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Motivation
Whan can restriction on integers give us?

mostly comparison based ADS are taught

I except for hashing and radix/bucket sorting

I only pairwise comparisons are assumed

I very general, always usable (where sensible)

I most studied in 70s–80s

but we can often be more restrictive on the keys

I that can give us some benefits
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Whan can restriction on integers give us?

word size matters

I usual assumption: keys have machine-word size

I significant difference needs different ADS
I longer keys form strings of words

I pairwise comparisons would need Ω(1) time (!)
I we won’t discuss ADS for this case

I longer words give us more computational power
I we can handle multiple keys at once, simulating SIMD
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word size grows quickly

I standard width 64 bits (since ∼ 2000)
I SIMD extensions provide operations on longer words

I the set of operations is restricted but usually sufficient
I 128-bit words since ∼ 2000
I 256-bit words coming this year (AVX) and expected to grow

I but we often only need 32-bit keys
⇒ handling 4 or 8 keys at once (today)

I external-memory model: hundreds of keys in block
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Why can we restrict keys to integers?

discussed ADS will only work with nonnegative integers

I in real computers we have to use them anyway

I we only have to ensure correct ordering
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Why can we restrict keys to integers?

examples

I negative integers: biased representation works
(adding half of the nonnegative maximum to all keys)

I IEEE-754 floats: sign – biased exponent – mantissa
I nonnegative floats compare correctly (!)
I flipping the sign bit of positive numbers

and inverting negative ones does the trick (except for NaNs)

I lexicographical ordering of strings:
by correct alignment or prefixing with length
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Models and problems

The word-RAM model
What can we do with the integers?

we need a model that approximates the power of real HW ⇒
I formalizing our ADS and proving asymptotic complexities

I possibility of proving complexity lower bounds of the problems

word-RAM

I only works with words: w -bit integers (RAM was too strong)

I memory is an addressable array of words

I conditional jumps allow standard control structures
I supports C-like operations on words

I standard arithmetics + − ∗ div mod
I bitwise masks, shifts and boolean operations (not, and, or, xor)
I but sometimes we’re restricted to AC0 operations (no ∗ . . . )
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Typical problems
What do we want to do with the integers?

DS for dynamic ordered set maintenance

I dictionary: membership query, insertion, deletion (hash table)

I predecessor problem: min, max, predecessor and successor
(predecessor of x ∈ U is the greatest y ∈ S such that y < x)

I augmented set: rank and select queries
(rank is the number of less elements, select is the inverse)

I augmentation can be done with any monoid (→ e. g. heaps)

sorting
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Utilizing long words
Do we really need SIMD support in HW?

vector computations on multiple keys

I in practice we’re given SIMD instructions
I but we can simulate many of them in O(1) time

I we reserve one additional bit per key
I addition: works, overflow can be masked out
I subtraction: works if the results are nonnegative
I comparison (≤): via subtraction, result in the reserved bits
I replication: via multiplication
I horizontal sum: via multiplication or mod
I rank: sum of comparison results
I insertion into sorted vector: rank and bit twiddling
I and many more. . .
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Utilizing long words
How can we speed up ADS with SIMD?

packed B-tree

I we can maintain a sorted vector of keys

I by adding pointers we can easily implement B-tree
I operations on one vector take O(1) time

I ranks and comparisons guide us
I modification by bit shifting and masking
I we can even maintain subtree sizes
⇒ also rank and select queries

I with b ≈
√
w we have capacity n ≈ (

√
w)h

⇒ height and time: h ≈ log n/ log
√
w ≈ logw n
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Range reduction
Can’t we make the keys shorter?

decomposition of van Emde Boas

I designed for the predecessor problem

I searching for predecessor of x ∈ U:

we cut the key in half and first test the high half
· the matching subset exists and its minimum is less than x

→ the result is in the subset

· otherwise we need the maximum of the previous subset

I min and max are stored, successor is symmetrical

I insertions and deletions the same way, membership by hashing
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Range reduction
Can’t we make the keys shorter?

decomposition of van Emde Boas

I unordered dictionaries inside: hashing in am. exp. Θ(1) time

I we halve the keys in Θ(1) time and reasonable space
I we can use recursion:

I stop on Θ(w) keys and use balanced trees instead
I am. exp. time O(logw) for any operation (pred. problem)
I another point of view: halving the paths in a binary trie
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Combination for predecessor problem
Can we do better?

predecessor problem DS by Andersson

using a layered structure:

1. ≈
√

log n levels of range reduction

give us keys of ≈ w/2
√

log n bits

2. packed B-trees with branching factor ≈ 2
√

log n

we need trees of height ≈ log n

log 2
√

log n
=
√

log n

3. balanced trees of height ≈
√

log n to reduce space

so the previous layers only need to store n/2
√

log n elements
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Radix sorting
Can we sometimes sort in linear time?

algorithm

I split the keys into k parts

I use stable counting sort on every part
in O(n + 2w/k) time and O(2w/k) space

selecting parameters

I choose k such that n ≈ 2w/k

so every phase take O(n) time and space

I we sort in space O(n) and time O(nk) = O(nw/ log n)

I this is linear for n ∈ 2Ω(w)

I compare with Andersson’s O(n
√

log n) time:
radix is better for w ≥ log3/2 n
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What have we found out about integer ADS?

integer ADS

I comparison model is very simple and general
but in reality we (can) usually use integer keys

I we can gain significant performance improvement

I comparison model bounds can be broken:
Ω(log n) predecessor, Ω(n log n) sorting

I many of the techniques are very useful even in practice,
for example hashing and radix sorting
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Further reading
Where to find more about it?

I there are many publications, even asympotical improvements
are known, but very complicated

I good introduction, overview and references:

Eric Demaine
Advanced Data Structures
MIT Lecture Notes, 2003, 2005, 2010
http://erikdemaine.org

http://erikdemaine.org
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