THREE LEARNABLE MODELS
FOR THE DESCRIPTION OF

@ LANGUAGE
Alexander Clark

o Presentation by Peter Cerno

ABOUT

Introduction

Representation classes should be defined in such a
way that they are learnable.

1. Canonical deterministic finite automata

The states of the automaton correspond to right
congruence classes of the language.

2. Context free grammars

The non-terminals of the grammar correspond to
the syntactic congruence classes.

3. Residuated lattice structure

From the Galois connection between strings and
contexts, called the syntactic concept lattice.

INTRODUCTION

Formal Language Theory (FLT)

Has its roots in the modeling of learning and of
language.

Originates from linguistics. Yet it has moved far
from its origins.

Now 1t is an autonomous part of computer
science, and only few papers at the major
conferences in FLT are directly concerned with
linguistics.

INTRODUCTION

Learnability

The original intention was for phrase-structure
grammars (PSGs) to be learnable.

The PSGs were meant to represent, at a suitable
level of abstraction, the linguistics knowledge of
language.

Chomsky says:

o The concept of “phrase structure grammar” was explicitly
designed to express the richest system that could
reasonable be expected to result from the application of
Harris-type procedures to a corpus...

“Harris-type procedures” refer to the methods of
distributional learning developed by Zellig Harris.

INTRODUCTION

Learnability

PSGs 1n general, and CFGs in particular, were
intended to be learnable by distributional methods.

But they were not.
The problem is not with distributional methods.

The problem is with these formalisms.

The natural question therefore is:

Are there other formalisms, different from
Chomsky hierarchy, that are learnable?

INTRODUCTION

What we mean by learning?

We construct our representation for the language
from information about language.

We need to:

o Define representations.
o Define algorithms for constructing these representations.

o Prove, under a suitable regime, that these algorithms will
converge to the right answer.

We assume a very good source of information:
o We have positive data and membership queries.

We consider only algorithms that are efficient.

INTRODUCTION

Why is learning important?
1t domain: We have information about the

language, but not about the representation.
o Not only linguistics.

o Engineering domains:
We have some data that we want to model.
Computational biology — strings of bases, amino acids.
Robotics — sequences of actions, sequences of events.

o Learnability is essential!

2nd domain: We have direct information about the
representation.
o Programming languages, mark up languages:

We know the structure of the language.

How

Slogan: “Put learnability first!”

Basic strategy:
Representations are objective or “empiricist’.

Basic elements (states, non-terminals) must have a
clear definition in terms of sets of strings.

Rather than defining a function from the
presentation to the language, we should go
backwards.

We should define the map from the language to
the representation.

EXAMPLE

From representation ¢ to the language L(G).
In a CFG, we define a derivation relation =%*,
For each non-terminal N we define:
L(N)={w|N=>*w].

Result: map from the set of CFGs to the set of CFLs.
There 1s however an obstacle to going in the
reverse direction.

Consider CFL L, and a grammar G: L(G) = L.

If N 1s a non-terminal in G, what constraints are
there on L(N)?

We can say literally nothing about this set, other
than that it 1s a context free language.

CANONICAL DFA

We start by considering regular languages.

We end up with the class of representations
equivalent to a subclass of DFA.

Notation:
2 — finite nonempty alphabet.

2*—free monoid with 4 the empty string.

A language L is a subset of 2*

The residual language of a given string u is:
ulL={wluwel}

The following relation: v ~, v iff v?L =v?L is an
equivalence relation and right congruence:

if u~, v and weX* then uw~, vw.

CANONICAL DFA

Notation:

We will write fu/f for the congruence class of the
string u under this right congruence ~,.

It 1s better to consider pair <P .S5>, where:
o P 1s a congruence class,
o S 1s the residual language of all strings in P.

We will have elements of the form:
<fufR uiL>.

One important element is:

<[AJR L>.

CANONICAL DFA

Representation based on congruence classes:

States — primitive elements of our representation.
The state g, = </A/% L>.

Observations:
If ueL then every element of /u/f is also in L.
Final state 1s <P $> such that 1 €.

If we can tell for each string which congruence class
1t 1s in, then we will have predicted the language.

Idea:

We will try to compute for each string w which
congruence class it is 1in.

CANONICAL DFA

We have defined the primitive elements.
Now we have to define a derivation.

Observation:

If we have a string that we know 1s 1n the
congruence class /u/f and we append the string v
we know that it will be in the class [uv/~.

We can restrict ourselves to the case where [v/=1.

We now have something that looks very like an
automaton.

We have defined a function from L to 2(L).

CANONICAL DFA

The representation &2() consists of:
Q — possibly infinite set of all these states,
g,— the initial state,

0 — the transition function defined by:

S((uff, a) = [ua]*,
F—the set of final states {/u/?/u €L}

We can define the function from the
representation #Z(L) to the language L(R(L)):

L(R(L) ={w]d(qy w)EF}
For any language L: L(R(L)) = L.
Myhill-Nerode Theorem:

R(L) 1is finite iff L is regular.

CANONICAL DFA

It 1s possible to infer theses representations for
regular languages, using a number of different
techniques depending on the details of the
source of information about the language.

For instance:

If we have membership and equivalence queries,
we can use Dana Angluin’s L* algorithm.

Membership query 1s that a teacher has to decide
whether to accept or reject a given word.

Equivalence query is that a teacher gets a
conjecture (DFA) and he has to decide whether this
DFA 1s a desired DFA or not. If it 1s not then he also

has to provide a counterexample.

CFGS WITH CONGRUENCE CLASSES

We move to representations capable of
representing context-free languages.

We use the idea of distributional learning.

These techniques were originally described by
structuralist linguists.
Notation:

Context (1 r), where [re’X*

Operation O: (I r) ® u=lur.

u occurs in a context (/, r) in L €3* if lure L.

(L, R), (L, r) refer to the obvious sets of contexts:
LXR, Lx{r}, and so on.

CFGS WITH CONGRUENCE CLASSES

Notation:
Distribution of a string w in a language L:

Cw)={Ar)/IwreL}

We extend the operation ® to contexts:

drO &y =Uxyr).

(1s obviously an associative operation.

Definition:
Strings u and v are syntactically congruent iff
they have the same distribution:

u=,v iff C,(u) =C,(v).
We write [u] for the congruence class of u.

CFGS WITH CONGRUENCE CLASSES

Classical result:

The number of congruence classes 1s finite if and
only if the language 1s regular.

Our primitive elements will correspond to
these congruence classes.

Problem:

We will be restricted to regular languages, since we
are interested in finite representations.

This turns out not to be the case.

CFGS WITH CONGRUENCE CLASSES

Empty context (4, 1) has a special significance:
(A, 1) € C,(u) means that u € L.

If we can predict the congruence class of a
string, we will know the language.

We can now proceed to derivation rules.
The relation =, 1s a congruence:
If u=, v then xuy =, xvy.
If we take any u’€ fu] and v’€ [v] then uv’e [uv].
uv=uv and uv’'=, u’'v implies uv’' =, uv.
We get context-free productions: /uv/— [u]/v].
And productions: /a/— a, [1] - A

CFGS WITH CONGRUENCE CLASSES

The representation @(L) consists of:
Set of congruence classes [u/ (possibly infinite),

Set of productions:
o {[uv] - [u][v]]u veZ*},
offa]>alaeX]}
o [A] > A
Set of initial symbols [
ol={[u][/u€el}
We define derivation as in a CFG.
o Apparently: /w/=*v iff ve [w]
We define L(®(L)) ={w[INel: N =>*w}.
o Apparently: L(®(L)) = L.

CFGS WITH CONGRUENCE CLASSES

We have used the following schemas:

[uv] = [uj[v], [a]—a, [A]-> A
This looks something like a context-free grammar
in Chomsky normal form.

We can have different schemas:
Finite grammars: /w/ - w.
Linear grammars: [lwr] - I/w]r.
Regular grammars: faw/ - a/w].

Invariant:

These schemas will only derive strings of the same
congruence class.

CFGS WITH CONGRUENCE CLASSES

There are two differences:
We may have more than one start symbol.

If the language 1s not regular then the number of
congruence classes will be infinite.

Consider L, ={a"h* [n=>0}.
If i#j then & is not congruent to 2.
Let us suppose that:
We maintain the structure of the representation.

But only take a finite set of congruence classes IV
consisting of the classes corresponding to a finite set

of strings K V={[u]/ueK}.
This gives us a finite representation @, K).

CFGS WITH CONGRUENCE CLASSES

If we have only finite subset of productions,
then: /w/=*v only implies v e /w/.
Therefore: L(®(L, K)) € L.
The class we can represent is:
8= {L 3 finite K c Z* L(D(L, K)) = L}
This class includes all regular languages.

It also includes some non-regular context-free
languages. For L_,: K={A,a b, ab, aab, abb }.

The language L ={a"bh" [n<m} is not in L., as L
1s the union of infinite number of congruence classes.
By restricting non-terminals to correspond to the

congruence classes, we lose a bit of representational
power, but we gain efficient learnability.

BACK TO REGULAR LANGUAGES

Let A be the minimal DFA for a language L.

Let Q be the set of states of A and n=/0Q/.

A string w defines a function £, from Q to ¢
£,(q) = (g w).

There are n” possible such functions.

If £, =f,then u =, v, thus there are at most

n? possible congruence classes.

Holzer and Konig: we can approach this bound.

Using one non-terminal per congruence class
could be an expensive mistake.

There 1s often some non-trivial structure.

BACK TO REGULAR LANGUAGES

Congruence classes correspond to functions.

It seems reasonable to represent them using
some basis functions.

If we represent each congruence class as nX n
Boolean matrix 7 7; is 1 iff £,:q;— g,
Then the basis functions are the n° matrices
that have just a single 1.

Rather than having a very large number of
very specific rules that show how individual
congruence classes combine, we can have a very
much smaller set of more general rules.

Elements = sets of congruence classes.

DISTRIBUTIONAL LATTICE GRAMMARS

A congruence class [/u/ defines the
distribution C,(u) and vice versa.

It 1s natural to consider therefore as our
primitive elements ordered pairs <§, C> where:
S 1s a subset of 2%
C 1s a subset of 2*x2*
Given a language L we will consider only those
pairs that satisfy two conditions:
C(S 1s a subset of L.
Both of these sets are maximal.

If a pair <S5, C> satisties these conditions, then
we call it a syntactic concept of the language.

(GALOIS CONNECTION

Another way 1s to consider Galois connection
between the sets of strings and contexts.

For a given language L we can define maps from
sets of strings to sets of contexts and vice versa.

Given a set of strings S we can define a set of
contexts S" as S'={(r):VweS IwrelL}.

Dually we can define for a set of contexts € the set of
strings " as C'={w:V({,r)eC IwrelL}
A concept 1s then an ordered pair <S5, C> such
that: $’=C and C’=S.
The most important point here i1s that these
are closure operations: =5’ and C"”"=C".

BASIC PROPERTIES

We write C(S) for <57)S> and C(C) for <C, C">.

There 1s an inverse relation between the size of
the set of strings S and the set of contexts C:

The larger that S is the smaller that C 1s.

In the limit there 1s a concept £(2*); normally this
will have C=4.

Conversely we will always have C(2*x2%).
One important conceptis O(L) =C({ (1, 4)}).
The set of concepts is a partially ordered set.
We can define: <5,,(,> < <5,,C,> iff 5, S,.
Apparently: S, € S, iff C,=2 C,.

SYNTACTIC CONCEPT LATTICE

This partial order is a complete lattice B(L),
called syntactic concept lattice.
Topmost element is: 7=C27%).
Bottommost element 1s: L =C(2*x2%).
Meet operation: <S5,, C;,> A <S,, C,> can be defined
as: <8,NS,, (5,NnS,) >
Join operation: <S5,, ;> V <§,, C,> can be defined
as: <(C,nC,),C,NC, >.
The following figure shows the syntactic concept
lattice for the regular language L ={ (ab)*}.

L 1s infinite, but the lattice $(L) is finite.

FIGURE - SYNTACTIC CONCEPT LATTICE

T = (X% 0)

(lal; [\ 0],) ([ba] UTA], [a,])

1= ([A]a [aab] U P\?/\D

1L =(0,X xX")

MONOID STRUCTURE

Crucially, this lattice structure also has a
monoid structure.
We can define a binary operation:
<S;,C,> 0 <S,,C,> =C(S5,S5,).
Operation o 1s associative and has a unit &(4).

Moreover, 1t 1s monotonic:
If X<Y then XoeZ<YolZ.

We can also define residual operations, so this
syntactic concept lattice becomes a so-called
residuated lattice.

REPRESENTATION

Having defined and examined the syntactic
concept lattice, we can now define a
representation based on this.

Again, if the language 1s not regular, the lattice
will be infinite.

We will start by considering how we might define
a representation given the whole lattice.

We want to be able to compute for every string w;,
the concept of w, C(w).

If C(w)<C(L) then we know that welL.

If we know the whole lattice, then the
computation of &(w) is quite easy.

REPRESENTATION

However, if we have a non-regular language,
then we will need to restrict the lattice.

We can do this by taking a finite set of
contexts F < X*x2* which will include (4, 4).

This gives us a finite lattice $B(L, F), which will
have at most 2¥/ elements.

Lattice (L, F) 1s the lattice of concepts <, C>
where C € F, and where C=5'NnF,and S=C".

We can define concatenation ¢ as before:
<S§5,,C,>0<5,,C,>=<((5,5)'NF)’, (55,)NF>
This 1s however no longer a residuated lattice.

ISSUES WITH FINITE LATTICE

The operation ¢ is no longer associative.
There may not be an identity element.
Nor are the residuation operations well defined.

However, we should still be able to approximate
the computation.

For some languages, and for some set of features
the approximation will be accurate.

It 1s no longer the case, that: C(u) o C(v) = C(uv).
However, we can prove that: C(u) o C(v) = C(uv) .

This means that given some string w, we can
compute an upper bound on £(w) quite easily.

UPPER BOUND

We will call this upper bound g(w).

It may not give us exactly the right answer but it
will sill be useful.

If the upper bound @g(w) is below C(L) then we
know that the string w will be 1n the language.

In fact, we can compute many different upper
bounds: since the operation ¢ 1s not associative.

By using effective dynamic programming
algorithm we can compute the lowest possible
upper bound g(w) in O(/wj’).

LOWEST POSSIBLE UPPER BOUND

Given a language L and set of contexts F we
define @: 2*— B(L, F) recursively by:

pA)=CA),

@(a) =C(a) for all a2,

for all w with /w/> 1,

PW) =N{P(Weop(v) [uvelt, uv=w}

We can define the language generated by this
representation to be:

LABLE)={w[pW)sC((4A))}

For any language L and any set of contexts F:

LB, F)CL

DISTRIBUTIONAL LATTICE GRAMMARS

As we increase the set of contexts, the
language defined increases monotonically.

In the infinite limit when F=2%*x2* we have:
L(B(L, 2*x2*)) =L

We can define a natural class of languages as

those which are represented by finite lattices.

We will call this class the Distributional
Lattice Grammars (DLGs).

The corresponding class of languages 1is:
Ly = {L] 3 finiteset FSX*x2* : L(B(L F)) =L}

DISTRIBUTIONAL LATTICE GRAMMARS

£y, properly includes £, .
£y, Includes some non-context free languages.

£y, also includes much larger set of context
free languages than £, including some non-
deterministic and inherently ambiguous
languages.

A problem is that lattices can be exponentially
large. We can however represent them lazily
using a limited set of examples.

An 1important future direction of research is to
exploit the algebraic structure of the lattice
to find more compact representations.

REFERENCES

Clark, A., Three learnable models for the
description of language

in Language and Automata Theory and Applications,
edited by A.-H. Dediu, H. Fernau, and C. Martn-Vide,
vol. 6031 of Lecture Notes in Computer Science, pp. 16 -
31, Springer Berlin / Heidelberg, 2010.

