
THREE LEARNABLE MODELS

FOR THE DESCRIPTION OF

LANGUAGE
Alexander Clark

Presentation by Peter Černo

ABOUT

 Introduction

 Representation classes should be defined in such a

way that they are learnable.

 1. Canonical deterministic finite automata

 The states of the automaton correspond to right

congruence classes of the language.

 2. Context free grammars

 The non-terminals of the grammar correspond to

the syntactic congruence classes.

 3. Residuated lattice structure

 From the Galois connection between strings and

contexts, called the syntactic concept lattice.

INTRODUCTION

 Formal Language Theory (FLT)

 Has its roots in the modeling of learning and of

language.

 Originates from linguistics. Yet it has moved far

from its origins.

 Now it is an autonomous part of computer

science, and only few papers at the major

conferences in FLT are directly concerned with

linguistics.

INTRODUCTION

 Learnability

 The original intention was for phrase-structure

grammars (PSGs) to be learnable.

 The PSGs were meant to represent, at a suitable

level of abstraction, the linguistics knowledge of

language.

 Chomsky says:

 The concept of “phrase structure grammar” was explicitly

designed to express the richest system that could

reasonable be expected to result from the application of

Harris-type procedures to a corpus…

 “Harris-type procedures” refer to the methods of

distributional learning developed by Zellig Harris.

INTRODUCTION

 Learnability

 PSGs in general, and CFGs in particular, were

intended to be learnable by distributional methods.

 But they were not.

 The problem is not with distributional methods.

 The problem is with these formalisms.

 The natural question therefore is:

 Are there other formalisms, different from

Chomsky hierarchy, that are learnable?

INTRODUCTION

 What we mean by learning?

 We construct our representation for the language

from information about language.

 We need to:

 Define representations.

 Define algorithms for constructing these representations.

 Prove, under a suitable regime, that these algorithms will

converge to the right answer.

 We assume a very good source of information:

 We have positive data and membership queries.

 We consider only algorithms that are efficient.

INTRODUCTION

 Why is learning important?

 1st domain: We have information about the

language, but not about the representation.

 Not only linguistics.

 Engineering domains:

 We have some data that we want to model.

 Computational biology – strings of bases, amino acids.

 Robotics – sequences of actions, sequences of events.

 Learnability is essential!

 2nd domain: We have direct information about the

representation.

 Programming languages, mark up languages:

 We know the structure of the language.

HOW

 Slogan: “Put learnability first!”

 Basic strategy:

 Representations are objective or “empiricist”.

 Basic elements (states, non-terminals) must have a

clear definition in terms of sets of strings.

 Rather than defining a function from the

presentation to the language, we should go

backwards.

 We should define the map from the language to

the representation.

EXAMPLE

 From representation G to the language L(G).

 In a CFG, we define a derivation relation ⇒*.

 For each non-terminal N we define:

 L(N) = * w | N ⇒* w +.

 Result: map from the set of CFGs to the set of CFLs.

 There is however an obstacle to going in the

reverse direction.

 Consider CFL L, and a grammar G: L(G) = L.

 If N is a non-terminal in G, what constraints are

there on L(N)?

 We can say literally nothing about this set, other

than that it is a context free language.

CANONICAL DFA

 We start by considering regular languages.

 We end up with the class of representations

equivalent to a subclass of DFA.

 Notation:

 Σ – finite nonempty alphabet.

 Σ* – free monoid with λ the empty string.

 A language L is a subset of Σ*.

 The residual language of a given string u is:

 u-1 L = { w | uw ∊ L }.

 The following relation: u ∼L v iff u-1 L = v-1 L is an

equivalence relation and right congruence:

 if u ∼L v and w ∊ Σ* then uw ∼L vw.

CANONICAL DFA

 Notation:

 We will write [u]R for the congruence class of the

string u under this right congruence ∼L.

 It is better to consider pair <P, S>, where:

 P is a congruence class,

 S is the residual language of all strings in P.

 We will have elements of the form:

 <[u]R, u-1L>.

 One important element is:

 <[λ]R, L>.

CANONICAL DFA

 Representation based on congruence classes:

 States – primitive elements of our representation.

 The state q0 = <[λ]R, L>.

 Observations:

 If u ∊ L then every element of [u]R is also in L.

 Final state is <P, S> such that λ ∊ S.

 If we can tell for each string which congruence class

it is in, then we will have predicted the language.

 Idea:

 We will try to compute for each string w which

congruence class it is in.

CANONICAL DFA

 We have defined the primitive elements.

 Now we have to define a derivation.

 Observation:

 If we have a string that we know is in the

congruence class [u]R and we append the string v

we know that it will be in the class [uv]R.

 We can restrict ourselves to the case where |v|=1.

 We now have something that looks very like an

automaton.

 We have defined a function from L to ℛ(L).

CANONICAL DFA

 The representation ℛ(L) consists of:

 Q – possibly infinite set of all these states,

 q0 – the initial state,

 δ – the transition function defined by:

 δ([u]R, a) = [ua]R ,

 F – the set of final states {[u]R | u ∊ L}.

 We can define the function from the

representation ℛ(L) to the language L(ℛ(L)) :
L(ℛ(L)) = * w | δ(q0 , w) ∊ F }.

 For any language L: L(ℛ(L)) = L.

 Myhill-Nerode Theorem:

 ℛ(L) is finite iff L is regular.

CANONICAL DFA

 It is possible to infer theses representations for

regular languages, using a number of different

techniques depending on the details of the

source of information about the language.

 For instance:

 If we have membership and equivalence queries,

we can use Dana Angluin’s L* algorithm.

 Membership query is that a teacher has to decide

whether to accept or reject a given word.

 Equivalence query is that a teacher gets a

conjecture (DFA) and he has to decide whether this

DFA is a desired DFA or not. If it is not then he also

has to provide a counterexample.

CFGS WITH CONGRUENCE CLASSES

 We move to representations capable of

representing context-free languages.

 We use the idea of distributional learning.

 These techniques were originally described by

structuralist linguists.

 Notation:

 Context (l, r), where l, r ∊ Σ*.

 Operation ⊙: (l, r) ⊙ u = lur.

 u occurs in a context (l, r) in L ⊆ Σ* if lur ∊ L.

 (L, R), (L, r) refer to the obvious sets of contexts:

 L×R, L×{r}, and so on.

CFGS WITH CONGRUENCE CLASSES

 Notation:

 Distribution of a string w in a language L:

 CL(w) = { (l, r) | lwr ∊ L }.

 We extend the operation ⊙ to contexts:

 (l, r) ⊙ (x, y) = (lx, yr).

 ⊙ is obviously an associative operation.

 Definition:

 Strings u and v are syntactically congruent iff

they have the same distribution:

 u ≡L v iff CL(u) = CL(v).

 We write [u] for the congruence class of u.

CFGS WITH CONGRUENCE CLASSES

 Classical result:

 The number of congruence classes is finite if and

only if the language is regular.

 Our primitive elements will correspond to

these congruence classes.

 Problem:

 We will be restricted to regular languages, since we

are interested in finite representations.

 This turns out not to be the case.

CFGS WITH CONGRUENCE CLASSES

 Empty context (λ, λ) has a special significance:

 (λ, λ) ∊ CL(u) means that u ∊ L.

 If we can predict the congruence class of a

string, we will know the language.

 We can now proceed to derivation rules.

 The relation ≡L is a congruence:

 If u ≡L v then xuy ≡L xvy.

 If we take any u’ ∊ [u] and v’ ∊ [v] then u’v’ ∊ [uv].
 u’v ≡L uv and u’v’ ≡L u’v implies u’v’ ≡L uv.

 We get context-free productions: [uv- → ,u-,v-.

 And productions: ,a- → a, [λ- → λ.

CFGS WITH CONGRUENCE CLASSES

 The representation Φ(L) consists of:

 Set of congruence classes [u] (possibly infinite),

 Set of productions:

 { [uv- → ,u-,v- | u, v ∊ Σ* },

 * ,a- → a | a ∊ Σ },

 [λ- → λ.

 Set of initial symbols I:
 I = { [u] | u ∊ L }.

 We define derivation as in a CFG.

 Apparently: ,w- ⇒* v iff v ∊ [w].

 We define L(Φ(L)) = { w | ∃N ∊ I: N ⇒* w +.
 Apparently: L(Φ(L)) = L.

CFGS WITH CONGRUENCE CLASSES

 We have used the following schemas:

 [uv- → ,u-,v-, ,a- → a, [λ- → λ.

 This looks something like a context-free grammar

in Chomsky normal form.

 We can have different schemas:

 Finite grammars: ,w- → w.

 Linear grammars: [lwr- → l,w-r.

 Regular grammars: ,aw- → a,w-.

 Invariant:

 These schemas will only derive strings of the same

congruence class.

CFGS WITH CONGRUENCE CLASSES

 There are two differences:

 We may have more than one start symbol.

 If the language is not regular then the number of

congruence classes will be infinite.

 Consider Lab = { anbn | n ≥ 0 }.

 If i ≠ j then ai is not congruent to aj.

 Let us suppose that:

 We maintain the structure of the representation.

 But only take a finite set of congruence classes V

consisting of the classes corresponding to a finite set

of strings K: V = { [u] | u ∊ K }.

 This gives us a finite representation Φ(L, K).

CFGS WITH CONGRUENCE CLASSES

 If we have only finite subset of productions,

then: ,w- ⇒* v only implies v ∊ [w].
 Therefore: L(Φ(L, K)) ⊆ L.

 The class we can represent is:

𝔏CCFG = { L | ∃ finite K ⊂ Σ*: L(Φ(L, K)) = L}.

 This class includes all regular languages.

 It also includes some non-regular context-free

languages. For Lab : K = { λ, a, b, ab, aab, abb }.

 The language L = { anbm | n < m } is not in 𝔏CCFG , as L

is the union of infinite number of congruence classes.

 By restricting non-terminals to correspond to the

congruence classes, we lose a bit of representational

power, but we gain efficient learnability.

BACK TO REGULAR LANGUAGES

 Let A be the minimal DFA for a language L.

 Let Q be the set of states of A and n = |Q|.

 A string w defines a function fw from Q to Q:

 fw(q) = δ(q, w).

 There are nn possible such functions.

 If fu = fv then u ≡L v, thus there are at most

 nn possible congruence classes.

 Holzer and Konig: we can approach this bound.

 Using one non-terminal per congruence class

could be an expensive mistake.

 There is often some non-trivial structure.

BACK TO REGULAR LANGUAGES

 Congruence classes correspond to functions.

 It seems reasonable to represent them using

some basis functions.

 If we represent each congruence class as n × n

Boolean matrix T : Tij is 1 iff fu : qi ⟼ qj ,

 Then the basis functions are the n2 matrices

that have just a single 1.

 Rather than having a very large number of

very specific rules that show how individual

congruence classes combine, we can have a very

much smaller set of more general rules.

 Elements = sets of congruence classes.

DISTRIBUTIONAL LATTICE GRAMMARS

 A congruence class [u] defines the

distribution CL(u) and vice versa.

 It is natural to consider therefore as our

primitive elements ordered pairs <S, C> where:

 S is a subset of Σ*.

 C is a subset of Σ*⨯Σ*.

 Given a language L we will consider only those

pairs that satisfy two conditions:

 C ⊙ S is a subset of L.

 Both of these sets are maximal.

 If a pair <S, C> satisfies these conditions, then

we call it a syntactic concept of the language.

GALOIS CONNECTION

 Another way is to consider Galois connection

between the sets of strings and contexts.

 For a given language L we can define maps from

sets of strings to sets of contexts and vice versa.

 Given a set of strings S we can define a set of

contexts S’ as S’ = * (l, r) : ∀ w ∈ S lwr ∈ L }.

 Dually we can define for a set of contexts C the set of

strings C’ as C’ = * w : ∀ (l, r) ∈ C lwr ∈ L }.

 A concept is then an ordered pair <S, C> such

that: S’ = C and C’ = S.

 The most important point here is that these

are closure operations: S’’’ = S’ and C’’’ = C’ .

BASIC PROPERTIES

 We write 𝒞(S) for <S’’, S’> and 𝒞(C) for <C’, C’’>.

 There is an inverse relation between the size of

the set of strings S and the set of contexts C :
 The larger that S is the smaller that C is.

 In the limit there is a concept 𝒞(Σ*) ; normally this

will have C = ∅.

 Conversely we will always have 𝒞(Σ*⨯Σ*) .

 One important concept is 𝒞(L) = 𝒞({ (𝜆, 𝜆) }) .

 The set of concepts is a partially ordered set.

 We can define: <S1 , C1> ≤ <S2 , C2> iff S1 ⊆ S2 .

 Apparently: S1 ⊆ S2 iff C1 ⊇ C2 .

SYNTACTIC CONCEPT LATTICE

 This partial order is a complete lattice 𝔅(L),

called syntactic concept lattice.

 Topmost element is: ⊤ = 𝒞(Σ*) .

 Bottommost element is: ⊥ = 𝒞(Σ*⨯Σ*) .

 Meet operation: <S1 , C1> ∧ <S2 , C2> can be defined

as: < S1 ∩ S2 , (S1 ∩ S2)’ >.

 Join operation: <S1 , C1> ∨ <S2 , C2> can be defined

as: < (C1 ∩ C2)’ , C1 ∩ C2 >.

 The following figure shows the syntactic concept

lattice for the regular language L = { (ab)* }.

 L is infinite, but the lattice 𝔅(L) is finite.

FIGURE - SYNTACTIC CONCEPT LATTICE

MONOID STRUCTURE

 Crucially, this lattice structure also has a

monoid structure.

 We can define a binary operation:

 <S1 , C1> ∘ <S2 , C2> = 𝒞(S1 S2) .

 Operation ∘ is associative and has a unit 𝒞(𝜆) .

 Moreover, it is monotonic:

 If X ≤ Y then X ∘ Z ≤ Y ∘ Z .

 We can also define residual operations, so this

syntactic concept lattice becomes a so-called

residuated lattice.

REPRESENTATION

 Having defined and examined the syntactic

concept lattice, we can now define a

representation based on this.

 Again, if the language is not regular, the lattice

will be infinite.

 We will start by considering how we might define

a representation given the whole lattice.

 We want to be able to compute for every string w,

the concept of w, 𝒞(w) .

 If 𝒞(w) ≤ 𝒞(L) then we know that w ∈ L .

 If we know the whole lattice, then the

computation of 𝒞(w) is quite easy.

REPRESENTATION

 However, if we have a non-regular language,

then we will need to restrict the lattice.

 We can do this by taking a finite set of

contexts F ⊆ Σ*⨯Σ* , which will include (𝜆, 𝜆).

 This gives us a finite lattice 𝔅(L, F), which will

have at most 2|F| elements.

 Lattice 𝔅(L, F) is the lattice of concepts <S, C>

where C ⊆ F, and where C = S’ ∩ F, and S = C’.

 We can define concatenation ∘ as before:

<S1 , C1> ∘ <S2 , C2> = < ((S1 S2)’ ∩ F)’ , (S1 S2)’ ∩ F >

 This is however no longer a residuated lattice.

ISSUES WITH FINITE LATTICE

 The operation ∘ is no longer associative.

 There may not be an identity element.

 Nor are the residuation operations well defined.

 However, we should still be able to approximate

the computation.

 For some languages, and for some set of features

the approximation will be accurate.

 It is no longer the case, that: 𝒞(u) ∘ 𝒞(v) = 𝒞(uv).

 However, we can prove that: 𝒞(u) ∘ 𝒞(v) ≥ 𝒞(uv) .

 This means that given some string w, we can

compute an upper bound on 𝒞(w) quite easily.

UPPER BOUND

 We will call this upper bound 𝜙(w).

 It may not give us exactly the right answer but it

will sill be useful.

 If the upper bound 𝜙(w) is below 𝒞(L) then we

know that the string w will be in the language.

 In fact, we can compute many different upper

bounds: since the operation ∘ is not associative.

 By using effective dynamic programming

algorithm we can compute the lowest possible

upper bound 𝜙(w) in 𝛰(|w|3).

LOWEST POSSIBLE UPPER BOUND

 Given a language L and set of contexts F we

define 𝜙: Σ* → 𝔅(L, F) recursively by:

 𝜙(λ) = 𝒞(λ) ,

 𝜙(a) = 𝒞(a) for all a ∊ Σ,

 for all w with |w| > 1,

 𝜙(w) = ⋀ * 𝜙(u) ∘ 𝜙(v) | u, v ∊ Σ+, uv = w }

 We can define the language generated by this

representation to be:

 L(𝔅(L, F)) = { w | 𝜙(w) ≤ 𝒞((𝜆, 𝜆)) }

 For any language L and any set of contexts F :

 L(𝔅(L, F)) ⊆ L

DISTRIBUTIONAL LATTICE GRAMMARS

 As we increase the set of contexts, the

language defined increases monotonically.

 In the infinite limit when F = Σ*⨯Σ* we have:

 L(𝔅(L, Σ*⨯Σ*)) = L

 We can define a natural class of languages as

those which are represented by finite lattices.

 We will call this class the Distributional

Lattice Grammars (DLGs).

 The corresponding class of languages is:

 𝔏DLG = * L | ∃ finite set F ⊆ Σ*⨯Σ* : L(𝔅(L, F)) = L }

DISTRIBUTIONAL LATTICE GRAMMARS

 𝔏DLG properly includes 𝔏CCFG .

 𝔏DLG includes some non-context free languages.

 𝔏DLG also includes much larger set of context

free languages than 𝔏CCFG including some non-

deterministic and inherently ambiguous

languages.

 A problem is that lattices can be exponentially

large. We can however represent them lazily

using a limited set of examples.

 An important future direction of research is to

exploit the algebraic structure of the lattice

to find more compact representations.

REFERENCES

 Clark, A., Three learnable models for the

description of language

in Language and Automata Theory and Applications,

edited by A.-H. Dediu, H. Fernau, and C. Martn-Vide,

vol. 6031 of Lecture Notes in Computer Science, pp. 16 -

31, Springer Berlin / Heidelberg, 2010.

