
Fundamenta Informaticae XX (2013) 1–26 1

DOI 10.3233/FI-2012-0000

IOS Press

Power of S-kR-RRWW-automata

Petr Hoffmann∗

Faculty of Mathematics and Physics

Charles University in Prague,

Malostranské nám. 25, 118 00, Praha 1, Czech Republic

krysar78@gmail.com

Abstract. Single k-reversible restarting automata are a special version of restarting automata which
can be effectively learned from samples. We show that their power lies between GCSL and CSL.
We show that their subclasses form an infinite hierarchy of classes of languages with respect to the
reversibility level k and we also show that limiting types of allowed rewrites lowers the power of the
model. Finally, we study their relation to strictly locally testable restarting automata.

1. Introduction

The so-called analysis by reduction (ABR for short) [8, 12, 18] forms an important tool for parsing natu-
ral language sentences. The ABR consists in a stepwise simplification of a given extended sentence until
a simple sentence is obtained or an error is found, as illustrated by this example [8]: Peter and Jane work
slowly. ⇒ Jane works slowly. ⇒ Jane works.

As you can see, the input sentence is iteratively simplified (changed parts are underlined) by either
just removing a part or by replacing a part by another shorter part. Finally, we obtain a simple sentence.
As we ended with a correct sentence and individual simplifications are not allowed to remove errors, we
conclude that the original input sentence is correct as well.

The restarting automaton [7, 16, 17], defining a set of simplification rules and a set of simple sen-
tences, can be used to model the ABR. Such a model defines a language as a set of sentences, which can
be simplified to a simple sentence of the model by the simplification rules of the model.

In [5] we propose the Omega∗ method for learning a subclass of restarting automata, the single
k-reversible restarting automata, from positive samples. A similar model, called strictly locally testable
∗This work was supported by the Grant Agency of the Czech Republic under the projects P103/10/0783 and P202/10/1333.

2 P. Hoffmann / Power of S-kR-RRWW-automata

automata, was considered in [14]. It is important to know the power of our model as well as the relation
to the model of [14] to better understand the capabilities of the Omega∗ . We analyze those questions in
this paper.

We will use common notions from formal languages theory [6, 11, 4, 1]. By FSA, GCSL, CSL, and
EL we denote a (non-deterministic) finite state automaton, growing context-sensitive, context-sensitive,
and even linear languages, respectively. By RQ(L,L′) and LQ(L,L′) we denote the right-quotient and
the left-quotient of L by L′. The expression L(X) denotes the class of languages accepted by automata
of type X . We will sometimes use regular expressions instead of languages to improve readability, e.g.
instead of {0} · Σ, we will write just 0Σ to represent the language of words consisting of the symbol 0
followed by a symbol from an alphabet Σ.

2. Restarting Automata

To model the ABR, we often use restarting automata defined below [7, 16, 17].

Definition 2.1. ([7, 16, 17])
A restarting automaton (RRWW-automaton) is a triplet M = (Σ,Γ, I), where Σ is an input alphabet, Γ
is a working alphabet, Σ ⊆ Γ (the symbols from Γ \Σ are called auxiliary symbols), and I is a finite set
of meta-instructions of the following two forms:

• a rewriting meta-instruction (E`, x→ y,Er), where x, y ∈ Γ∗ such that |x| > |y| andE`, Er ⊆ Γ∗

are regular languages (we call the expression x → y a rewrite, the words x and y are called a
rewritten and a replacement word, respectively, and |x| is called the length of the rewrite; the
maximum length of a rewrite taken over all rewriting meta-instructions is called the size of the
window of M), or

• an accepting meta-instruction (E,Accept), where E ⊆ Γ∗ is a regular language.

We say that M can directly reduce a word u into a word v (u `M v) if u = u1xu2, v = u1yu2 for
some u1, u2, x, y ∈ Γ∗ and there is a rewriting meta-instruction (E`, x → y,Er) ∈ I , where u1 ∈ E`
and u2 ∈ Er. Let `∗M denote the reflexive and transitive closure of `M . If u `∗M v for some words u, v,
we say that M can reduce u to v.

A word w ∈ Γ∗ is accepted by M directly if w ∈ E for at least one accepting meta-instruction
(E,Accept) ∈ I . A word w ∈ Γ∗ is accepted by M if there exists a word w′ ∈ Γ∗ such that w `∗M w′

and w′ is accepted by M directly. The characteristic language accepted by M is the set of all words
accepted by M , thus LC(M) = {w ∈ Γ∗;w is accepted by M}. The language accepted by M is the set
of all words over the input alphabet Σ accepted by M , thus L(M) = LC(M) ∩ Σ∗.

We define two subtypes of RRWW-automata. An RRWW-automaton having Γ = Σ is called
an RRW-automaton. An RR-automaton is an RRW-automaton such that for each meta-instruction
(E`, u→ v,Er), it holds that v can be obtained from u by deleting some symbols from u.

One of the fundamental properties of all models of restarting automata is the following so-called error
preserving property. This property means that whatever reduction performs given restarting automaton
on an input word not belonging to the language accepted by the automaton (“the word contains an error”),
the resulting word is not accepted by the automaton (it contains still some error), too.

P. Hoffmann / Power of S-kR-RRWW-automata 3

Proposition 2.2. (Error Preserving Property; [8])
Let M = (Σ,Γ, I) be an RRWW-automaton, and let u, v be words over its input alphabet Σ. If u `∗M v
holds and u 6∈ L(M), then v 6∈ L(M), either.

This proposition is extensively used for proving that some language can not be accepted by any
restarting automaton of a certain type (see [17]).

The general RRWW-automata are not suitable for learning from positive samples only. Therefore
in [14] a subclass of restarting automata, called strictly locally testable automata, was introduced, that is
based on strictly locally testable languages [19, 9].

Definition 2.3. ([19, 9])
Let k > 0 and let Σ be an alphabet. A language L ⊆ Σ∗ is strictly k-testable if there exist finite sets
A,B,C ⊆ Σk such that for each w ∈ Σ≥k, it holds that w ∈ L if and only if Pk(w) ∈ A, Sk(w) ∈ B,
and Ik(w) ⊆ C, where Pk(w),Sk(w), and Ik(w) denote k-length prefix of w, k-length suffix of w, and
the set of all interior subwords of the length k of w, respectively. The (A,B,C) is called a triple for L.
A language L is called strictly locally testable if L is strictly k-testable for some k.

The considered restriction proposed in the following definition allowed to learn the obtained model
from positive samples.

Definition 2.4. ([14])
Let k > 0. A rewriting meta-instruction (E`, x → y,Er) is strictly k-testable, if both E` and Er are
strictly k-testable and |x| ≤ k. An accepting meta-instruction (E,Accept) is strictly k-testable if E is
strictly k-testable. A restarting automaton M is strictly k-testable (k-SLT-R-automaton), if all its meta-
instructions are strictly k-testable. A restarting automaton is strictly locally testable (SLT-R-automaton),
if it is strictly k-testable for some k.

The Omega∗ method is similar to the approach of [14]. The considered model utilizes the k-
reversible languages [2, 13] instead of strictly locally testable languages.

Definition 2.5. ([2, 13])
Let k ≥ 0. LetA = (Q,Σ, δ, I, F) be a FSA. Then u ∈ Σk is a k-follower of q ∈ Q inA if δ∗(q, u) 6= ∅.
The FSA A is deterministic with lookahead k if for any pair p, q ∈ Q such that p 6= q, if p, q ∈ I or
p, q ∈ δ(r, a) for some r ∈ Q, a ∈ Σ, then no word is a k-follower of both p and q. A is k-reversible ifA
is deterministic andAR (the reverse ofA) is deterministic with lookahead k. A languageL is k-reversible
if there is a k-reversible automaton A accepting L. A language L is reversible if it is k-reversible for
some k.

Moreover, the learning method Omega∗ has the following feature: for all u ∈ Γ+, v ∈ Γ∗ (Γ being
the considered working alphabet), the resulting automata have at most one rewriting meta-instruction
performing a rewrite u → v (where u and v share neither a common non-empty prefix nor a common
non-empty suffix) and also only one accepting meta-instruction. It is therefore natural to introduce these
restrictions into the model as well. It will help us better understand the power of the models returned by
Omega∗ . The formal definition follows.

Definition 2.6. A rewriting meta-instruction (E`, x → y,Er) is called k-reversible, if both E` and Er

are k-reversible languages. An accepting meta-instruction (E,Accept) is called k-reversible, if E is a

4 P. Hoffmann / Power of S-kR-RRWW-automata

k-reversible language. A restarting automaton is called k-reversible (kR-RRWW-automaton), if all its
meta-instructions are k-reversible.

A restarting automaton M is called single (a S-RRWW-automaton), if M has at most one accepting
meta-instruction, for each pair x→ y (where x, y ∈ Γ∗) M has at most one meta-instruction of the form
(E`, x → y,Er), and for each rewriting meta-instruction (E`, x → y,Er), it holds that x and y share
neither a common non-empty prefix nor a common non-empty suffix.

A restarting automaton is called single k-reversible (S-kR-RRWW-automaton), if it is both single
and k-reversible. A S-kR-RRWW-automaton not using auxiliary symbols is called a S-kR-RRW-
automaton. A S-kR-RR-automaton is a S-kR-RRW-automaton such that for each rewriting meta-
instruction (E`, u → v,Er), it holds that v can be obtained from u by deleting some symbols from
u.

There is an important result [9] stating that the class of strictly locally testable languages is prop-
erly included in the class of reversible languages. This is of great importance because it shows that
considering reversible languages leads to a larger class of languages to be used in meta-instructions com-
pared to the strictly locally testable languages used in [14]. Note that there are more differences between
S-kR-RRWW-automata and SLT-R-automata than the classes of languages allowed in meta-instructions,
particularly, we consider only single restarting automata.

3. Results

Here we characterize the power of the discussed model. Let us start by relating our model to Chomsky’s
hierarchy. We will need the following lemma:

Lemma 3.1. For each kR-RRWW-automaton M , there is a S-kR-RRWW-automaton M ′ such that
L(M) = L(M ′).

Proof:
Let M = (Σ,Γ, I) be a kR-RRWW-automaton. We will transform M into a S-kR-RRWW-automaton
M ′ such that L(M) = L(M ′).

If L(M) = ∅, then it is easy to create a S-kR-RRWW-automaton accepting the same language.
Below we suppose that M accepts a non-empty language.

If a kR-RRWW-automaton is not a S-kR-RRWW-automaton, then at least one of the following
conditions holds:

(i) it has at least two accepting meta-instructions,

(ii) it has at least two rewriting meta-instructions performing the same rewrite, or

(iii) it has at least one rewriting meta-instruction such that the rewritten and the replacement words
share a common non-empty prefix or a common non-empty suffix.

We will deal with all those possible problems below.
Let us suppose that the condition (i) holds, i.e. let M have more than one accepting meta-instruction.

Of course, it may not be possible to merge all accepting meta-instructions into one and to preserve k-
reversibility at the same time. However, we can use the power of auxiliary symbols to process the words

P. Hoffmann / Power of S-kR-RRWW-automata 5

accepted directly as follows. Let Lad be the set of all words accepted by M directly. It is surely a regular
language. Thus, there is a deterministic FSA D = (Q,Γ, δ, {q0}, F) such that Lad = L(D). We define
the following meta-instructions and we put them into Iad (Qq for q ∈ Q are new auxiliary symbols):

• (λ, ab→ Qq,Γ
∗) for each a, b ∈ Γ and q = δ∗(q0, ab),

• (λ,Qqa→ Qq′ ,Γ
∗) for each q, q′ ∈ Q, a ∈ Γ, and q′ = δ(q, a),

• for λ 6∈ Lad, we add ({Qq; q ∈ F} ∪ (Lad ∩ Γ),Accept), and

• for λ ∈ Lad, we add

– (λ,Qq → λ, λ) for all q ∈ F ,

– (λ, x→ λ, λ) for all x ∈ Lad ∩ Γ, and

– ({λ},Accept).

The meta-instructions from Iad can be surely used to accept exactly the words from Lad and they can
be safely used in place of the original accepting meta-instructions. Obviously, all meta-instructions from
Iad are zero-reversible and there is exactly one accepting meta-instruction. In what follows, we suppose
that M has one accepting meta-instruction. Let it be (Laccept,Accept).

To deal with the condition (ii), we will need non-empty replacement words in nearly all rewriting
meta-instructions. Then we will use new auxiliary symbols to make individual rewrites unique. We
will prepare this as follows. Let I0 denote the set of all rewriting meta-instructions with a non-empty
replacement word. Then, for each rewriting meta-instruction (L`, x → λ, Lr) ∈ I \ I0 (i.e. a meta-
instruction with the empty replacement word) we distinguish the following cases:

(C1) If both L` and Lr contain only the empty word λ, we put this meta-instruction into Iλ.

(C2) If Lr contains some non-empty words, we collect the first symbols of all such words — let them
form a set ∆. For each a ∈ ∆, we insert the meta-instruction (L`, xa→ a,LQ(Lr, a)) into I0 (here
again the right context obviously remains k-reversible). You may notice that this meta-instruction
satisfies the requirement mentioned in the condition (iii), but we will fix that later. If λ ∈ Lr and
L` 6= {λ}, we process (L`, x → λ, λ) according to the step (C3). If λ ∈ Lr and L` = {λ}, we
add (λ, x→ λ, λ) into Iλ.

(C3) If Lr contains only λ but L` contains a non-empty word, we proceed similarly. We collect the last
symbols of all such words — let them form a set ∆. For each a ∈ ∆, we insert the meta-instruction
((LQ(LR

` , a))R, ax → a, Lr) into I0. Again, we obtained a k-reversible meta-instruction — here
we additionally used the fact that the class of k-reversible languages is closed under reversal [2].
Again, the problem with the condition (iii) will be fixed later. If λ ∈ L`, we add (λ, x→ λ, λ) into
Iλ.

Obviously, the rewriting meta-instructions from I0 ∪ Iλ perform the same reductions as those from
I . Note that no rewriting meta-instruction from I0 uses the empty replacement word. Moreover, all
those meta-instructions are k-reversible. We would like to use the meta-instructions from I0 in M ′, but

6 P. Hoffmann / Power of S-kR-RRWW-automata

their presence could mean that M ′ still satisfies the condition (ii). Therefore, for each rewriting meta-
instruction r ∈ I0, we create three new alphabets Γr,0, Γr,1, and Γr,2, forming together an alphabet Γr
(for a ∈ Γ there will thus be three associated symbols ar,i ∈ Γr for i ∈ {0, 1, 2} — we will further
use ar to denote one of the symbols associated with a), we rewrite the replacement word in r using the
associated symbols from Γr,0 in the obvious way, and we put the resulting meta-instruction into I1. The
purpose of Γr,1 and Γr,2 will be obvious later. Note that I1 contains no pair of rewriting meta-instructions
performing the same rewrite as the replacement words are unique — each one is composed of symbols
from an alphabet specific to the particular meta-instruction.

Let Γ∗ = Γ ∪
⋃
r∈I0 Γr. Note that for each symbol a ∈ Γ, there can be therefore many asso-

ciated symbols in Γ∗ (there are three for each rewriting meta-instruction from I0). We will say that
a symbol a ∈ Γ is compatible with itself and also with ar,0, ar,1, ar,2 ∈ Γr for all r ∈ I0. For
a word w, we define a set of compatible words as c(w) = {w′ ∈ Γ

|w|
∗ ; for each i such that 0 ≤

i < |w|, it holds that wi is compatible with w′i}. For a language Lorig ⊆ Γ∗, we define c(Lorig) =⋃
w∈Lorig

c(w). For each rewriting meta-instruction (L`, x → y, Lr) ∈ I1 and each x′ ∈ c(x), we add
the meta-instruction (c(L`), x

′ → y, c(Lr)) to I2. The resulting meta-instruction is k-reversible as can
be easily seen from the Definition 2.5. We will call the set of all meta-instructions created from the same
meta-instruction in this step a group.

It is clear that groups can be distinguished by the replacement words because they remain the same
as before and thus are group specific (remember that there were no duplicate replacement words in I1).
Also, no pair of meta-instructions from the same group share the same rewritten word.

Now no pair of rewriting meta-instructions from I2 performs the same rewrite. However, the con-
dition (iii) can still be a problem. We will inspect all rewriting meta-instructions as follows — let
r′ = (L`, x→ y, Lr) ∈ I2. Note that y 6= λ holds for all r′ ∈ I2. Let x = awb where a ∈ Γr,i, b ∈ Γr,j ,
andw ∈ Γ∗r for some r ∈ I0, then we rewrite y ∈ Γ∗r,0 using symbols from Γr,` where ` ∈ {0, 1, 2}\{i, j}
is selected arbitrarily — here we replace each symbol ar ∈ Γr,0 with a′r ∈ Γr,` and then we insert this
rewriting meta-instruction into I3. Note that the meta-instructions from I3 do not satisfy the require-
ments of the condition (iii). Also note that the new meta-instructions are still k-reversible. As the new
replacement words remain unique for each group, no additional action is needed to avoid satisfying the
condition (ii).

Recall the meta-instructions from Iλ. As we introduced new symbols in the previous steps, we need
to adapt meta-instructions from Iλ to this new situation. Therefore, for each (λ,w → λ, λ) ∈ Iλ, we put
(λ,w′ → λ, λ) into I ′λ for each w′ ∈ c(w).

Finally, let M ′ = (Σ,Γ∗, I3 ∪ I ′λ ∪ {(c(Laccept),Accept)}).
Note that the computation of M ′ resembles the computation of M . Only some compatible symbols

occur in the processed words in place of the ones used by M .
Now, the following holds:

• M ′ contains exactly one accepting meta-instruction.

• Rewriting meta-instructions originating from the same group are distinguished by the rewritten
word.

• Rewriting meta-instructions originating from different groups are distinguished by the alphabet
used within the replacement word.

P. Hoffmann / Power of S-kR-RRWW-automata 7

• Rewriting meta-instructions having the empty replacement word have contexts containing exactly
the empty word.

• There is no rewriting meta-instruction performing a rewrite x → y such that x and y share the
same non-empty prefix or the same non-empty suffix (note that the replacement word is either
empty or it is composed of symbols from an alphabet that does not contain the first and the last
symbol of the rewritten word).

• M ′ is k-reversible.

Thus, we obtained a S-kR-RRWW-automaton M ′.
It remains to prove that L(M) = L(M ′). It is clear that words accepted by M directly are accepted

by M ′ directly as well, and the same holds for all words compatible with words accepted by M directly.
If M reduces u to v, then each word u′ ∈ c(u) (i.e. compatible with u) can be reduced by M ′ to a word
compatible with v. Thus, L(M) ⊆ L(M ′). We will now prove that L(M ′) ⊆ L(M). Let c−1(w) for
w ∈ Γ∗∗ denote the unique word w′ ∈ Γ∗ such that w ∈ c(w′). If w ∈ Lc(M

′) is accepted byM ′ directly,
then surely c−1(w) ∈ L(M). If M ′ reduces u ∈ Lc(M

′) to λ using a meta-instruction from I ′λ, then M
reduces c−1(u) to λ. If M ′ reduces u ∈ Lc(M

′) to v using a meta-instruction from I3, then M reduces
c−1(u) to c−1(v). Overall, we have L(M ′) ⊆ L(M).

ut

The following theorem is a modification of a similar one from [14].

Theorem 3.2. Let k ≥ 0. It holds that GCSL ⊂ L(S-kR-RRWW) ⊆ CSL.

Proof:
First, we prove that GCSL ⊆ L(S-0R-RRWW). Let G = (Σ,Γ, S, P) be a growing context-sensitive
grammar. We will construct a S-0R-RRWW-automaton M such that L(M) = L(G). Without loss of
generality, we suppose that P does not contain any rules S → X forX ∈ Γ (otherwise, we could replace
each such rule with several rules S → α for all α such that X → α ∈ P). We will iteratively modify
the original grammar, until we reach a form suitable for an easy transformation to a S-0R-RRWW-
automaton:

1. With each terminal symbol a ∈ Σ, we associate a new non-terminal symbol a (let the new symbols
form the alphabet Σ). This step will later help us to manipulate with “terminal” symbols during
rewrites as needed.

2. For each rule α → β ∈ P , we create a set of new rules of the form α′ → β′ (these new rules will
be placed into P) where

• α′ is obtained from α by replacing each occurrence of each terminal symbol a with the
associated non-terminal symbol a (note that this means there is no terminal symbol on the
left-hand side of the resulting rule), and

• β′ is obtained from β by replacing some occurrences of each terminal symbol a with the
associated non-terminal symbol a in all possible ways (including replacing all occurrences
of a and also none of them).

8 P. Hoffmann / Power of S-kR-RRWW-automata

Let Γ1 = Γ ∪ Σ and let the resulting grammar be G1 = (Σ,Γ1, S, P).

3. With each non-terminal symbol X ∈ Γ1, we associate a new non-terminal symbol X (let those
new non-terminal symbols form the alphabet Γ1).

4. For each rule α→ β ∈ P , we create the rules α′ → β′ (these new rules will form P ′) where

• α′ is obtained from α by replacing some occurrences of each non-terminal symbolX with the
associated non-terminal symbol X in all possible ways (including replacing all occurrences
of X and also none of them), and

• β′ is obtained from β by changing its first symbol and its last symbol to be different from
the first occurrence of a non-terminal symbol in α′ and from the last occurrence of a non-
terminal symbol in α′, respectively, by replacing the particular occurrences of non-terminal
symbols X in β with the associated non-terminal symbols X (when necessary, i.e. if the first
or last symbol of β is a terminal symbol or it is different from the first or the last symbol of
α′, then no change is performed).

Let Γ′ = Γ1 ∪ Γ1 and let the obtained grammar be G′ = (Σ,Γ′, S, P ′).

Let us show that L(G) = L(G′). The first step just added some new non-terminal symbols. Accord-
ing to the second step, they are used only in places where original terminal symbols can occur. Thus, if
we ignore the difference between the original terminal symbols and the associated non-terminal symbols,
the grammar G1 rewrites in the same way as G. Moreover, once G1 yields a word over Σ, this word thus
surely belongs to L(G). On the other hand, consider a derivation of w ∈ L(G). We will modify each
applied rule α→ β as follows. We replace terminal symbols in α with associated non-terminal symbols,
and all occurrences of terminal symbols from β such that they are rewritten in a later step, are replaced
with associated non-terminal symbols as well. This obviously gives a derivation for w using the rules of
G1.

The third step just adds new non-terminal symbols that will be used in the fourth one. The idea of
the transformation of G into a S-0R-RRWW-automaton is to associate each rule α→ β to the rewriting
meta-instruction (Z∗, β → α,Z∗) (where Z denotes the working alphabet of the restarting automaton).
However, e.g. in the case of the rule 0X0→ 0110 this idea would lead to the rewriting meta-instruction
(Z∗, 0110 → 0X0, Z∗) that violates the condition for an automaton to be single. Unfortunately, in the
case of zero-reversible restarting automata, the contexts of rewriting meta-instructions can be too weak
for us to be able to convert this meta-instruction into (Z∗ ·{0}, 11→ X, {0}·Z∗) to avoid the mentioned
violation. Therefore, we change the rewriting rules so that the left and right sides will both start and end
with different symbols. This is exactly what is performed in the fourth step.

Again, does this preserve the generated language? As before, we see that the rewriting performed by
both grammars G1 and G′ is the same if we ignore the difference between the original symbols and the
associated non-terminal symbols. Particularly, if G′ yields a word over Σ, it surely belongs to L(G1).
On the other hand, let us have a derivation for w ∈ L(G1). Because of the changes made in the first
two steps, we know that the terminal symbols occur only on the right-hand sides of rules used in the
derivation. Note that for each rule used in the derivation, we have at least a similar rule that differs only
in using some associated non-terminal symbols in place of the original ones. We start at the beginning
of the derivation. We proceed iteratively, using rules of G′ corresponding to the rules used originally

P. Hoffmann / Power of S-kR-RRWW-automata 9

(i.e. the only difference is the presence of associated non-terminal symbols in place of some original
non-terminal symbols). We know the corresponding rule is always available in P ′ as our left sides cover
all possible ways of using those associated non-terminal symbols. Eventually, there will remain no non-
terminal symbols. So, w is derived using G′.

Finally, we define Γ′′ = Σ∪Γ′ andM = (Σ,Γ′′, I), where I is as follows. For each rule α→ β ∈ P ′
such that |α| < |β|, there is (Γ′′∗, β → α,Γ′′∗) ∈ I . If λ 6∈ L(G), then ({S} ∪ {a ∈ Σ;S → a ∈
P ′},Accept) ∈ I . Otherwise, if λ ∈ L(G), then ({λ},Accept) ∈ I , ({λ}, S → λ, {λ}) ∈ I , and
({λ}, a→ λ, {λ}) ∈ I for all a ∈ Σ such that S → a ∈ P ′.

It can be easily seen thatM is a S-0R-RRWW-automaton. The automatonM tries to find derivations
of given words (with a few exceptions handled by the accepting meta-instruction) and accepts or rejects
the input words accordingly. Thus, L(G) = L(M).

As each 0-reversible language is also k-reversible for all k > 0 [2], it immediately follows that
GCSL ⊆ L(S-kR-RRWW). To prove that this inclusion is proper, we will show that our model can
accept the language L¬GCSL = {ww;w ∈ {0, 1}+} that is known not to belong to GCSL [10, 3]. Let
M¬GCSL = ({0, 1, 0, 1} ∪{Xx,y, X

′
x,y;x, y ∈ {0, 1}} ∪{Yx, Y ′x;x ∈ {0, 1}}, {0, 1, 0, 1}, I), where I

contains the following meta-instructions (where a, b, c, d, e ∈ {0, 1}):

(I1) ({λ}, ab→ Xa,b,Σ
∗),

(I2) ({Xa,b} · Σ∗, ac→ Yc,Σ
∗
),

(I3) ({λ}, Xa,bc→ X ′b,c,Σ
∗ · {Yd} · Σ

∗
),

(I4) ({X ′b,c} · Σ∗, Ybd→ Y ′d,Σ
∗
),

(I5) ({λ}, X ′b,cd→ Xc,d,Σ
∗ · {Y ′e} · Σ

∗
),

(I6) ({Xb,a} · Σ∗, Y ′bd→ Yd,Σ
∗
),

(I7) ({Xa,bYb; a, b ∈ {0, 1}} ∪ {X ′a,bY ′b , a, b ∈ {0, 1}} ∪ {00, 11},Accept).

Words from L¬GCSL shorter than four symbols are accepted directly. For longer words, we iteratively
check that corresponding symbols of w and w match. The left half of the current word will contain Xx,y

or X ′x,y meaning that initially, this place contained symbols xy and we are checking that x matches
the symbol on the right hand side. The right half contains Yx or Y ′x meaning that this place initially
contained symbol x. Moreover, if the word contains either Xx,y and Yz or X ′x,y and Y ′z (for some
symbols x, y, z ∈ 0, 1), then we already know that the symbol x had a matching x in the initial word. On
the other hand, if the word contains either Xx,y and Y ′z or X ′x,y and Yz (for some symbols x, y, z ∈ 0, 1),
then we still have to check that there is a matching symbol for the symbol x (and that should be the
symbol z). At the beginning of the computation, there will be just Xx,y and no Yz or Y ′z meaning that the
initial word contained xy in place of Xx,y and that we are about to check that there is a matching symbol
for the symbol x.

Now, it is easy to follow the meaning of individual meta-instructions. Let us show that L¬GCSL ⊆
L(M¬GCSL). Let us have a word from L¬GCSL. At the beginning, we apply (I1) to start the check of the
first symbol of w and the first symbol of w. This will be finished by applying (I2). Since now, there will
always be one of the symbolsXx,y andX ′x,y and one of the symbols Yz and Y ′z (for some x, y, z ∈ {0, 1})

10 P. Hoffmann / Power of S-kR-RRWW-automata

denoting both the symbol present on the specified place in the initial input word and the current status
of checking the symbol x. Thus, we iteratively apply (I3)–(I6) until we reach either a word Xx,yYy or a
word X ′x,yY

′
y for some x, y ∈ {0, 1}. This word will then be directly accepted.

On the other hand, it is easy to see that L(M¬GCSL) ⊆ L¬GCSL. Directly accepted words 00 and 11
obviously belong to L¬GCSL. For longer words accepted byM¬GCSL, there is always exactly one possible
accepting computation and the meta-instructions obviously ensure that only words from L¬GCSL will be
accepted.

The automaton M¬GCSL is obviously 0-reversible. It is not a single automaton, but according to
Lemma 3.1, we know that it can be converted into such an automaton. Thus, the inclusion is proper and
we have GCSL ⊂ L(S-0R-RRWW).

The inclusion L(S-kR-RRWW) ⊆ CSL follows from the fact that each restarting automaton can be
simulated by a linear bounded automaton [14]. ut

The kind of allowed rewriting meta-instructions significantly impacts the power of restarting au-
tomata as proven below.

Theorem 3.3. It holds that L(S-kR-RR) ⊂ L(S-kR-RRW) ⊂ L(S-kR-RRWW) for all k ≥ 0.

Proof:
It is obvious that L(S-kR-RR) ⊆ L(S-kR-RRW) ⊆ L(S-kR-RRWW) holds as allowing more gen-
eral rewriting meta-instructions can not decrease the power of the models. It remains to prove that the
inclusions are proper. Let us prove L(S-kR-RRW) \ L(S-kR-RR) 6= ∅. We will use the language
L = {⊕, ◦◦} · {0n1n;n ≥ 0} ∪ {⊗, ◦◦} · {0n1m;m > 2n ≥ 0} that was shown not to be accepted
by any RR-automaton in [8]. Below we prove that it can be accepted by a S-0R-RRW-automaton
M = ({⊕,⊗, ◦, 0, 1}, {⊕,⊗, ◦, 0, 1}, I), where I contains the following meta-instructions:

(I1) ({λ}, ◦◦ → ⊕, {0, 1}∗) (I3) ({⊕} · {0}∗, 01→ λ, {1}∗) (I5) ({⊗1}, 1→ λ, {1}∗)
(I2) ({λ}, ◦◦ → ⊗, {0, 1}∗) (I4) ({⊗} · {0}∗, 011→ λ, {1}∗) (I6) ({⊕,⊗1},Accept)

Consider w ∈ {⊕, ◦◦} · {0n1n;n ≥ 0}. If w starts with ◦◦, this prefix is replaced with ⊕ (using
(I1)) at first. Then subwords 01 are iteratively removed using (I3), until a word consisting of single ⊕ is
obtained and this word is then directly accepted by (I6). The case of w ∈ {⊗, ◦◦}·{0n1m;m > 2n ≥ 0}
is similar. If there is a prefix ◦◦, it is replaced with⊗ using (I2). Then subwords 011 are removed by (I4)
while preserving the required form of the word. As the number of 1’s is more than twice the number of
0’s, there must be some 1’s left after all 0’s have been removed. They will be removed by (I5) except the
last one to obtain the word ⊗1 that will be directly accepted by (I6).

On the other hand, let w 6∈ L be the shortest word outside L accepted by M . It is surely not accepted
directly. So it can be directly reduced to a word from L by a rewriting meta-instruction of M . Using (I1)
or (I2) to replace ◦◦ with either ⊕ or ⊗ obviously can not reduce w to any w′ ∈ L. If (I3) was used to
reduce w starting with ⊕, the removal of 01 in the middle of w preserves the difference of the number
of 0’s and the number of 1’s and thus w ∈ L as well. If (I4) was used to reduce w starting with ⊗0,
the removal of 011 in the middle of w again preserves the relation between the number of 0’s and the
number of 1’s, so w ∈ L. The meta-instruction (I5) can only be applied onto a word from L, so we do
not have to consider it now. So we conclude that L = L(M). Moreover, M is a S-0R-RRW-automaton
as can be checked directly according to the definition.

The relation L(S-kR-RRW) 6= L(S-kR-RRWW) follows easily from Theorem 3.2 and from the
fact that to accept all context-free languages, auxiliary symbols are needed [8]. ut

P. Hoffmann / Power of S-kR-RRWW-automata 11

Auxiliary symbols are a very powerful tool. Even for the reversibility level equal to zero, i.e. in the
case of S-0R-RRWW-automata, all GCSL languages can be accepted. However, we often have to work
without auxiliary symbols, and not considering them would also help understand the raw power of the
model. Therefore, we further consider this limited case. At first, we prove that S-kR-RRW-automata
form an infinite hierarchy with respect to the degree of reversibility k. Thus, this parameter, k, can be
used in the grammatical inference field to reach the required power of considered models, and also to
lower the number of needed input samples.

In the following theorem, we consider a language that will help us separate classes of languages
accepted by S-kR-RRW for different levels k. It is helpful to define it now. Later, we will utilize the
fact that for each k ≥ 0, the language L¬k = {0`; ` > k} is (k + 1)-reversible but not k-reversible [2].
The following language was designed having this fact in mind.

Definition 3.4. For all k ≥ 0 we define the language Lsep,k = L1∪L2, where L1 = {0r1s0t; r > k, s >
0, and r = t}, and L2 = {0r1s0t; 0 ≤ r ≤ k, s > k, and t > s}.

The following lemma will form one part of the theorem. It states that the language proposed above
can be accepted by our model if we allow (k + 1)-reversible languages in its internals.

Lemma 3.5. It holds that Lsep,k ∈ L(S-(k + 1)R-RR).

Proof:
We define B = ({0, 1}, {0, 1}, IB), where IB contains the following meta-instructions:

(I1) ({0i; i > k}, 1→ λ, {1} · {0, 1}∗) (note the language L¬k used as the left context),

(I2) ({0i; i > k}, 010→ 1, {0}∗) (note the language L¬k again),

(I3) ({0m1i; 0 ≤ m ≤ k, i > k}, 10→ λ, {0}∗),

(I4) ({0m1k+10k+2; 0 ≤ m ≤ k}, 0→ λ, {0}∗), and

(I5) ({0k+110k+1} ∪ {0m1k+10k+2; 0 ≤ m ≤ k},Accept).

Let us prove that L(B) = L. Firstly, we will prove L ⊆ L(B). In Definition 3.4 the language Lsep,k

consists of two sublanguages: L1 and L2. We will consider words from both of them individually.
Let 0r1s0r ∈ L1 for some r > k and s > 0. Then:

• If s > 1, then this number will be lowered using (I1) and a shorter word from L will be obtained.

• If s = 1 and r > k + 1, then the number of 0’s will be lowered on both the left and the right end
of the word using (I2) and a shorter word from L is thus obtained.

• If s = 1 and r = k + 1, then the current word will be accepted using (I5).

Let 0r1s0t ∈ L2 for some 0 ≤ r ≤ k, s > k, and s < t. Then:

• If s > k + 1, the word is shortened by (I3) and the result still belongs to L.

12 P. Hoffmann / Power of S-kR-RRWW-automata

• If s = k + 1 and t > k + 2, the number of trailing 0’s is lowered by (I4) and the obtained word is
still in L.

• If s = k + 1 and t = k + 2, the current word is accepted by (I5).

Thus, each word from L is accepted by B.
Now we will show that L(B) ⊆ L. Obviously, the words accepted by (I5) belong to L. It will

suffice to prove that no word out of L can be directly reduced to a word from L. We will revert the way
meta-instructions work, and rather than u can be reduced to v we will say v can be expanded to u. So
our goal is to show that no word from L can be expanded to a word out of L. We will consider particular
rewriting meta-instructions:

• In the case of (I1), we have the word 0i1u for some i > k and u ∈ {0, 1}∗. Here (I1) inserts the
new symbol 1 right after the prefix 0i and thus the new word is also from L.

• In the case of (I2), we have the word 0i10j for i > k and j ≥ 0. Because (I2) both prepends and
appends the symbol 1 with the symbol 0, the resulting word belongs to L.

• In the case of (I3), we have the word 0m1i0j for some m ≤ k, i > k, and j ≥ 0. Here (I3) inserts
10 right after the end of the subword 1i. Therefore, the word belongs to L as well.

• In the case of (I4), we have the word 0m1k+10k+20j for some m ≤ k and j ≥ 0. Because (I4)
inserts another zero into the trailing sequence of 0’s, the new word is from L.

In total, we start with a word from L (accepted using (I5)) and only a stepwise expansion to another
words from L is possible. So we know L(B) ⊆ L and thus B accepts L.

It remains to prove that B is a S-(k + 1)R-RR-automaton. Obviously, B is a single RR-automaton.
We need to prove that all languages used in meta-instructions are (k + 1)-reversible:

• {0i; i > k} is (k + 1)-reversible according to [2] (see Fig. 1 for a corresponding FSA).

• {1}·{0, 1}∗ is 1-reversible (see Fig. 2 for a corresponding 1-reversible FSA) and thus also (k+1)-
reversible [2].

• {0}∗ is 0-reversible (the one-state FSA accepting this language is obviously 0-reversible) and thus
also (k + 1)-reversible.

• {0m1i; 0 ≤ m ≤ k, i > k} is (k + 1)-reversible (see Fig. 3).

• {0m1k+10k+2; 0 ≤ m ≤ k} is (k + 1)-reversible (see Fig. 4).

• {0k+110k+1} ∪ {0m1k+10k+2; 0 ≤ m ≤ k} is just an extension of the previous language and it
remains (k + 1)-reversible as shown in Fig. 5.

ut

The above presented lemma will form one part of our separation theorem. Next, it is necessary to
prove that no S-kR-RRW-automaton can accept the language Lsep,k. This proof will be significantly
more complex. Therefore, we will start with several auxiliary lemmas.

Firstly, we will study how a S-kR-RRWW-automaton accepting Lsep,k would work.

P. Hoffmann / Power of S-kR-RRWW-automata 13

q0 qk qk+1

0k
0

0

Figure 1. A (k + 1)-reversible FSA accepting {0i; i > k}.

q0 q1
1

0,1

Figure 2. A 1-reversible FSA accepting {1} · {0, 1}∗.

q0 qk qk+1 q2k+1

0k 1k
1

1
1

Figure 3. A (k + 1)-reversible FSA accepting {0m1i; 0 ≤ m ≤ k, i > k}. Note the dotted arrows denoting
1-transitions from all states present on the path from q0 to qk.

q0 qk qk+1 q2k+1 q2k+2 q3k+3

0k 1k 0k+1

1 0

1

Figure 4. A (k + 1)-reversible FSA accepting {0m1k+10k+2; 0 ≤ m ≤ k}. Note the dotted arrows denoting
1-transitions from all states present on the path from q0 to qk.

14 P. Hoffmann / Power of S-kR-RRWW-automata

q0 qk qk+1 q2k+1 q2k+2 q3k+3

q′k+1

0k 1k 0k+1

1 0

1

0 1

Figure 5. A (k + 1)-reversible FSA accepting {0k+110k+1} ∪ {0m1k+10k+2; 0 ≤ m ≤ k}. Note the dotted
arrows denoting 1-transitions from all states present on the path from q0 to qk.

Lemma 3.6. Let A be a S-kR-RRW-automaton accepting Lsep,k. Then there is n0 such that for all
n > n0, the first step in each accepting computation of A on word wn = 0n1n0n ∈ L consists in
shortening the segment of 1’s.

Proof:
By using the standard tools from formal languages theory it can be easily shown that only finitely many
words wn are directly accepted by A. Let k′ be the size of the window of A. Suppose we have an
accepting computation on wn such that it consists of at least one reduction and n > k + k′ . Thus, it
holds wn `A w′ for some w′ ∈ {0, 1}∗. If w′ ∈ L2, then A surely shortened the initial segment of 0’s.
However, at most k′ 0’s can be removed at once by A. Therefore, A has to perform a rewriting using a
replacement word starting with 1 near the left end of w, but this obviously yields a word w′ 6∈ L2. The
only other way is that w′ ∈ L1. As n > k + k′, it is not possible to rewrite in both segments of 0’s. If
exactly one segment of 0’s is affected by the rewriting, then due to the fact that A is a single automaton,
we obtain that the segment of 0’s is shortened. This would lead to w′ 6∈ L1. Therefore, no segment of 0’s
can be rewritten in the first step. So the rewritten word consists of 1’s only. Again, as we have a single
automaton, it is not possible for the replacement word to start or to end with the symbol 1. When the
symbol 0 is present in the replacement word, then we obtain w′ 6∈ L1. Finally, we see that some 1’s were
replaced with λ. ut

Let us now focus on left constraint language of some meta-instruction. Later, we will be interested
in the set of all maximal prefixes consisting of 0’s only of all words from that language. The following
lemma characterizes this set. The proof is obvious and thus omitted.

Lemma 3.7. Let L ⊆ {0, 1}∗. It holds that {0i; there is j ≥ 0 such that 0i1j ∈ L} = RQ(L, {1}∗) ∩
{0}∗.

It is important to note here that the transformation presented in the above lemma does not preserve
k-reversibility as proven below.

Lemma 3.8. There is a 1-reversible language L such that RQ(L, {1}∗) ∩ {0}∗ is not a reversible lan-
guage.

P. Hoffmann / Power of S-kR-RRWW-automata 15

A1: q0 q1

q2 q3

0

0
0

1

1

A¬r: q′0 q′1

q′2

0

0
0

Figure 6. An example of a 1-reversible FSA A1 accepting language {03m+1;m ≥ 0} ∪ {03m+21n;m ≥
0, n > 0} and a FSA A¬r accepting the language RQ(L(A1), {1i; i ≥ 0}) ∩ {0i; i ≥ 0} = {03m+1;m ≥
0} ∪ {03m+2;m ≥ 0} that is not a reversible language.

Proof:
On Fig. 6 you can find a 1-reversible FSAA1 accepting the language {03m+1;m ≥ 0}∪{03m+21n;m ≥
0, n > 0}. The language RQ(L(A1), {1}∗) ∩ {0}∗ = {03m+1;m ≥ 0} ∪ {03m+2;m ≥ 0}, that is
accepted by A¬r, is not reversible at all. To see this, consider that the two accepting states q′1 and q′2
always share a common k-predecessor of any given length k.

ut

We will be interested in FSA’s accepting subsets of the language {0i1j ; i, j ≥ 0}. Such words
consist of two parts, 0i and 1j . It will be very helpful to consider automata such that all their accepting
computations meet in a common state right between those two parts. We will call it a 1-bottleneck
property.

Definition 3.9. A FSA A = (Q,Σ, δ, {q0}, F) has the 1-bottleneck property, if there exists q ∈ Q such
that for all i, j ≥ 0 such that 0i1j ∈ L(A) it holds that δ∗(q0, 0i) = q. The state q is called the bottleneck
state.

In our proof, it will be very useful to represent a given regular language L by a FSA having the
1-bottleneck property. In general, this is not possible. However, for our needs, it will suffice to find
a finite number of FSA’s A1, . . . , An for some n > 0 having 1-bottleneck property such that L =⋃
i∈{1,...,n} L(Ai).

Lemma 3.10. For each regular language L ⊆ {0i1j ; i, j ≥ 0} there is a set of FSA’s D such that:

16 P. Hoffmann / Power of S-kR-RRWW-automata

• Each D ∈ D has the 1-bottleneck property.

• It holds that L =
⋃
D∈D L(D).

Moreover, if L is k-reversible for some k ≥ 0, then all FSA’s from D are k-reversible.

Proof:
Let A = (Q,Σ, δ, {q0}, F) be a minimal deterministic FSA accepting L. W.l.o.g. we suppose that A
contains no unnecessary transitions.

For each q ∈ Q such that there is a 1-transition leaving q and there is i ≥ 0 such that δ∗(q0, 0i) = q,
we put Aq = (Q,Σ, δq, {q0}, Fq) into D, where δq is defined as follows:

• δq(p, 0) = δ(p, 0) for p ∈ Q if there is i > 0 such that δ∗(p, 0i) = q,

• δq(p, 1) = δ(p, 1) for p ∈ Q if there is i ≥ 0 such that δ∗(q, 1i) = p, and

• δ is undefined otherwise,

and Fq = F ∩ {δ∗(q, 1i); i ≥ 0}. Obviously, if 0i1j ∈ L for some i ≥ 0 and j > 0, then Aδ∗(q0,0i)
accepts this word as we preserved all the needed 0-transitions to reach the state q = δ∗(q0, 0

i) and also
all 1-transitions reachable from that state, including the presence of the accepting state.

It remains to add automata accepting words from L∩{0i; i ≥ 0}. Therefore, for all q ∈ F we create
the FSA A′q = (Q,Σ, δ′, {q0}, {q}) where δ′q is obtained from δ by removing all 1-transitions, and we
add it into L. Obviously, if 0i ∈ L for some i ≥ 0, then A′

δ∗(q0,0i)
accepts this word.

We already know that L ⊆
⋃
D∈D L(D). As we only removed some transitions and marked some

states as non-accepting, we have that each created FSA accepts a subset of L and thus L =
⋃
D∈D L(D).

It also means that the proposed transformation preserves the k-reversibility.
Also, all FSA’s from L have the 1-bottleneck property where q is the bottleneck state. In the case of

A′q, this is trivial. Let us focus on Aq. For a contradiction, let us suppose that there are i, j ≥ 0 such that
0i1j ∈ L(Aq) and δ∗q (q0, 0

i) 6= q. Let q′ = δ∗q (q0, 0
i). Then

• We know that there is some i′ ≥ 0 such that δ∗(q0, 0i
′
) = q.

• As the 1-transition from q is defined, we know that there is j′ > 0 such that δ∗(q, 1j
′
) ∈ F .

• If j = 0 then q′ ∈ Fq. If j > 0 then the 1-transition from q′ is defined. In both cases we know that
there is m > 0 such that δ∗(q, 1m) = q′.

• If q′ 6= q0, then there is a 0-transition entering q′ and thus we know that there is some n > 0 such
that δ∗(q′, 0n) = q. On the other hand, if q′ = q0, we put n = i′, which is greater than zero as
q 6= q′, and again we have δ∗(q′, 0n) = q.

• Overall, δ∗(q0, 0i
′
1m0n1j

′
) ∈ F . This is a contradiction.

ut

FSA’s having the 1-bottleneck property also have a very useful property (we will denote this feature
with EXCH) that will be used later.

P. Hoffmann / Power of S-kR-RRWW-automata 17

Lemma 3.11. Let A = (Q,Σ, δ, {q0}, F) be a FSA with the 1-bottleneck property. For all i, i′, j, j′ ≥ 0
such that 0i1j , 0i

′
1j
′ ∈ L(A), it holds 0i1j

′ ∈ L(A).

Proof:
From δ∗(q0, 0

i) = δ∗(q0, 0
i′), it follows that δ∗(q0, 0i1j

′
) = δ∗(δ∗(q0, 0

i), 1j
′
) = δ∗(δ∗(q0, 0

i′), 1j
′
) =

δ∗(q0, 0
i′1j

′
) ∈ F . ut

Later, we will cover {0}∗ except of a finite number of words by a set of k-reversible languages.
According to the following lemma, the word 0k is necessarily covered as well.

Lemma 3.12. Let L be a finite set of k-reversible languages over {0} such that for some n0 ≥ 0 it holds
that {0n;n ≥ n0} ⊆

⋃
L∈L L. Then there is L ∈ L such that 0k ∈ L.

Proof:
Let us suppose that the opposite holds. W.l.o.g. we suppose that each language from L is infinite. At
first, let A′i be a FSA accepting one of the languages from L.

Surely, A′i = (QA′i , {0}, δA′i , {q0,A′i}, FA′i) does not accept 0k, by assumption. Moreover, A′i con-
tains a cycle (because it accepts an infinite language). Because of the k-reversibility, δ∗A′i(q0,A

′
i
, 0k) is a

member of that cycle. Let the length of the cycle be rA′i symbols. Then even 0
k+rA′

i
s

is not accepted
for all s > 0. For brevity, we denote individual values of rA′i as r1, . . . , rz (let z = |L|). Thus, words
0k+r1s1 , . . . , 0k+rzsz for all s1, . . . , sz ≥ 0 are not accepted by individual FSA’s.

We would like to show that there are infinitely many words not covered by the union of all languages
from L. Let si = h·Πj 6=irj for h > 0. Then for all i, j such that 0 < i, j ≤ z, it holds k+risi = k+rjsj
and thus 0k+r1s1 is not a member of any language from L. Therefore, we obtained infinitely many words
not covered by L (it suffices to consider infinitely many different values of h). This is a contradiction.
Therefore, 0k is a member of at least one language from L.

ut

Theorem 3.13. For all reversibility levels k ≥ 0, it holds that L(S-kR-RRW) ⊂ L(S-(k+ 1)R-RRW),
and L(S-kR-RR) ⊂ L(S-(k + 1)R-RR).

Proof:
We will show that Lsep,k ∈ L(S-(k + 1)R-RR) \ L(S-kR-RRW). The relation Lsep,k ∈ L(S-(k +
1)R-RR) holds thanks to Lemma 3.5. It remains to prove that L 6∈ L(S-kR-RRW).

For a contradiction, let us suppose there is a S-kR-RRW-automaton A = ({0, 1}, {0, 1}, I) accept-
ing L. We will prove that A reduces 0k1n0n 6∈ L (for some n > k) to 0k1n

′
0n ∈ L (where k < n′ < n)

and thus L(A) 6= L. In this proof, we will focus on how A works on words wn = 0n1n0n ∈ L for
n > k.

Let nreduce = k+k′+n0, where k′ is the size of the window ofA and n0 is the value used in Lemma
3.6 applied onto A. Thus, for all n > nreduce, the word wn can be surely reduced by A by shortening the
segment of 1’s (by using the empty replacement word).

We will use this fact to find a rewriting meta-instruction that reduces a word with the prefix 0k1. Let
I ′ be the set of all meta-instructions of A that reduce some wn (n > nreduce) to a word from L. We will
collect all words 0n such that at least one of the considered meta-instructions from I ′ reduces a word

18 P. Hoffmann / Power of S-kR-RRWW-automata

having a prefix 0n1. If LC is the union of the left contexts of the meta-instructions I ′, then, according to
Lemma 3.7, the language we are looking for is RQ(LC, {1}∗) ∩ {0}∗.

To show that 0k belongs to that language, it would be helpful to know that it can be covered with
finitely many k-reversible languages. Unfortunately, this language need not be k-reversible, as stated in
Lemma 3.8, so this property is not obvious. Therefore, we slightly modify the rewriting meta-instructions
from I ′. The automaton will not remain single but we do not need this property for the rest of this proof.

We will transform each meta-instruction (L`, w → w′, Lr) ∈ I ′ as follows. We know that w ∈ {1}∗.
Therefore, each word from L reduced by this meta-instruction can be split into three parts w`, w, and wr

such that wn = w`wwr where w` ∈ L` ∩{0i1j ; i, j ≥ 0}, and wr ∈ Lr. We will cover L` ∩{0i1j ; i, j ≥
0} by a finite set of k-reversible languages accepted by FSA’s having the 1-bottleneck property (using
Lemma 3.10). Let D be the set of FSA’s obtained from Lemma 3.10. We will replace the original
meta-instruction with meta-instructions from {(L(D), w → w′, Lr);D ∈ D}. Obviously, all words
from L reduced by the original meta-instruction (L`, w → w′, Lr) can be reduced by some of the newly
created ones in the same way. On the other hand, our new meta-instructions obviously do not perform
any reduction not performed by the original meta-instructions. It is important to note that A obviously
remains k-reversible, as we only replaced original left constraints with another k-reversible ones.

By I ′′ we denote the subset of I ′ containing only rewriting meta-instructions that reduce at least one
word wn for n > nreduce.

Let L`,I′′ be the set of left constraints of meta-instructions from I ′′ after the just performed trans-
formation. We will now transform L`,I′′ into L`,I′′,0 in the following way. For each Li ∈ L`,I′′ , we
perform the following steps to obtain RQ(Li, {1}∗) ∩ {0}∗ (let Ai be a k-reversible FSA accepting Li).
We mark each state of Ai that has an outgoing 1-transition as accepting (the states that were accepting
before remain accepting as well), we remove all 1-transitions and then also the non-reachable states, and
we denote the resulting FSA as A′i and we put L(A′i) into L`,I′′,0.

Obviously, for each wn (n > nreduce), there is a member of L`,I′′,0 containing 0n. Note that for
each 0r ∈ L(A′i), there is some s ≥ 0 such that 0r1s ∈ L(Ai) = Li. It is very important to note that
all members of L`,I′′,0 are k-reversible (remember that the automaton A′i contains exactly one accepting
state and the transitions were present in the k-reversible FSA Ai as well). Thus, L`,I′′,0 covers the
language {0n;n > nreduce}with finitely many k-reversible languages because eachwn with n > nreduce
can be reduced by a meta-instruction from I ′′.

Lemma 3.12 yields that necessarily L`,I′′,0 covers also the word 0k.
Now we conclude this proof by proving that the automaton A performs a reduction that violates the

error preserving property.
Letwn = 0n1n0n ∈ L for some n > nreduce that can be reduced using the rewriting meta-instruction

with left context containing either 0k or a word with prefix 0k1. Let it be (L`,p, 1
i → λ, Lr,p) for some

i > 0. So it reduces 0n1i`1i1ir0n ∈ L (where i` + i+ ir = n) into 0n1i`+ir0n. Therefore, 0n1i` ∈ L`,p
and thus also 0k1i` ∈ L`,p (thanks to the feature EXCH). Finally, we have that 0k1i`1i1ir0n = 0k1n0n 6∈
L can be reduced to 0k1i`1ir0n ∈ L (note that i`+ ir = n− i > nreduce− i ≥ nreduce−k′ = k+n0 > k
and thus i` + ir > k).

This is a contradiction as obviously L(A) 6= L. Thus, L can not be accepted by any S-kR-RRW-
automaton. ut

It is an open question whether an analogous theorem holds in the case of automata using auxiliary
symbols, i.e. in the case of S-kR-RRWW-automata.

P. Hoffmann / Power of S-kR-RRWW-automata 19

SLT-R-automata are very similar to S-kR-RRWW-automata. As both can be inferred from positive
samples, it is important to know the relation of classes of languages they can accept. Our model utilizes a
richer class of languages in meta-instructions, but we allow only single restarting automata. The relation
between these two models is therefore not obvious. In what follows, we will compare these two models
in the case they do not use auxiliary symbols.

Theorem 3.14. Let L = L1 ∪ L2, where L1 = {02r1s02r1t; r, s, t > 0}, and L2 = {02r+11s0t1s
′
; r, s,

s′, t > 0 and s 6= s′}. There is no SLT-R-automaton without auxiliary symbols that accepts L, but there
is a S-kR-RR-automaton accepting L.

Proof:
At first, we will show that L can not be accepted by any SLT-R-automaton. For a contradiction, let
us suppose that there is a k′-SLT-R-automaton M such that L(M) = L. Let us consider the word
w = 0r1s0r1s ∈ L1 for r = 4k′ and s = 3k′. Let us analyze the accepting computation on this word
(we will often use a very simple idea — let L′ be a strictly k′-testable language over an alphabet Γ, let
u ∈ L′ and let v ∈ Γ∗; then if Pk′(u) = Pk′(v), Sk′(u) = Sk′(v), and Ik′(u) = Ik′(v), then v ∈ L′). It
can start in any of the following ways:

• If w is directly accepted by M , then 0w is directly accepted as well and this is a contradiction.

• If w is directly reduced to some w′ ∈ L, we distinguish two cases:

– To reduce w into a shorter word w′ ∈ L1, the only possible way is to lower the number of 1’s
in exactly one of the segments of 1’s. If M lowers the number of 1’s in one of the segments
of 1’s in w, then the same can be performed on the word w′′ = 0w 6∈ L. However, this would
reduce w′′ 6∈ L into 0w′ ∈ L. This is a contradiction.

– To reduce w into a shorter word w′ ∈ L2, we need to increase or decrease the number of 0’s
in the initial segment of 0’s by an odd number and also to change the number of 1’s in the
first segment of 1’s. If M reduces w this way, then surely the rewritten subword has the form
0i1j where i, j ≥ 0. Let us consider the word w′′ = 00w 6∈ L. Again, this can be reduced
analogically into 00w′ ∈ L. This is a contradiction.

Overall, the word w can not be accepted by M . Thus, there is no SLT-R-automaton without auxiliary
symbols accepting L. It remains to prove that L can be accepted by some S-kR-RRW-automaton. Let
B = ({0, 1}, {0, 1}, I) where I contains the following meta-instructions:

(I1) ({02r; r ≥ 0}, 1→ λ, {1} · {0, 1}∗),

(I2) ({02r; r ≥ 0}, 00100→ 1, {0} · {0, 1}∗),

(I3) ({02r+11s; r ≥ 0, s > 0}, 0→ λ, {0} · {0, 1}∗),

(I4) ({02r+11s; r ≥ 0, s > 0}, 101→ 0, {1} · {0, 1}∗), and

(I5) ({001001t; t > 0} ∪ {02r+1101t; r > 0, t ≥ 2} ∪ {02r+11s01; r > 0, s ≥ 2},Accept).

20 P. Hoffmann / Power of S-kR-RRWW-automata

q0

q1

00

Figure 7. A 0-reversible FSA accepting {02k; k ≥ 0}.

q0

q1 q2

00

1

1

Figure 8. A 1-reversible FSA accepting {02k+11`; k ≥ 0, ` > 0}.

We will prove that L(B) = L. We will start with the inclusion L ⊆ L(B). If w ∈ L1, (I1) is used
to reduce w into 02r102r1t for some r, t > 0, this word is then reduced to 001001t by (I2) and then (I5)
is used to accept this word. If w ∈ L2, it is reduced into 02r+11s01s

′
for some r, s, s′ > 0 using (I3),

then (I4) is used to obtain the word 02r+1101s
′′

or 02r+11s
′′
01 for some s′′ > 1, and the obtained word

is then accepted by (I5).
As the words accepted by (I5) obviously belong to L and it can be easily seen that no rewriting

meta-instruction reduces a word outside L into a word from L, we have that L(B) ⊆ L and, in total,
L(B) = L. Obviously, B is a single RR-automaton.

It remains to prove that B is k-reversible for some k.

• (I1) is 1-reversible (see Fig. 7 and the proof of Theorem 3.13).

• (I2) is 1-reversible (similarly to (I1)).

• (I3) is 1-reversible (see Fig. 8 and the proof of Theorem 3.13).

• (I4) is 1-reversible (similarly to (I3)).

• (I5) is 3-reversible (see Fig. 9).

Finally, B is a S-3R-RR-automaton accepting L.
ut

On the other hand, the restriction to single restarting automata prevents accepting some languages
despite using a richer class of languages (even regular languages!) in meta-instructions.

Theorem 3.15. Let L = L1 ∪ L2 ∪ L3 ∪ L4 where

P. Hoffmann / Power of S-kR-RRWW-automata 21

q0 q1 q2 q3 q4

q7 q8

q9 q10

q5

q6

q11 q12 q13

0 0 1 0 0

1

0 0

01

0

1

1

1

1
0 1

Figure 9. A 3-reversible FSA accepting the language {001001t; t > 0} ∪ {02r+1101t; r > 0, t ≥ 2} ∪
{02r+11s01; r > 0, s ≥ 2}.

• L1 = {a0nc0nc0na; a ∈ {⊕,⊗}, c ∈ {◦, •}, n ≥ 0},

• L2 = {a0nc02nc0nb; a, b ∈ {⊕,⊗}, a 6= b, c ∈ {◦, •}, n ≥ 0},

• L3 = {a0n−1c0n−1d0na; a ∈ {⊕,⊗}, c, d ∈ {◦, •}, c 6= d, n > 0},

• L4 = {a0n−1c02n−2d0nb; a, b ∈ {⊕,⊗}, a 6= b, c, d ∈ {◦, •}, c 6= d, n > 0}.

There is no single RRW-automaton (and thus no S-kR-RRW-automaton) accepting L, but there is a
SLT-R-automaton using no auxiliary symbols that accepts L.

Proof:
We start with proving that no single RRW-automaton accepts L. For a contradiction, let M be a single
RRW-automaton accepting L. Let us analyze processing of particular words from L2 — let us have a
word w = a0n ◦ 02n ◦ 0nb, where a, b ∈ {⊕,⊗}, a 6= b, n ≥ 0. For sufficiently large n, M does not
accept this word directly (as can be easily proven using standard tools of the formal languages theory).
Thus, a reduction is needed. We suppose n greater than the size of the window of M . Below we analyze
all possible ways how to reduce w:

• If the rewritten subword contains no delimiter from {⊕,⊗, ◦}, then the number of symbols present
in exactly one of the segments consisting of 0’s will be lowered (note that introducing a new
delimiter would make the resulting word belong to the complement of L, so we can safely omit
this case). Thus, the resulting word falls out of L.

• If the rewritten subword contains ⊕ or ⊗, then, as we have sufficiently long w, we can suppose it
does not contain both of them at once. Also, neither one of the symbols ◦ can be changed. The

22 P. Hoffmann / Power of S-kR-RRWW-automata

result of this reduction should fall into L1 (the outer delimiters must be the same and the inner pair
of the delimiters contains the original ones, i.e. ◦’s). However, as either the left segment or the
right segment of 0’s was shortened, the word does not belong to L1.

• If the rewritten subword contains ◦, then we also need either ◦ or • in the replacement word to
remain in L. As the rewritten subword must be longer than the replacement word and we have a
single automaton, we know that at least one symbol 0 is removed. Moreover, the delimiters ⊕ and
⊗ are not changed by this reduction due to the limited size of the window of M . Therefore, the
word obtained by this reduction should belong to L2 ∪ L4. Obviously, it is not possible to stay
in L2 after removing some 0’s around either of the delimiters ◦. So there remains only one way,
i.e. reducing into a word from L4. Necessarily, the rewritten subword equals to 0i ◦ 0j for some
i, j > 0. Since we have a single automaton, we know that the replacement word equals to •. It
follows that i = 1 and j = 2.

Thus, M contains a rewriting meta-instruction rw = (L`, 0 ◦ 00→ •, Lr). We would like to proceed
as follows. Let wL = ⊕02n0 ◦ 0002n ◦ 02n+1⊕ 6∈ L. The idea is to show that this word can be reduced
by rw to wL = ⊕02n • 02n ◦ 02n+1⊕ ∈ L. This will be a contradiction.

It is easy to see that⊕02n ∈ L` as the reductions (⊕0m, 0◦00→ •, 02m◦0m+1⊗) must be performed
(for sufficiently large m) by rw as shown above. It remains to prove that 02n ◦ 02n+1⊕ ∈ Lr. At first,
it may not be so obvious why this should hold. For a contradiction, let us suppose the opposite holds.
Thanks to the closure properties of regular languages, we know that the complement of the language Lr,
i.e. the language Lc

r , is regular as well. Let us suppose that for all m > m0 (for some constant m0),
it holds 02m ◦ 02m+1⊕ ∈ Lc

r . It is clear that a FSA A accepting Lc
r steps through some cycles while

reading the segments of 0’s in such words. We can pass such cycles several times and obtain new words
belonging to Lc

r . Let us start with the word 02n ◦ 02n+1⊕ ∈ Lc
r for sufficiently large n. We obtain words

02n+k1`1◦02n+1+k2`2⊕ ∈ Lc
r where `1, `2 are the lengths of corresponding cycles inA and k1, k2 ≥ 0 are

variables we can choose arbitrarily. We would like to find k1 and k2 such that 2(2n+ k2`2) = 2n+ k1`1
(note that the value `2 may depend on n). Note that we can also choose n > m0. Let n = m0 · P ! · C
where P is the number of states of A and C > 0 is an arbitrary number that assures that n is large
enough to satisfy all restrictions on n introduced earlier in this proof. Now the values of `1, `2 are fixed.
It is easy to obtain that k1 = 2n

`1
+ 2k2

`1
· `2 and thus it suffices to put k2 = `1 to obtain k1 as an

integer. Thus, we have that 02n+k1`1 ◦ 02n+1+k2`2⊕ ∈ Lc
r , then 02n+2n+2`1`2 ◦ 02n+1+`1`2⊕ ∈ Lc

r , then
02(2n+`1`2) ◦ 0(2n+`1`2)+1⊕ ∈ Lc

r , and finally 02s ◦ 0s+1⊕ ∈ Lc
r for s = 2n + `1`2. Thus, the word

⊗02n+`1`20 ◦ 0002(2n+`1`2) ◦ 0(2n+`1`2)+1⊕ = ⊗0s+1 ◦ 02(s+1) ◦ 0s+1⊕ ∈ L2 ⊆ L will not be reduced
(we consider s as above) — and as n is large enough, it will not be accepted at all.

Thus, we have a contradiction. Therefore, 02n ◦ 02n+1⊕ ∈ Lr. Thus, M reduces the word wL 6∈ L
into the word wL ∈ L. This is a contradiction. Therefore, L(M) 6= L.

It remains to prove that there is a SLT-R-automaton M ′ not using auxiliary symbols and accepting
L. Let Σ = {0,⊕,⊗, ◦, •} and M ′ = (Σ,Σ, I) where I contains the following meta-instructions (let
Σ◦ = Σ \ {•},Σ• = Σ \ {◦}):

(I1) (⊕0∗, 0 ◦ 0→ •,Σ∗◦⊕) (I5) (⊕0∗, 0 ◦ 00→ •,Σ∗◦⊗) (I9) (Σ∗◦, •0→ ◦, 0∗(⊕+⊗))

(I2) (⊗0∗, 0 ◦ 0→ •,Σ∗◦⊗) (I6) (⊗0∗, 0 ◦ 00→ •,Σ∗◦⊕) (I10) (Σ∗•, ◦0→ •, 0∗(⊕+⊗))

(I3) (⊕0∗, 0 • 0→ ◦,Σ∗•⊕) (I7) (⊕0∗, 0 • 00→ ◦,Σ∗•⊗) (I11) ({accb; a, b ∈ {⊕,⊗},
(I4) (⊗0∗, 0 • 0→ ◦,Σ∗•⊗) (I8) (⊗0∗, 0 • 00→ ◦,Σ∗•⊕) c ∈ {◦, •}},Accept)

P. Hoffmann / Power of S-kR-RRWW-automata 23

It is easy to see that M ′ is strictly 4-testable (note that every strictly k-testable language is also a
strictly k + 1 testable language for all k > 0 [19]):

• Languages a0∗ where a ∈ {⊕,⊗} correspond to the triple ({a0}, {00}, {a0, 00}).

• Languages Σ∗c where c ∈ {◦, •} correspond to the triple (Σc,Σc,Σc).

• Languages Σ∗ca where c ∈ {◦, •} and a ∈ {⊕,⊗} correspond to the triple (Σ2
c ,Σ

2
c ,Σc · {a}).

• Language 0∗(⊕+⊗) corresponds to the triple ({0⊕, 0⊗, 00}, {00}, {0⊕, 0⊗}).

• Language {accb; a, b ∈ {⊕,⊗}, c ∈ {◦, •}} corresponds to the triple ({⊕ ◦ ◦,⊕ • •,⊗ ◦ ◦,⊗ •
•}, ∅, {◦ ◦ ⊕, ◦ ◦ ⊗, • • ⊕, • • ⊗}).

• All rewritten subwords are shorter than 5 symbols.

Let us prove that L = L(M ′). We will start with L ⊆ L(M ′). The words shorter than 5 symbols
are accepted by the accepting meta-instruction and they will not be considered below. The words from
L1 are reduced by (I1)–(I4) to a word from L3. The words from L2 are reduced by (I5)–(I8) to a word
from L4. Finally, the words from L3 ∪ L4 are reduced by (I9) and (I10) to a word from L1 ∪ L2. Thus,
L ⊆ L(M ′). On the other hand, it holds that L(M ′) ⊆ L as obviously no rewriting meta-instruction
reduces a word outside L to a word from L and the accepting meta-instruction accepts exactly the listed
words that all belong to L. This concludes our proof. ut

Overall, we obtained that the classes of languages accepted by S-kR-RRW-automata and SLT-R-
automata not using auxiliary symbols are incomparable. Therefore, both should be considered when
learning languages from positive samples.

Next, we will show that there are even quite simple languages that require the use of auxiliary sym-
bols to be accepted by a restarting automaton. We will need the following two auxiliary lemmas.

The first one states that each restarting automaton can be transformed into an equivalent one that
accepts directly only short words.

Lemma 3.16. ([15])
Let X ∈ {RR,RRW,RRWW}. For each X-automaton M , there is an X-automaton M ′ and k > 0
such that L(M) = L(M ′) and no word longer than k symbols is accepted by M ′ directly (i.e. without a
restart).

The following lemma is the well-known pumping lemma.

Lemma 3.17. Let A = (Q,Σ, δ, I, F) be a FSA. Then there is n such that for every word w ∈ L(A)
such that |w| ≥ n, there are x, y, z ∈ Σ∗ such that:

• w = xyz,

• y 6= λ,

• |xy| ≤ n, and

• for all k ≥ 0 it holds xykz ∈ L(A).

24 P. Hoffmann / Power of S-kR-RRWW-automata

Now we can proceed with the theorem announced above.

Theorem 3.18. Let L = {ww′|w ∈ {0, 1}∗, |w| = |w′|, wR 6= w′} ∪ {w ∈ {0, 1}∗; |w| is an odd
number}. It holds:

• L ∈ EL, and

• L ∈ L(RRWW) \ L(RRW).

Proof:
Let us prove that L is an even linear language. We will show that L can be generated by the even linear
grammar G = ({0, 1}, {S,T},S, P), where P contains the following rules:

(i) S→ aSa for a ∈ {0, 1},

(ii) S→ aTb for a, b ∈ {0, 1}, a 6= b,

(iii) S→ a for a ∈ {0, 1},

(iv) T→ aTb for a, b ∈ {0, 1},

(v) T→ λ, and

(vi) T→ a for a ∈ {0, 1}.

We will first prove that L ⊆ L(G). Let w ∈ L. Let x be the longest prefix of the left half of w (in
the case of w having odd length, we do not consider the symbol in the middle to be part of either half)
such that w has a suffix xR. We start from the non-terminal S by using |x|-times the rule (i). This way
we obtain xSxR. Then, if only 1 symbol is missing to obtain w, we finish the derivation by the rule (iii).
Otherwise, we use the rule (ii) to obtain xaTbxR for a, b ∈ {0, 1} such that a 6= b. Then the rule (iv) is
used until at most 1 symbol is missing to obtain w. Then we finish the derivation by the rule (v) or (vi).

Now we will prove that L(G) ⊆ L. There are three ways to finish a derivation of some word —
using either the rule (iii), (v), or (vi). In the case of the rules (iii) and (vi), it is clear that the obtained
word belongs to L because it has odd length. In the case of the rule (v), the resulting word belongs to L
as well because in the derivation of that word, there must be a switch from the non-terminal symbol S to
the non-terminal symbol T (i.e. the use of the rule (ii)) that introduced two different terminal symbols on
the corresponding positions in the left half and in the right half of the obtained word.

Thus, L is an even linear language. It is therefore clear that L ∈ L(RRWW) because all context-free
languages can be accepted by an RRWW-automaton [8].

Next, we will show that L can not be accepted by any RRW-automaton. For a contradiction, let us
suppose that an RRW-automaton M = (Σ,Γ, I) accepts L. According to Lemma 3.16, we can suppose
that all words accepted by M directly (without a restart) are shorter than `′ symbols, for some constant
`′ > 0.

Let IRW be the set of all rewriting meta-instructions of M and let Lrd =
⋃

(L`,x→y,Lr)∈IRW
(L` ·

{x} · Lr) be the set of all words reduced by M . This is obviously a regular language. Similarly, Lnr =
{0, 1}∗ \ Lrd is the regular language consisting of all words which can not be reduced by M .

Let wn,k = (02k1)n02k(102k)n for n > 0 and k > 0. Obviously, wn,k 6∈ L as wn,k has even length
and it is of the formwwR forw = (02k1)n0k. In general,M need not to reduce long words not belonging

P. Hoffmann / Power of S-kR-RRWW-automata 25

to L. However, we will prove that the automatonM can reduce the words wn,k for all n > `′ and k > k0,
where k0 is the constant denoted as n within the pumping lemma for regular languages (Lemma 3.17)
applied to Lnr. For a contradiction, let us suppose that for some k > k0 and n > `′, the word wn,k can
not be reduced by M . Hence, wn,k ∈ Lnr and we can pump within the prefix 02k of wn,k. We obtain
the word w′ = (02k+2i1)(02k1)n−102k(102k)n for some i > 0 also from Lnr. However, w′ is in L as w′

has even length and starts by 02k+1, but ends by 102k. This is a contradiction to the assumption that all
words accepted by M directly are shorter than `′ symbols.

Thus all words wn,k for n > `′ and k > k0 can be reduced by M . We will additionally suppose
that k0 is greater than the size of the window of M . We will further prove that those words are always
reduced by a rewriting in the innermost subword 02k.

Let us suppose that the rewriting does not occur in the innermost subword 02k. As the result of the
rewriting, no more than k− 1 symbols can be removed (because k is greater than the size of the window
of M). Thus, the center of the word moves by less than k/2 symbols to either side. Before the rewriting,
there was the word 0k before the center and 0k following the center — in total, there was the innermost
subword 02k. After the rewriting, there will surely be a pair of corresponding symbols around the center
of the word that will not be the same and thus the resulting word will belong to L. This is a contradiction
to the error preserving property of M . Thus, the rewriting has to occur in the innermost subword 02k.

Let us create a language similar to Lrd that will mark the exact places of rewritings. We define it as
L′rd =

⋃
(L`,x→y,Lr)∈IRW

(L` · {x•} · Lr) where • is a new symbol. Again, L′rd is a regular language.
Let L1 = {wn,k′0 ;n > n0} for k′0 = k0 + 1 — note that this is a regular language as well because
L1 = {(02k′0102k

′
01)i02k

′
0 ; i ≥ 0} ∩ Σ≥2(n0+1)(2k′0+1)+2k′0 . We define a homomorphism h by h(0) =

0, h(1) = 1, and h(•) = λ. Now let us consider L2 = L′rd ∩ h−1(L1). We know that all words from L1

are reduced by M . The words in L2 contain a special mark • denoting where exactly rewritings of words
from L1 occur. Remember that we already proved that the rewriting changes the innermost subword
02k in all those wn,k and thus also the mark • occurs at the corresponding place of each word from L2

— but note that the mark can be placed either in the innermost subword 02k or in the following one
(consider e.g. the reduction 00100100 ⇒ 0010100, replacing the subword 010 by the word 10, where
the corresponding word in L2 would be 0010010 • 0). Still, L2 is a regular language (the class of regular
languages is closed under inverse homomorphism [6]).

However, consider the homomorphism g(0) = λ, g(1) = 1, and g(•) = • applied to L2. We
obtain the infinite language g(L2) ⊆ {1n • 1n;n > n0} ∪ {1n+1 • 1n−1;n > n0} that is not a regular
language (use Lemma 3.17). This is a contradiction because the class of regular languages is closed
under homomorphism [6].

We conclude that there is no RRW-automaton accepting L.
ut

4. Conclusions

We analyzed S-kR-RRWW-automata. They are quite powerful as they can represent all GCSL. In the
case of S-kR-RRW-automata the reversibility level can be used to tune their power. This helps in gram-
matical inference as lowering the power of a model can significantly reduce the search space and amount
of training samples needed. [5] shows that S-kR-RRW-automata can be successfully inferred from
positive data even in the case of random targets. However, we showed that S-kR-RRW-automata and

26 P. Hoffmann / Power of S-kR-RRWW-automata

SLT-R-automata without auxiliary symbols characterize incomparable classes of languages. Thus both
have their place in the grammatical inference field. Nevertheless, the relation between S-kR-RRWW-
automata and SLT-R-automata is open.

References
[1] Amar, V., Putzolu, G.: On a family of linear grammars, Information and Control, 7, 1964, 283–291.

[2] Angluin, D.: Inference of reversible languages, JACM, 29(3), 1982, 741–765.

[3] Buntrock, G.: Wachsende kontextsensitive Sprachen, Habilitation thesis, Universität Würzburg, 1996.

[4] Dahlhaus, E., Warmuth, M. K.: Membership for growing context-sensitive grammars is polynomial, Journal
of Computer System Sciences, 33(3), 1986, 456–472.

[5] Hoffmann, P.: Machine learning of analysis by reduction, Phd-thesis, Charles University in Prague, 2013.

[6] Hopcroft, J. E., Ullman, J. D., Motwani, R.: Introduction to automata theory, languages, and computation,
2nd edition, Reading : Addison-Wesley, 2001, ISBN 0201441241.

[7] Jančar, P., Mráz, F., Plátek, M., Vogel, J.: Restarting automata, FCT’95, Proceedings (H. Reichel, Ed.), 965,
Springer, 1995.

[8] Jančar, P., Mráz, F., Plátek, M., Vogel, J.: On monotonic automata with a restart operation, Journal of
Automata, Languages and Combinatorics, 4(4), 1999, 287–311.

[9] Kobayashi, S., Yokomori, T.: Learning concatenations of locally testable languages from positive data, AII
’94, ALT ’94, Proceedings (S. Arikawa, K. P. Jantke, Eds.), 872, Springer, 1994.

[10] Lautemann, C.: One pushdown and a small tape, Dirk Siefkes zum 50. Geburtstag (K. W. Wagner, Ed.),
Technische Universität Berlin and Universität Augsburg, 1988.

[11] Linz, P.: An introduction to formal languages and automata, Lexington : D. C. Heath, 1990.

[12] Lopatková, M., Plátek, M., Kuboň, V.: Modelling syntax of free word-order languages: Dependency analysis
by reduction, TSD 2005, Proceedings (V. Matoušek, P. Mautner, T. Pavelka, Eds.), 3658, Springer, 2005.

[13] McNaughton, R.: The loop complexity of pure-group events, Information and Control, 11(1–2), 1967, 167–
176.

[14] Mráz, F., Otto, F., Plátek, M.: Learning analysis by reduction from positive data, ICGI 2006, Proceedings
(Y. Sakakibara, S. Kobayashi, K. Sato, T. Nishino, E. Tomita, Eds.), 4201, Springer, 2006.

[15] Mráz, F., Plátek, M., Procházka, M.: On Special Forms of Restarting Automata, Grammars, 2(3), 1999,
223–233.

[16] Otto, F.: Restarting automata and their relation to the Chomsky hierarchy, DLT 2003, Proceedings (Z. Ésik,
Z. Fülöp, Eds.), 2710, Springer, 2003.

[17] Otto, F.: Restarting automata, in: Recent Advances in Formal Languages and Applications (Z. Ésik,
C. Martı́n-Vide, V. Mitrana, Eds.), vol. 25 of Studies in Computational Intelligence, Springer, Berlin, 2006,
269–303.

[18] Plátek, M., Lopatková, M., Oliva, K.: Restarting automata: motivations and applications, Workshop
’Petrinetze’ and 13. Theorietag ’Formale Sprachen und Automaten’, Proceedings (M. Holzer, Ed.), Insti-
tut für Informatik, Technische Univ. München, 2003.

[19] Yokomori, T., Kobayashi, S.: Learning local languages and their application to DNA sequence analysis,
IEEE Transactions on Pattern Analysis Machine Intelligence, 20(10), 1998, 1067–1079.

