Integer Algorithms and Data Structures and why we should care about them

Vladimír Čunát

Department of Theoretical Computer Science and Mathematical Logic

CHARLES UNIVERSITY PRAGUE

faculty of mathematics and physics

Doctoral Seminar 2010/11

Outline

Introduction Motivation Justification

Integer ADS Models and problems Techniques Sorting

Conclusion

Introduction

Outline

Introduction Motivation Justification

Integer ADS Models and problems Techniques Sorting

Conclusion

Motivation Whan can restriction on integers give us?

mostly comparison based ADS are taught

- except for hashing and radix/bucket sorting
- only pairwise comparisons are assumed
- very general, always usable (where sensible)
- most studied in 70s-80s

but we can often be more restrictive on the keys

that can give us some benefits

(日) (同) (日) (日)

Motivation Whan can restriction on integers give us?

word size matters

- usual assumption: keys have machine-word size
- significant difference needs different ADS
- Ionger keys form strings of words
 - pairwise comparisons would need $\Omega(1)$ time (!)
 - we won't discuss ADS for this case
- Ionger words give us more computational power
 - ▶ we can handle multiple keys at once, simulating SIMD

(日) (同) (日) (日)

- Motivation

Motivation Whan can restriction on integers give us?

word size matters

usual assumption: keys have machine-word size

- significant difference needs different ADS
- Ionger keys form strings of words
 - pairwise comparisons would need $\Omega(1)$ time (!)
 - we won't discuss ADS for this case
- Ionger words give us more computational power
 - we can handle multiple keys at once, simulating SIMD

(日) (同) (日) (日)

- Motivation

Motivation Whan can restriction on integers give us?

word size matters

- usual assumption: keys have machine-word size
- significant difference needs different ADS
- Ionger keys form strings of words
 - pairwise comparisons would need $\Omega(1)$ time (!)
 - we won't discuss ADS for this case
- longer words give us more computational power
 - we can handle multiple keys at once, simulating SIMD

(日)

Whan can restriction on integers give us?

word size grows quickly

- standard width 64 bits (since \sim 2000)
- SIMD extensions provide operations on longer words
 - the set of operations is restricted but usually sufficient
 - 128-bit words since \sim 2000
 - ▶ 256-bit words coming this year (AVX) and expected to grow
- but we often only need 32-bit keys
 - \Rightarrow handling 4 or 8 keys at once (today)
- external-memory model: hundreds of keys in block

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Whan can restriction on integers give us?

word size grows quickly

- standard width 64 bits (since \sim 2000)
- SIMD extensions provide operations on longer words
 - the set of operations is restricted but usually sufficient
 - 128-bit words since \sim 2000
 - ▶ 256-bit words coming this year (AVX) and expected to grow
- but we often only need 32-bit keys
 - \Rightarrow handling 4 or 8 keys at once (today)
- external-memory model: hundreds of keys in block

Whan can restriction on integers give us?

word size grows quickly

- standard width 64 bits (since \sim 2000)
- SIMD extensions provide operations on longer words
 - the set of operations is restricted but usually sufficient
 - $\blacktriangleright~$ 128-bit words since ~ 2000
 - ▶ 256-bit words coming this year (AVX) and expected to grow
- but we often only need 32-bit keys
 - \Rightarrow handling 4 or 8 keys at once (today)
- external-memory model: hundreds of keys in block

Whan can restriction on integers give us?

word size grows quickly

- standard width 64 bits (since \sim 2000)
- SIMD extensions provide operations on longer words
 - the set of operations is restricted but usually sufficient
 - $\blacktriangleright\,$ 128-bit words since ~ 2000
 - ▶ 256-bit words coming this year (AVX) and expected to grow
- but we often only need 32-bit keys
 - \Rightarrow handling 4 or 8 keys at once (today)
- external-memory model: hundreds of keys in block

L Justification

Outline

Introduction Motivation Justification

Integer ADS Models and problems Techniques Sorting

Conclusion

・ロン ・雪と ・雨と

Integer ADS

└─ Justification

Justification Why can we restrict keys to integers?

discussed ADS will only work with nonnegative integers

- ▶ in real computers we have to use them anyway
- we only have to ensure correct ordering

	Inte	ger /	ADS
--	------	-------	-----

└─ Justification

discussed ADS will only work with nonnegative integers

- in real computers we have to use them anyway
- we only have to ensure correct ordering

└─ Justification

Justification

Why can we restrict keys to integers?

examples

- negative integers: biased representation works (adding half of the nonnegative maximum to all keys)
- ► IEEE-754 floats: sign biased exponent mantissa
 - nonnegative floats compare correctly (!)
 - flipping the sign bit of positive numbers and inverting negative ones does the trick (except for NaNs)
- lexicographical ordering of strings: by correct alignment or prefixing with length

L Justification

Justification

Why can we restrict keys to integers?

examples

- negative integers: biased representation works (adding half of the nonnegative maximum to all keys)
- ► IEEE-754 floats: sign biased exponent mantissa
 - nonnegative floats compare correctly (!)
 - flipping the sign bit of positive numbers and inverting negative ones does the trick (except for NaNs)
- lexicographical ordering of strings: by correct alignment or prefixing with length

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

L Justification

Justification

Why can we restrict keys to integers?

examples

- negative integers: biased representation works (adding half of the nonnegative maximum to all keys)
- ► IEEE-754 floats: sign biased exponent mantissa
 - nonnegative floats compare correctly (!)
 - flipping the sign bit of positive numbers and inverting negative ones does the trick (except for NaNs)
- lexicographical ordering of strings: by correct alignment or prefixing with length

L Justification

Justification

Why can we restrict keys to integers?

examples

- negative integers: biased representation works (adding half of the nonnegative maximum to all keys)
- ► IEEE-754 floats: sign biased exponent mantissa
 - nonnegative floats compare correctly (!)
 - flipping the sign bit of positive numbers and inverting negative ones does the trick (except for NaNs)
- lexicographical ordering of strings: by correct alignment or prefixing with length

Integer ADS

Models and problems

Outline

Introduction Motivation Justificatior

Integer ADS Models and problems Techniques Sorting

Conclusion

└─ Integer ADS

Models and problems

The word-RAM model

What can we do with the integers?

we need a model that approximates the power of real HW \Rightarrow

- formalizing our ADS and proving asymptotic complexities
- possibility of proving complexity lower bounds of the problems

word-RAM

- only works with words: w-bit integers (RAM was too strong)
- memory is an addressable array of words
- conditional jumps allow standard control structures
- supports C-like operations on words
 - standard arithmetics $+ * \operatorname{div} \operatorname{mod}$
 - bitwise masks, shifts and boolean operations (not, and, or, xor),
 - ▶ but sometimes we're restricted to AC₀ operations (no * ...)

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

└─ Integer ADS

└─ Models and problems

The word-RAM model

What can we do with the integers?

we need a model that approximates the power of real HW \Rightarrow

- formalizing our ADS and proving asymptotic complexities
- possibility of proving complexity lower bounds of the problems

word-RAM

- only works with words: w-bit integers (RAM was too strong)
- memory is an addressable array of words
- conditional jumps allow standard control structures
- supports C-like operations on words
 - ▶ standard arithmetics + − * div mod
 - bitwise masks, shifts and boolean operations (not, and, or, xor),
 - ▶ but sometimes we're restricted to AC₀ operations (no * ...)

└─ Integer ADS

└─ Models and problems

The word-RAM model

What can we do with the integers?

we need a model that approximates the power of real HW \Rightarrow

- formalizing our ADS and proving asymptotic complexities
- possibility of proving complexity lower bounds of the problems

word-RAM

- only works with words: w-bit integers (RAM was too strong)
- memory is an addressable array of words
- conditional jumps allow standard control structures
- supports C-like operations on words
 - ▶ standard arithmetics + − * div mod
 - bitwise masks, shifts and boolean operations (not, and, or, xor),
 - ▶ but sometimes we're restricted to AC₀ operations (no * ...)

└─ Integer ADS

└─ Models and problems

The word-RAM model

What can we do with the integers?

we need a model that approximates the power of real HW \Rightarrow

- formalizing our ADS and proving asymptotic complexities
- possibility of proving complexity lower bounds of the problems

word-RAM

- only works with words: w-bit integers (RAM was too strong)
- memory is an addressable array of words
- conditional jumps allow standard control structures
- supports C-like operations on words
 - standard arithmetics $+ * \operatorname{div} \operatorname{mod}$
 - bitwise masks, shifts and boolean operations (not, and, or, xor)

イロト 不得 トイヨト イヨト

but sometimes we're restricted to AC₀ operations (no * ...)

└─ Models and problems

DS for dynamic ordered set maintenance

- dictionary: membership query, insertion, deletion (hash table)
- ▶ predecessor problem: min, max, predecessor and successor (predecessor of x ∈ U is the greatest y ∈ S such that y < x)</p>
- augmented set: rank and select queries (rank is the number of less elements, select is the inverse)

▶ augmentation can be done with any monoid (→ e.g. heaps)

sorting

└─ Models and problems

DS for dynamic ordered set maintenance

- dictionary: membership query, insertion, deletion (hash table)
- ▶ predecessor problem: min, max, predecessor and successor (predecessor of x ∈ U is the greatest y ∈ S such that y < x)</p>
- augmented set: rank and select queries (rank is the number of less elements, select is the inverse)

▶ augmentation can be done with any monoid (\rightarrow e.g. heaps)

Models and problems

DS for dynamic ordered set maintenance

- dictionary: membership query, insertion, deletion (hash table)
- ▶ predecessor problem: min, max, predecessor and successor (predecessor of x ∈ U is the greatest y ∈ S such that y < x)</p>
- augmented set: rank and select queries (rank is the number of less elements, select is the inverse)
 - ▶ augmentation can be done with any monoid (\rightarrow e.g. heaps)

A D F A B F A B F A B F

sorting

Linteger ADS

Outline

ntroduction Motivation Justificatior

Integer ADS

Models and problems Techniques Sorting

Conclusion

Integer ADS

- Techniques

Utilizing long words Do we really need SIMD support in HW?

vector computations on multiple keys

- in practice we're given SIMD instructions
- but we can simulate many of them in $\mathcal{O}(1)$ time
 - we reserve one additional bit per key
 - addition: works, overflow can be masked out
 - subtraction: works if the results are nonnegative
 - ▶ comparison (≤): via subtraction, result in the reserved bits
 - replication: via multiplication
 - horizontal sum: via multiplication or mod
 - rank: sum of comparison results
 - insertion into sorted vector: rank and bit twiddling
 - and many more...

└─ Integer ADS

— Techniques

Utilizing long words Do we really need SIMD support in HW?

vector computations on multiple keys

- in practice we're given SIMD instructions
- but we can simulate many of them in $\mathcal{O}(1)$ time
 - we reserve one additional bit per key
 - addition: works, overflow can be masked out
 - subtraction: works if the results are nonnegative
 - ▶ comparison (≤): via subtraction, result in the reserved bits
 - replication: via multiplication
 - horizontal sum: via multiplication or mod
 - rank: sum of comparison results
 - insertion into sorted vector: rank and bit twiddling
 - and many more...

└─ Integer ADS

— Techniques

Utilizing long words Do we really need SIMD support in HW?

vector computations on multiple keys

- in practice we're given SIMD instructions
- but we can simulate many of them in $\mathcal{O}(1)$ time
 - we reserve one additional bit per key
 - addition: works, overflow can be masked out
 - subtraction: works if the results are nonnegative
 - comparison (\leq): via subtraction, result in the reserved bits
 - replication: via multiplication
 - horizontal sum: via multiplication or mod
 - rank: sum of comparison results
 - insertion into sorted vector: rank and bit twiddling
 - and many more...

Integer ADS

— Techniques

Utilizing long words Do we really need SIMD support in HW?

vector computations on multiple keys

- in practice we're given SIMD instructions
- but we can simulate many of them in $\mathcal{O}(1)$ time
 - we reserve one additional bit per key
 - addition: works, overflow can be masked out
 - subtraction: works if the results are nonnegative
 - ▶ comparison (≤): via subtraction, result in the reserved bits
 - replication: via multiplication
 - horizontal sum: via multiplication or mod
 - rank: sum of comparison results
 - insertion into sorted vector: rank and bit twiddling
 - and many more...

└─ Integer ADS

L Techniques

Utilizing long words How can we speed up ADS with SIMD?

packed B-tree

- we can maintain a sorted vector of keys
- by adding pointers we can easily implement B-tree
- operations on one vector take $\mathcal{O}(1)$ time
 - ranks and comparisons guide us
 - modification by bit shifting and masking
 - ▶ we can even maintain subtree sizes ⇒ also rank and select queries
- ▶ with $b \approx \sqrt{w}$ we have capacity $n \approx (\sqrt{w})^h$ ⇒ height and time: $h \approx \log n / \log \sqrt{w} \approx \log_w n$

└─ Integer ADS

— Techniques

Utilizing long words How can we speed up ADS with SIMD?

packed B-tree

- we can maintain a sorted vector of keys
- by adding pointers we can easily implement B-tree
- operations on one vector take $\mathcal{O}(1)$ time
 - ranks and comparisons guide us
 - modification by bit shifting and masking
 - ► we can even maintain subtree sizes ⇒ also rank and select queries
- ▶ with $b \approx \sqrt{w}$ we have capacity $n \approx (\sqrt{w})^h$ ⇒ height and time: $h \approx \log n / \log \sqrt{w} \approx \log_w n$

- Techniques

Utilizing long words How can we speed up ADS with SIMD?

packed B-tree

- we can maintain a sorted vector of keys
- by adding pointers we can easily implement B-tree
- operations on one vector take $\mathcal{O}(1)$ time
 - ranks and comparisons guide us
 - modification by bit shifting and masking
 - ► we can even maintain subtree sizes ⇒ also rank and select queries
- ▶ with $b \approx \sqrt{w}$ we have capacity $n \approx (\sqrt{w})^h$ ⇒ height and time: $h \approx \log n / \log \sqrt{w} \approx \log_w n$

Integer ADS

— Techniques

decomposition of van Emde Boas

- designed for the predecessor problem
- searching for predecessor of $x \in U$:

we cut the key in half and first test the high half

- \cdot the matching subset exists and its minimum is less than x
- \rightarrow the result is in the subset \cdot otherwise we need the maximum of the previous subset
- min and max are stored, successor is symmetrical
- insertions and deletions the same way, membership by hashing

Integer ADS

Techniques

decomposition of van Emde Boas

- designed for the predecessor problem
- searching for predecessor of $x \in U$:

we cut the key in half and first test the high half

 \cdot the matching subset exists and its minimum is less than x

- \rightarrow the result is in the subset \cdot otherwise we need the maximum of the previous subset
- min and max are stored, successor is symmetrical
- insertions and deletions the same way, membership by hashing

- Techniques

decomposition of van Emde Boas

- unordered dictionaries inside: hashing in am. exp. $\Theta(1)$ time
- we halve the keys in $\Theta(1)$ time and reasonable space
- we can use recursion:
 - ▶ stop on $\Theta(w)$ keys and use balanced trees instead
 - am. exp. time $\mathcal{O}(\log w)$ for any operation (pred. problem)
 - another point of view: halving the paths in a binary trie

Techniques

decomposition of van Emde Boas

- unordered dictionaries inside: hashing in am. exp. $\Theta(1)$ time
- we halve the keys in $\Theta(1)$ time and reasonable space
- we can use recursion:
 - stop on $\Theta(w)$ keys and use balanced trees instead
 - ▶ am. exp. time $O(\log w)$ for any operation (pred. problem)
 - another point of view: halving the paths in a binary trie

(日)

Combination for predecessor problem Can we do better?

predecessor problem DS by Andersson using a layered structure:

- 1. $\approx \sqrt{\log n}$ levels of range reduction give us keys of $\approx w/2^{\sqrt{\log n}}$ bits
- 2. packed B-trees with branching factor $\approx 2^{\sqrt{\log n}}$ we need trees of height $\approx \frac{\log n}{\log 2^{\sqrt{\log n}}} = \sqrt{\log n}$
- 3. balanced trees of height $\approx \sqrt{\log n}$ to reduce space so the previous layers only need to store $n/2^{\sqrt{\log n}}$ elements

A D F A B F A B F A B F

Combination for predecessor problem Can we do better?

predecessor problem DS by Andersson using a layered structure:

- 1. $\approx \sqrt{\log n}$ levels of range reduction give us keys of $\approx w/2^{\sqrt{\log n}}$ bits
- 2. packed B-trees with branching factor $\approx 2^{\sqrt{\log n}}$ we need trees of height $\approx \frac{\log n}{\log 2^{\sqrt{\log n}}} = \sqrt{\log n}$
- 3. balanced trees of height $\approx \sqrt{\log n}$ to reduce space so the previous layers only need to store $n/2^{\sqrt{\log n}}$ elements

(日)、

Combination for predecessor problem Can we do better?

predecessor problem DS by Andersson using a layered structure:

- 1. $\approx \sqrt{\log n}$ levels of range reduction give us keys of $\approx w/2^{\sqrt{\log n}}$ bits
- 2. packed B-trees with branching factor $\approx 2^{\sqrt{\log n}}$ we need trees of height $\approx \frac{\log n}{\log 2^{\sqrt{\log n}}} = \sqrt{\log n}$
- 3. balanced trees of height $\approx \sqrt{\log n}$ to reduce space so the previous layers only need to store $n/2^{\sqrt{\log n}}$ elements

(日)、

- Techniques

Combination for predecessor problem Can we do better?

predecessor problem DS by Andersson

the complexities of operations:

- $\sqrt{\log n}$ queries to hash tables (range reduction)
- traversing packed B-tree of height $\sqrt{\log n}$
- finishing on balanced tree of height $\sqrt{\log n}$
- ▶ this immediately gives us sorting in $n\sqrt{\log n}$ expected time

Techniques

Combination for predecessor problem Can we do better?

predecessor problem DS by Andersson

the complexities of operations:

- $\sqrt{\log n}$ queries to hash tables (range reduction)
- traversing packed B-tree of height $\sqrt{\log n}$
- finishing on balanced tree of height $\sqrt{\log n}$
- this immediately gives us sorting in $n\sqrt{\log n}$ expected time

LInteger ADS

Outline

ntroduction Motivation Justificatior

Integer ADS

Models and problems Techniques Sorting

Conclusion

Integer A	٨DS
-----------	-----

└─ Sorting

Radix sorting Can we sometimes sort in linear time?

algorithm

- split the keys into k parts
- ► use stable counting sort on every part in O(n+2^{w/k}) time and O(2^{w/k}) space

selecting parameters

- choose k such that n ≈ 2^{w/k} so every phase take O(n) time and space
- we sort in space $\mathcal{O}(n)$ and time $\mathcal{O}(nk) = \mathcal{O}(nw/\log n)$
- this is linear for $n \in 2^{\Omega(w)}$
- ► compare with Andersson's $\mathcal{O}(n\sqrt{\log n})$ time: radix is better for $w \ge \log^{3/2} n$

Integer .	ADS
-----------	-----

└─ Integer ADS └─ Sorting

Radix sorting Can we sometimes sort in linear time?

algorithm

- split the keys into k parts
- ► use stable counting sort on every part in O(n+2^{w/k}) time and O(2^{w/k}) space

selecting parameters

- ► choose k such that n ≈ 2^{w/k} so every phase take O(n) time and space
- we sort in space O(n) and time $O(nk) = O(nw/\log n)$
- this is linear for $n \in 2^{\Omega(w)}$
- ► compare with Andersson's $\mathcal{O}(n\sqrt{\log n})$ time: radix is better for $w \ge \log^{3/2} n$

Integer .	ADS
-----------	-----

└─ Integer ADS └─ Sorting

Radix sorting Can we sometimes sort in linear time?

algorithm

- split the keys into k parts
- ► use stable counting sort on every part in O(n+2^{w/k}) time and O(2^{w/k}) space

selecting parameters

- ► choose k such that n ≈ 2^{w/k} so every phase take O(n) time and space
- we sort in space $\mathcal{O}(n)$ and time $\mathcal{O}(nk) = \mathcal{O}(nw/\log n)$
- this is linear for $n \in 2^{\Omega(w)}$
- ► compare with Andersson's $\mathcal{O}(n\sqrt{\log n})$ time: radix is better for $w \ge \log^{3/2} n$

Conclusion What have we found out about integer ADS?

integer ADS

 comparison model is very simple and general but in reality we (can) usually use integer keys

we can gain significant performance improvement

- comparison model bounds can be broken: $\Omega(\log n)$ predecessor, $\Omega(n \log n)$ sorting
- many of the techniques are very useful even in practice, for example hashing and radix sorting

Conclusion What have we found out about integer ADS?

integer ADS

- comparison model is very simple and general but in reality we (can) usually use integer keys
- we can gain significant performance improvement
- comparison model bounds can be broken: $\Omega(\log n)$ predecessor, $\Omega(n \log n)$ sorting
- many of the techniques are very useful even in practice, for example hashing and radix sorting

Further reading Where to find more about it?

- there are many publications, even asympotical improvements are known, but very complicated
- good introduction, overview and references:
 - 📔 Eric Demaine

Advanced Data Structures MIT Lecture Notes, 2003, 2005, 2010 http://erikdemaine.org

