of the output neuron j to the activity
of neuron i for the pattern p. If maxpmeaniSij,p < βmeanilpSil,p for a neuron j, then j is selected to
be pruned. All neurons satisfying this condition are pruned at once. Parameter β was set to 0.7 in our
experiments.

4.1 Binary addition of two 3-bit numbers

The data set consists of 320 examples with 18 bipolar input features and 4 bipolar output features. The
data set is divided into the training set of the size 192, the validation set and the test set, both of the
size 64. The first 6 input features are two three-bit binary numbers and the four bits of the output in-
dicate the sum of the two binary numbers. Each of the 64 possible training patterns is present 3-times
in the training set and once in the other two subsets. The other 12 input features are bipolar bits gener-
ated randomly with a uniform distribution. When adding 4(∼ (+1,−1,−1)) and 7(∼ (+1,+1,+1))
yielding the sum 11(∼ (+1,−1,+1,+1)), the corresponding training pattern would have the form:
[[+1,−1,−1,+1,+1,+1, ...], [+1,−1,+1,+1]].

All the trained networks had the topology 18-12-4. For each method, the algorithm was repeated 100-
times with different network initializations. The parameter cF was for the SCGIR and SCGSIR methods
set experimentally to 2 ∗ 10−5. cG was for the SCGS-W and SCGSIR-W methods set to 2 ∗ 10−5 and
for the SCGS-S and SCGSIR-S methods to −2 ∗ 10−7. The average numbers of examples with incorrect
outputs on the training, validation and test sets will be denoted by Etr, Ev, Et, respectively.

4.2 World Bank

The World Bank data set consists of 956 examples with 25 numerical input features encoding the WDI-
indicators of 162 different countries from the years 2001-2006. The output features label the five classes
of Income Groups. The other 10 input features were generated randomly with a uniform distribution.
The results were obtained by the 10-fold cross-validation. All the networks had initial topology 35-50-4.
The parameter cF was for the SCGIR and SCGSIR methods set experimentally to 4 ∗ 10−5. cG was for
the SCGS-W and SCGSIR-W methods set to 2∗10−5. In this case, Etr, Ev, Et denotes the classification
error on the training, validation and test sets, respectively. We also performed experiments, where we
considered just 18 of the input features, which were selected by the sens method (see Section 4.3.4).

4.3 The first set of experiments

The goal of this experiment was to test the applicability of cluster based techniques to feature selection.
Clustered data provide namely automatically an intrinsic equivalence class structure expected to yield
improved generalization. In this context, various relevance measures have been tested.

In this experiment, the data set T̂ = {(−→x1, d1), ..., (−→xp, dP)}, di ∈ {1..cl}, where cl is the number of
classes, is divided by the c-means clustering method into k clusters C1..Ck. Let −→c1 ..

−→ck be the centroids
of the clusters C1..Ck. Let Ol ∈ {1..cl} be the majority class for the examples in cluster Cl and vector
−→
Al ∈ [0, 1]cl, Alj = 1 ⇐⇒ Cl = j. For each example −→xi , i ∈ {1..P} belonging to the cluster Cli , let
ai = Ali . Then T = {(−→x1, a1), ..., (−→xp, aP)} is the new training set.

Several relevance measures may be used to select the subset SF ⊂ {1..n} of relevant input features.
At first, the relevance Rlj of the feature j for the cluster Cl is computed for each input feature and each
cluster:

Rlj = mean{i,cki=cl}
rij ,

where rij is for an example −→xi and feature j one of the relevance measures listed below. Then, SF is
selected in the following way: For each cluster Cl, order the features according to Rlj in the descending
order and select the first kl features before a great fall in Rlj . If there occurr more possible splits, that
one yielding less features is chosen.

9

4.3.1 Distance-relevance (dist)

For the example −→xi belonging to the cluster Cki with the centroid −→cki and the input feature j:

rij = −
|xij − ckij |∑
l 6=ki |xij − clj |

.

4.3.2 Minimum-relevance (min)

For the example −→xi belonging to the cluster Cki with the centroid −→cki and the input feature j:

rij = −min(1,
|xij − ckij |

minl 6=ki |xij − clj |
)

for minl 6=ki |xij − clj | 6= 0. Otherwise, rij = −1.

4.3.3 Maximum-relevance (max)

For the example −→xi belonging to the cluster Cki with the centroid −→cki and the input feature j:

rij = −min(1,
maxl 6=ki(xij − clj)−2

(xij − ckij)−2
)

for maxl 6=ki(xij − clj)−2 6=∞. Otherwise, rij = −1.

4.3.4 Sensitivity relevance (sens)

A neural network is trained on T using the SCGIR algorithm with pruning based on the sensitivity
analysis and condensed internal representation. For the input example −→xi and input feature j, let Sjm,i
be the sensitivity of the output m on the input j. Then rij = meanmSjm,i.

4.3.5 Entropy-relevance (entro)

The relevance measure Rj does not depend on clustering. For examples −→xi ,−→xj , let

Dij(SF) =

√√√√∑
f∈SF

(
xif − xjf

maxh xhf −minh xhf

)
,

D̂ij(SF) = 2
Dij(SF)

meani,jDij(SF) ,

R̂(F) = −
n−1∑
i=1

n∑
j=i+1

[
D̂ij(SF) log D̂ij(SF) +

+ (1− D̂ij(SF)) log(1− D̂ij(SF))
]
,

for the set of features SF ⊂ {1..n}. For the feature j, the relevance measure is: Rj = R̂({1..n}) −
R̂({1..n} \ j).

Table 1 shows the input features detected by the tested feature selection techniques (based on k-means
clustering of the Binary addition data into 8 clusters and of the World Bank data into 14 clusters) as the
most relevant. The only method, that was for Binary addition able to identify reliably all the relevant
input features [1, 2, 3, 4, 5, 6], was sens. The other methods preferred irrelevant features instead.

10

Table 1: Features selected by the respective methods. The last two columns indicate the total number of
selected features and the total number of selected random features for the World Bank data set.

Binary adition World Bank
method selected input features total random
sens [1 2 3 4 5 6] 18 0
dist [1 7 9 10 11 12 13 16] 17 0
min [1 5 7 9 10 11 13 14 16] 18 1
max [1 5 7 9 10 11 13 14 16 17 18] 18 1
entro all 16 10

Table 2: Performance of the SCG, SCGIR, SCGS-S and SCGS-W, SCGSIR-S and SCGSIR-W methods on
the Binary addition data set and 18-12-4 network architecture.

name cF cG Etr Ev Et ncorr epochs t(s)
SCG – – 3.05± 11.14 4.38± 9.92 4.60± 10.36 76 342.1 1.1
SCGIR 2 ∗ 10−5 – 3.04± 11.26 4.39± 10.06 4.31± 10.06 79 638.3 4.6
SCGIR 5 ∗ 10−5 – 3.15± 10.83 4.43± 9.35 4.77± 10.44 74 625.9 5.1
SCGIR 5 ∗ 10−4 – 6.6± 20.55 8.46± 12.4 8.15± 12.15 44 1271 10.4
SCGS-S – −2 ∗ 10−7 2.94± 11.09 4.20± 9.85 4.18± 10.04 77 409.5 141.6
SCGS-S – −10−7 2.94± 11.09 4.20± 9.85 4.21± 10.04 75 333.9 107.2
SCGS-S – −10−6 3.58± 11.99 5.46± 10.69 5.52± 11.14 64 329.8 105.5
SCGS-S – −2 ∗ 10−6 4.19± 13.22 6.83± 11.11 6.39± 11.38 27 181.4 65.0
SCGSIR-S 2 ∗ 10−5 −2 ∗ 10−7 3.15± 10.74 4.75± 9.47 5.03± 10.57 71 558.8 181.0
SCGSIR-S 5 ∗ 10−4 −2 ∗ 10−7 6.83± 20.58 8.91± 12.42 8.65± 12.42 42 826.8 269.8
SCGS-W – 2 ∗ 10−5 0.09 ± 0.51 0.69 ± 2.54 0.73 ± 2.76 86 749.4 229.0
SCGS-W – 2 ∗ 10−4 5.28± 5.00 6.91± 3.52 7.33± 3.93 1 220.9 55.3
SCGS-W – 10−4 0.94± 2.53 2.49± 3.21 3.02± 3.30 19 557.8 216.7
SCGS-W – 2 ∗ 10−6 2.47± 9.25 3.04± 8.52 3.15± 8.72 84 432.6 127.4
SCGS-W – 2 ∗ 10−7 2.96± 11.18 3.95± 9.55 4.02± 9.94 79 312.9 107.3
SCGSIR-W 2 ∗ 10−5 2 ∗ 10−5 0.15± 0.80 0.83± 2.71 0.89± 3.07 83 1248.8 328.2
SCGSIR-W 5 ∗ 10−4 2 ∗ 10−5 1.84± 7.15 3.52± 7.56 3.69± 7.83 57 954.4 372.1
SCG (6-12-4) – – 0± 0 0± 0 0± 0 100 1000 4.1
SCG (6-6-4) – – 20.76± 30.29 7.51± 10.65 7.59± 10.48 51 303.2 1.08
SCGS-W (6-6-4) – 2 ∗ 10−5 19.20± 29.57 6.41± 9.87 6.43± 9.88 62 1804.4 423.9

4.4 The second set of experiments

This set of tests shall assess actual generalization capabilities of SCGS-trained networks in connection
with the time and number of epochs required to converge. Extensive experiments performed both on the
task of Binary addition and on the World Bank data set (Tables 2, 4 and 5) confirmed that the new tech-
nique of sensitivity inhibition improves generalization capabilities of trained networks while maintaining
a relatively stable behavior – the average number of erroneously recalled input patterns over all of the
100 trained networks has been reduced 6-times while reducing its variance 4-times. The number of error-
less networks raised 13%. Sensitivity enforcement showed in this respect only marginal improvements.
The superior performance of the sensitivity inhibiting algorithms limits their rather slow convergence in
comparison with the SCG-training algorithm.

4.5 The third set of experiments

Networks trained with the SCG-algorithm and an optimum architecture from scratch required a rela-
tively high number of epochs (about five times as many) to converge while maintaining a much lower
performance - only about 55% of the networks were trained without errors (Table 2). A natural question
sounds then, if the SCGS and SCGSIR-trained networks should be more likely to develop an optimum
architecture than their SCG-trained counterparts.

For both tasks tested, sensitivity inhibition increases significantly the chance to form networks with
an optimum structure. From Table 3, 5 and 4 we can see that the average number of neurons is always
lower for SCGSIR and its variants than for SCG. At the same time, the number of (error-less) networks
with an optimum architecture is higher than for SCG-trained networks. Sensitivity-based training en-
ables also easier pruning of redundant hidden neurons and does not affect much the number of epochs
necessary to train/retrain the networks. Sensitivity inhibition with simultaneous enforcement of internal
representation yields more transparent networks, in particular for the World Bank data.

11

Table 3: Performance of the SCG, SCGIR, SCGS-S and SCGS-W, SCGSIR-S and SCGSIR-W methods
with pruning on the Binary adition data set and 18-12-4 network architecture.

name nH nI ncH ncI Etr Ev Et ncorr epochs t(s)
Pruning of hidden neurons
SCG 8.17± 2.12 18 23 – 2.79± 11.99 2.71± 7.84 3.03± 8.52 80 647.2 2.1
SCGIR 7.78± 2.00 18 32 – 3.71± 13.51 2.64± 7.28 2.98± 8.42 85 948.3 7.3
SCGS-S 7.96± 2.07 18 28 – 2.66± 11.96 2.54± 7.78 2.75± 8.41 83 744.8 221.6
SCGSIR-S 7.97± 2.12 18 30 – 3.27± 12.60 2.49± 6.93 2.73± 7.87 84 985.0 251.3
SCGS-W 7.75± 2.15 18 38 – 0.18± 0.89 0.49± 1.92 0.66± 2.72 91 1138.0 327.1
SCGSIR-W 7.77± 2.15 18 37 – 0.37± 2.00 0.82± 3.13 0.79± 2.98 88 1522.6 419.2
Pruning of hidden neurons for SCGS-W and different values of cG
2 ∗ 10−4 7.73± 2.05 - 37 - 3.59± 3.80 3.72± 3.05 4.11± 3.33 13 436.9 96.6

1 ∗ 10−4 7.96± 2.25 - 34 - 0.67± 2.49 1.23± 2.1 1.59± 2.08 31 957.3 328.6

2 ∗ 10−6 7.86± 2.02 - 27 - 2.31± 10.73 1.87± 6.89 1.87± 6.85 86 758.6 206.1

2 ∗ 10−7 8.27± 2.21 - 23 - 2.62± 11.71 2.36± 7.44 2.65± 8.07 83 616.2 185.3
Pruning of input neurons
SCG 12 6.67± 2.63 – 89 0± 0 0± 0 0± 0 100 1339.1 5.3
SCGIR 12 6.20± 1.26 – 94 0± 0 0± 0 0± 0 100 1029.2 8.7
SCGS-S 12 6.76± 2.86 – 91 0± 0 0± 0 0± 0 100 1114.4 215.1
SCGSIR-S 12 6.55± 2.37 – 91 0± 0 0± 0 0± 0 100 963.0 199.7
SCGS-W 12 6± 0 – 100 0± 0 0± 0 0± 0 100 1148.1 282.3
SCGSIR-W 12 6± 0 – 100 0± 0 0± 0 0± 0 100 1447.8 339.0
Pruning of input neurons for SCGS-W and different values of cG
2 ∗ 10−4 - 6.02± 0.2 - 99 3.24± 6.03 1.1± 2.06 1.13± 2.16 62 432.9 77.6

1 ∗ 10−4 - 6.0± 0.0 - 100 0.24± 1.1 0.08± 0.37 0.08± 0.37 95 745.9 227.8

2 ∗ 10−6 - 6.02± 0.2 - 99 0± 0 0± 0 0± 0 100 1043.6 197.1

2 ∗ 10−7 - 6.04± 0.24 - 97 0± 0 0± 0 0± 0 100 1173.2 200
Pruning of both input and hidden neurons
SCG 7.74± 1.64 7.22± 3.49 23 85 0.01± 0.1 0.09± 0.90 0.13± 1.30 99 1343.1 4.5
SCGIR 7.40± 1.41 6.91± 3.08 29 88 0.03± 0.30 0.01± 0.10 0.01± 0.10 99 1583.5 11.4
SCGS-S 7.65± 1.56 7.42± 3.77 23 84 0± 0 0± 0 0± 0 100 1339.0 258.2
SCGSIR-S 7.56± 1.44 7.29± 3.61 23 84 0.15± 1.23 0.05± 0.41 0.05± 0.41 98 1506.4 284.9
SCGS-W 6.98± 1.24 6.52± 2.38 43 94 0± 0 0± 0 0± 0 100 1597.1 343.2
SCGSIR-W 7.06± 1.24 6.50± 2.37 37 95 0.07± 0.70 0.21± 2.10 0.19± 1.90 99 1850.3 451.5
Pruning of both input and hidden neurons for SCGS-W and different values of cG
2 ∗ 10−4 7.03± 1.11 6.14± 1.21 37 98 2.33± 8.24 0.77± 2.7 0.82± 2.79 82 558.3 108.3

1 ∗ 10−4 7.02± 1.26 6.61± 2.63 41 94 0.15± 1.23 0.09± 0.57 0.1± 0.64 97 1154.2 296.5

2 ∗ 10−6 7.36± 1.33 6.27± 1.33 29 91 0± 0 0± 0 0± 0 100 1384.9 252.9

2 ∗ 10−7 7.34± 1.23 6.07± 0.43 27 96 0± 0 0± 0 0± 0 100 1300 230.8
Minimal 6-6-4 architecture without pruning
SCG 6 6 – – 20.07± 27.74 6.69± 9.25 6.69± 9.25 55 4852.2 15.5
SCGS-W 6 6 – – 13.68± 24.50 4.56± 8.17 4.56± 8.17 58 2329.9 215.8

Table 4: Performance of the SCG, SCGIR, SCGS-W, and SCGSIR-W methods with and without pruning
on World bank data using the 35-50-5 network architecture.

name ncH ncI Etr Ev Et epochs t(s)
Without pruning
SCG 50 35 0.002± 0.002 0.019± 0.018 0.041± 0.020 115.3± 36.2 2.7± 1.1
SCGIR 50 35 0.002± 0.002 0.019± 0.018 0.044± 0.021 115.8± 36.7 8.0± 2.5
SCGS-W 50 35 0.001± 0.001 0.017± 0.014 0.034± 0.014 131.1± 29.8 452.5± 155.9
SCGSIR-W 50 35 0.001± 0.001 0.017± 0.014 0.035± 0.015 131.1± 30.6 399.1± 91.2
SCGS-S 50 35 0.003± 0.003 0.019± 0.015 0.044± 0.022 110.2± 36.9 349.6± 118.8
SCGSIR-S 50 35 0.002± 0.003 0.022± 0.020 0.043± 0.022 110.4± 37.6 340.9± 117.3
Pruning of hidden neurons
SCG 41.9± 3.3 35 0.001± 0.001 0.026± 0.012 0.037± 0.021 280.5± 54.4 6.3± 1.2
SCGIR 28.9± 12.2 35 0.001± 0.001 0.025± 0.012 0.034± 0.021 387.9± 110.9 20.3± 4.6
SCGS-W 34.0± 10.5 35 0.001± 0.001 0.015± 0.009 0.031± 0.011 447.3± 187.4 1326.2± 512.4
SCGSIR-W 33.8± 11.5 35 0.003± 0.004 0.017± 0.012 0.032± 0.011 457.3± 161.8 1227.2± 403.8
SCGS-S 33.8± 10.5 35 0.002± 0.003 0.030± 0.016 0.033± 0.016 288.7± 84.0 792.9± 227.0
SCGSIR-S 33.7± 10.2 35 0.001± 0.001 0.032± 0.017 0.035± 0.018 302.6± 91.8 854.4± 253.3
Pruning of input neurons
SCG 50 22.7± 5.1 0.009± 0.005 0.009± 0.009 0.028± 0.017 294.7± 79.0 9.9± 2.3
SCGIR 50 22.2± 2.0 0.009± 0.003 0.016± 0.010 0.035± 0.022 267.9± 97.4 20.3± 6.6
SCGS-W 50 21.1± 2.6 0.009± 0.003 0.015± 0.009 0.024± 0.020 308.7± 94.2 893.8± 286.3
SCGSIR-W 50 21.2± 2.1 0.008± 0.004 0.017± 0.010 0.025± 0.019 316.8± 105.8 787.1± 247.5
SCGS-S 50 21.6± 3.2 0.012± 0.003 0.016± 0.008 0.037± 0.023 257.1± 89.5 592.8± 198.5
SCGSIR-S 50 21.6± 3.2 0.013± 0.003 0.018± 0.010 0.035± 0.020 257.3± 88.7 590.3± 195.5
Pruning of both hidden and input neurons
SCG 39.0± 3.8 22.3± 1.5 0.008± 0.005 0.013± 0.011 0.028± 0.015 493.1± 117.6 12.1± 2.4
SCGIR 27.7± 7.9 21.0± 2.4 0.011± 0.004 0.015± 0.013 0.028± 0.015 533.6± 154.9 27.2± 5.8
SCGS-W 22.8± 7.8 21.3± 1.9 0.011± 0.005 0.010± 0.011 0.026± 0.018 609.8± 167.2 1389.8± 470.0
SCGSIR-W 23.7± 11.9 21.5± 5.4 0.013± 0.009 0.015± 0.015 0.027± 0.018 620.6± 168.0 1272.6± 333.8
SCGS-S 31.9± 3.8 21.9± 1.8 0.013± 0.007 0.019± 0.012 0.035± 0.019 491.3± 127.7 956.8± 221.0
SCGSIR-S 29.5± 6.9 21.3± 2.1 0.019± 0.021 0.024± 0.015 0.033± 0.017 473.8± 115.7 974.3± 246.3

12

Table 5: Performance of the SCG, SCGIR, SCGS-W, and SCGSIR-W methods with and without pruning
on World bank data using the 18-50-5 network architecture.

name ncH ncI Etr Ev Et epochs t(s)
Without pruning
SCG 50 18 0.013± 0.004 0.017± 0.008 0.034± 0.015 118.6± 23.2 2.1± 0.4
SCGIR 50 18 0.016± 0.009 0.027± 0.010 0.032± 0.010 122.5± 40.5 8.9± 2.6
SCGS-S 50 18 0.014± 0.004 0.019± 0.005 0.038± 0.018 113.9± 21.8 185.8± 36.3
SCGSIR-S 50 18 0.020± 0.009 0.032± 0.007 0.033± 0.019 114.3± 25.1 226.8± 53.5
SCGS-W 50 18 0.014± 0.005 0.023± 0.009 0.033± 0.019 157.4± 80.0 242.4± 122.8
SCGSIR-W 50 18 0.018± 0.009 0.023± 0.011 0.032± 0.012 126.5± 35.9 198.8± 97.5
Pruning hidden neurons
SCG 36.9± 4.4 18 0.008± 0.003 0.032± 0.010 0.031± 0.018 320.5 7.5
SCGIR 27.6± 11.0 18 0.011± 0.004 0.031± 0.011 0.033± 0.019 342.0 19.4
SCGS-S 37.7± 5.8 18 0.010± 0.003 0.033± 0.015 0.031± 0.021 278.6 544.5
SCGSIR-S 26.9± 9.3 18 0.010± 0.004 0.026± 0.014 0.032± 0.023 319.0 625.6
SCGS-W 30.3± 7.4 18 0.006± 0.003 0.022± 0.011 0.029± 0.013 535.6 726.5
SCGSIR-W 25.2± 15.0 18 0.013± 0.004 0.016± 0.011 0.031± 0.009 497.3 610.2
Pruning of input neurons
SCG 50 16.3± 1.6 0.018± 0.008 0.027± 0.017 0.034± 0.014 276.2 9.8
SCGIR 50 15.5± 2.5 0.018± 0.008 0.033± 0.006 0.042± 0.020 329.5 25.8
SCGS-S 50 15.9± 2.3 0.019± 0.008 0.030± 0.014 0.034± 0.017 322.4 449.1
SCGSIR-S 50 15.9± 2.0 0.021± 0.009 0.028± 0.011 0.033± 0.014 298.0 508.9
SCGS-W 50 16.3± 2.4 0.019± 0.010 0.024± 0.011 0.032± 0.012 294.0 405.8
SCGSIR-W 50 16.9± 1.3 0.013± 0.005 0.027± 0.013 0.032± 0.020 384.5 544.4
Pruning of both hidden and input neurons
SCG 41.1± 4.6 18.0± 0 0.010± 0.003 0.027± 0.012 0.033± 0.016 1025.4 13.4
SCGIR 30.3± 11.3 17.1± 1.912 0.013± 0.007 0.033± 0.013 0.037± 0.021 570.7 27.4
SCGS-S 37.5± 6.2 16.4± 1.8 0.014± 0.007 0.032± 0.017 0.037± 0.022 471.2 786.5
SCGSIR-S 32.5± 8.7 17.5± 1.6 0.012± 0.007 0.031± 0.015 0.032± 0.014 572.3 842.6
SCGS-W 35.7± 4.0 17.7± 1.0 0.009± 0.004 0.024± 0.014 0.028± 0.012 662.3 821.2
SCGSIR-W 34.3± 7.7 18.0± 0 0.012± 0.003 0.022± 0.013 0.032± 0.017 577.4 791.6

0 0 0 -1

1.8 1.3 -2.0 1.8 2.6 2.4

1
4

2
5

3
6

-1.4
12196114

0.1 -1.2 0.3 -1.0 -2.80.5
2 3 5 7 108

7-18

Figure 1: A typical network trained on Binary addition data by the SCGS-W method on the 18-12-4
network architecture (before pruning). The numbers inside the neurons correspond to thresholds.

In Figure 1 and 2 we can see a typical network formed using the sensitivity inhibition SCGS-W
method (before pruning and after pruning). Red edges are negative, green edges are positive. In Fig. 1,
the 6 hidden neurons on the right are redundant (with almost zero edges to all of the outputs) and can be
pruned immediately. The 12 input neurons on the right are also redundant, as there are nearly zero edges
from these inputs to the relevant hidden neurons, and can be pruned next. The remaining neurons form
an optimal architecture that solves the given task of binary addition. For the standard SCG method, the
difference in the sensitivity between relevant and redundant inputs /neurons is not always so clear and
pruning is thus more difficult.

In Figure 2, we can clearly see that the pruned network has succeeded in finding the actual com-
puting algorithm. Moreover, the weights between its input and hidden layer are pairwise equal for the
corresponding input neurons 1 and 4, 2 and 5, and 3 and 6. The first, third and fifth hidden neurons
compute the ‘carry’ for higher output bits. The second, fourth and sixth hidden neurons also compute
similar functions for single output neurons.

When compared with SCG, sensitivity enforcement exhibited again only marginal improvements in
all of the above-considered aspects.

13

0 0 0 -1

1.8 1.3 -2.0 1.8 2.6 2.4

-7.2

1
4

2
5

3
6

12196114

-1.0 1.0

-7.2
5.1

-1.0 -1.0

5.0

1.0 1.0 1.0 1.0 1.0

2.3
2.4

-2.6
-2.5

-1.8
-1.83.6

3.6-3.6
-3.6

-1.8 -1.9

-2.5
-2.5

4.0
4.0

2.02.0

-1.2-1.3

1 2 3 4

Figure 2: A typical network trained on Binary addition by the SCGS-W method on the 18-12-4 network
architecture (after pruning). Each edge is weighted. The numbers inside the neurons correspond to
thresholds.

5 Conclusions

Most ‘classical’ techniques used to train BP-networks usually achieve a good training accuracy by form-
ing very complex decision boundaries involving time-consuming training and excessively large network
architectures impacting worse generalization. For this reason, we have proposed a new sensitivity-based
SCGSIR-training algorithm inspired by the general idea of scaled conjugate gradients.

In spite of its higher computational complexity, the algorithm usually converges within a reasonable
amount of time. The main advantage of the SCGSIR-training method consist, nevertheless, in supe-
rior generalization and an outstanding capability to form transparent network structures with optimum
architecture. In this respect, the new SCGSIR-training algorithm outperforms both the standard SCG-
technique and the SCGIR-method. However, the proposed model should be tested more extensively also
for networks with more hidden layers and on larger data sets.

The framework developed to enforce suitable internal representations and simultaneously control
the sensitivity of the network to its inputs reflects the basic concept of learning with hints [1] and is
expected to induce networks with lower VC-dimensions. As networks with inhibited sensitivities benefit
also from smoother network functions, their behavior proved to be even more stable than the other tested
algorithms. Anyway, the right choice of the trade-off coefficients applied during training can impact
the quality of the solution obtained. Too large values of these coefficients might namely result into
BP-networks with a perfectly formed condensed internal representation (in)sensitive to any inputs yet
incapable of approximating the desired function because of saturated hidden neuron outputs.

Networks with fewer hidden and input neurons are characterized by a lower VC-dimension imply-
ing better generalization capabilities of the trained network [17], [18]. The greatest appeal of the new
SCGSIR method consists thus in its ability to form networks with a transparent network structure that
supports reliable pruning and improves generalization. We are, however, fully aware of the necessity to
test the proposed model more extensively also for networks with more hidden layers and on larger data
sets comprising several thousands of patterns, in order to provide statistically significant results. Further,
we plan to investigate also the effects of the chosen trade-off parameters on the performance of trained
networks.

References

[1] Y. S. Abu-Mostafa, “Hints and the VC Dimension,” Neural Computation, vol. 5, pp. 278–288,
1993.

[2] Y. S. Abu-Mostafa, “Learning from Hints,” Journal of Complexity, vol. 10, pp. 165–178, 1994.

[3] C. M. Bishop, Neural Networks for Pattern Recognition, Oxford University Press, Cambridge, UK,
1996.

14

[4] J. A. Bullinaria, “Evolving efficient learning algorithms for binary mappings,” Neural Networks,
vol. 16, pp. 793–800, 2003.

[5] E. Castillo, B. Guijarro-Berdiñas, O. Fontenla-Romero, and A. Alonso-Betanzos, “A Very Fast
Learning Method for Neural Networks Based on Sensitivity Analysis,” Journal of Machine Learn-
ing Research, vol. 7, pp. 1159–1182, 2006.

[6] J. N. Fidalgo, “Feature subset selection based on ANN sensitivity analysis - a practical study,”
N. Mastorakis (ed.): Advances in Neural Networks and Applications, WSES Press, pp. 206–211,
2001.

[7] B. Guijarro-Berdiñas, O. Fontenla-Romero, B. Pérez, and A. Alonso-Betanzos, “A Regularized
Learning Method for Neural Networks Based on Sensitivity Analysis,” Proc. of ESANN 2008, 289–
294, 2008.

[8] K. Hara, M. Okada, “On-line learning through simple perceptron learning with a margin,” Neural
Networks, vol. 17, pp. 215–223, 2004.

[9] M. Møller, “A scaled conjugate gradient algorithm for fast supervised learning,” Neural Networks,
vol. 6, pp. 525–533, 1993.

[10] I. Mrázová, Z. Reitermanová, “Enforced knowledge extraction with BP-networks,” Intelligent Engi-
neering Systems through Artificial Neural Networks, vol. 17, ASME Press, New York, pp. 285–290,
2007.

[11] I. Mrázová, D. Wang, “Improved generalization of neural classifiers with enforced internal repre-
sentation,” Neurocomputing, vol. 70, no. 16-18, pp. 2940–2952, 2007.

[12] R. Reed, R. J. Marks II, “Neurosmithing: Improving Neural Network Learning,” M. A. Arbib (Ed.):
The Handbook of Brain Theory and Neural Networks, The MIT Press, pp. 639–644, 1998.

[13] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations by back-propagating
errors,” Nature, (323), pp. 533–536, 1986.

[14] R. E. Schapire, Y. Freund, P. Bartlett, and W. S. Lee, “Boosting the margin: A new explanation for
the effectiveness of voting methods,” The Annals of Statistics, vol. 26 (5), pp. 1651–1686, 1998.

[15] N. E. Sharkey, “Connectionist Representation Techniques,” AI Review, vol. 5, pp. 143–167, 1990.

[16] J. Sietsma, R. J. F. Dow, “Creating artificial neural networks that generalize,” Neural Networks, vol.
4, pp. 67–79, 1991.

[17] M. Solazzi, A. Uncini, “Regularising neural networks using flexible multivariate activation func-
tion,” Neural Networks, vol. 17, pp. 247–260, 2004.

[18] V. N. Vapnik, The Nature of Statistical Learning Theory, Springer Verlag, Berlin, Germany, 2000.

[19] World Development Report 2000/2001: Attacking Poverty, The World Bank Group, Washington,
D. C., 2001.

[20] L. Xu, “Data smoothing regularization, multi-sets-learning, and problem solving strategies,” Neural
Networks, vol. 16, pp. 817–825, 2003.

15

