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ABOUT 

 Introduction 

 Representation classes should be defined in such a 

way that they are learnable. 

 1. Canonical deterministic finite automata 

 The states of the automaton correspond to right 

congruence classes of the language. 

 2. Context free grammars 

 The non-terminals of the grammar correspond to 

the syntactic congruence classes. 

 3. Residuated lattice structure 

 From the Galois connection between strings and 

contexts, called the syntactic concept lattice. 



INTRODUCTION 

 Formal Language Theory (FLT) 

 Has its roots in the modeling of learning and of 

language. 

 Originates from linguistics. Yet it has moved far 

from its origins. 

 Now it is an autonomous part of computer 

science, and only few papers at the major 

conferences in FLT are directly concerned with 

linguistics. 



INTRODUCTION 

 Learnability 

 The original intention was for phrase-structure 

grammars (PSGs) to be learnable. 

 The PSGs were meant to represent, at a suitable 

level of abstraction, the linguistics knowledge of 

language. 

 Chomsky says: 

 The concept of “phrase structure grammar” was explicitly 

designed to express the richest system that could 

reasonable be expected to result from the application of 

Harris-type procedures to a corpus… 

 “Harris-type procedures” refer to the methods of 

distributional learning developed by Zellig Harris. 



INTRODUCTION 

 Learnability 

 PSGs in general, and CFGs in particular, were 

intended to be learnable by distributional methods. 

 But they were not. 

 The problem is not with distributional methods. 

 The problem is with these formalisms. 

 The natural question therefore is: 

 Are there other formalisms, different from 

Chomsky hierarchy, that are learnable? 



INTRODUCTION 

 What we mean by learning? 

 We construct our representation for the language 

from information about language. 

 We need to: 

 Define representations. 

 Define algorithms for constructing these representations. 

 Prove, under a suitable regime, that these algorithms will 

converge to the right answer. 

 We assume a very good source of information: 

 We have positive data and membership queries. 

 We consider only algorithms that are efficient. 



INTRODUCTION 

 Why is learning important? 

 1st domain: We have information about the 

language, but not about the representation. 

 Not only linguistics. 

 Engineering domains: 

 We have some data that we want to model. 

 Computational biology – strings of bases, amino acids. 

 Robotics – sequences of actions, sequences of events. 

 Learnability is essential! 

 2nd domain: We have direct information about the 

representation. 

 Programming languages, mark up languages: 

 We know the structure of the language. 



HOW 

 Slogan: “Put learnability first!” 

 Basic strategy: 

 Representations are objective or “empiricist”. 

 Basic elements (states, non-terminals) must have a 

clear definition in terms of sets of strings. 

 Rather than defining a function from the 

presentation to the language, we should go 

backwards. 

 We should define the map from the language to 

the representation. 



EXAMPLE 

 From representation G  to the language L(G). 

 In a CFG, we define a derivation relation ⇒*. 

 For each non-terminal N  we define: 

 L(N) = * w | N ⇒* w +. 

 Result: map from the set of CFGs to the set of CFLs. 

 There is however an obstacle to going in the 

reverse direction. 

 Consider CFL L, and a grammar G:  L(G) = L. 

 If N  is a non-terminal in G, what constraints are 

there on L(N)? 

 We can say literally nothing about this set, other 

than that it is a context free language. 



CANONICAL DFA 

 We start by considering regular languages. 

 We end up with the class of representations 

equivalent to a subclass of DFA. 

 Notation:  

 Σ – finite nonempty alphabet. 

 Σ* – free monoid with λ the empty string. 

 A language L  is a subset of Σ*. 

 The residual language of a given string u  is: 

 u-1 L = { w | uw ∊ L }. 

 The following relation: u ∼L v  iff u-1 L = v-1 L  is an 

equivalence relation and right congruence: 

 if u ∼L v  and w ∊ Σ*  then uw ∼L vw. 



CANONICAL DFA 

 Notation:  

 We will write [u]R  for the congruence class of the 

string u  under this right congruence ∼L. 

 It is better to consider pair <P, S>, where: 

 P  is a congruence class, 

 S  is the residual language of all strings in P. 

 We will have elements of the form: 

 <[u]R, u-1L>. 

 One important element is: 

 <[λ]R, L>. 



CANONICAL DFA 

 Representation based on congruence classes: 

 States – primitive elements of our representation. 

 The state q0  = <[λ]R, L>. 

 Observations: 

 If u ∊ L  then every element of [u]R  is also in L. 

 Final state is <P, S>  such that λ ∊ S. 

 If we can tell for each string which congruence class 

it is in, then we will have predicted the language. 

 Idea: 

 We will try to compute for each string w  which 

congruence class it is in. 



CANONICAL DFA 

 We have defined the primitive elements. 

 Now we have to define a derivation. 

 Observation: 

 If we have a string that we know is in the 

congruence class [u]R  and we append the string v  

we know that it will be in the class [uv]R. 

 We can restrict ourselves to the case where |v|=1. 

 We now have something that looks very like an 

automaton. 

 We have defined a function from L  to ℛ(L). 



CANONICAL DFA 

 The representation ℛ(L)  consists of: 

 Q – possibly infinite set of all these states, 

 q0 – the initial state, 

 δ – the transition function defined by: 

 δ([u]R, a) = [ua]R , 

 F – the set of final states {[u]R | u ∊ L}. 

 We can define the function from the 

representation ℛ(L)  to the language L(ℛ(L)) : 
L(ℛ(L)) = * w | δ(q0 , w) ∊ F }. 

 For any language L: L(ℛ(L)) = L. 

 Myhill-Nerode Theorem: 

 ℛ(L)  is finite iff L is regular. 



CANONICAL DFA 

 It is possible to infer theses representations for 

regular languages, using a number of different 

techniques depending on the details of the 

source of information about the language. 

 For instance: 

 If we have membership and equivalence queries, 

we can use Dana Angluin’s L* algorithm. 

 Membership query is that a teacher has to decide 

whether to accept or reject a given word. 

 Equivalence query is that a teacher gets a 

conjecture (DFA) and he has to decide whether this 

DFA is a desired DFA or not. If it is not then he also 

has to provide a counterexample. 



CFGS WITH CONGRUENCE CLASSES 

 We move to representations capable of 

representing context-free languages. 

 We use the idea of distributional learning. 

 These techniques were originally described by 

structuralist linguists. 

 Notation: 

 Context (l, r), where l, r ∊ Σ*. 

 Operation ⊙: (l, r) ⊙ u = lur. 

 u  occurs in a context (l, r)  in L ⊆ Σ*  if lur ∊ L. 

 (L, R), (L, r)  refer to the obvious sets of contexts: 

 L×R, L×{r}, and so on. 



CFGS WITH CONGRUENCE CLASSES 

 Notation: 

 Distribution of a string w  in a language L: 

 CL(w) = { (l, r) | lwr ∊ L }. 

 We extend the operation ⊙  to contexts: 

 (l, r) ⊙ (x, y) = (lx, yr). 

 ⊙  is obviously an associative operation. 

 Definition: 

 Strings u  and v  are syntactically congruent iff 

they have the same distribution: 

 u ≡L v  iff CL(u) = CL(v). 

 We write [u]  for the congruence class of u. 



CFGS WITH CONGRUENCE CLASSES 

 Classical result: 

 The number of congruence classes is finite if and 

only if the language is regular. 

 Our primitive elements will correspond to 

these congruence classes. 

 Problem: 

 We will be restricted to regular languages, since we 

are interested in finite representations. 

 This turns out not to be the case. 



CFGS WITH CONGRUENCE CLASSES 

 Empty context (λ, λ)  has a special significance: 

 (λ, λ) ∊ CL(u)  means that u ∊ L. 

 If we can predict the congruence class of a 

string, we will know the language. 

 We can now proceed to derivation rules. 

 The relation ≡L  is a congruence: 

 If u ≡L v  then xuy ≡L xvy. 

 If we take any u’ ∊ [u]  and v’ ∊ [v]  then u’v’ ∊ [uv]. 
 u’v ≡L uv  and u’v’ ≡L u’v  implies u’v’ ≡L uv. 

 We get context-free productions: [uv- → ,u-,v-. 

 And productions: ,a- →  a, [λ- →  λ. 



CFGS WITH CONGRUENCE CLASSES 

 The representation Φ(L)  consists of: 

 Set of congruence classes [u]  (possibly infinite), 

 Set of productions: 

 { [uv- → ,u-,v- | u, v ∊ Σ* }, 

 * ,a- → a | a ∊ Σ }, 

 [λ- →  λ. 

 Set of initial symbols I: 
 I = { [u] | u ∊ L }. 

 We define derivation as in a CFG. 

 Apparently: ,w- ⇒* v   iff  v ∊ [w]. 

 We define L(Φ(L)) = { w | ∃N ∊ I: N ⇒* w +. 
 Apparently: L(Φ(L)) = L. 

 



CFGS WITH CONGRUENCE CLASSES 

 We have used the following schemas: 

 [uv- → ,u-,v-,  ,a- → a,  [λ- →  λ. 

 This looks something like a context-free grammar 

in Chomsky normal form. 

 We can have different schemas: 

 Finite grammars: ,w- → w. 

 Linear grammars: [lwr- → l,w-r. 

 Regular grammars: ,aw- → a,w-. 

 Invariant: 

 These schemas will only derive strings of the same 

congruence class. 



CFGS WITH CONGRUENCE CLASSES 

 There are two differences: 

 We may have more than one start symbol. 

 If the language is not regular then the number of 

congruence classes will be infinite. 

 Consider Lab = { anbn | n ≥ 0 }. 

 If i ≠ j  then ai  is not congruent to aj. 

 Let us suppose that: 

 We maintain the structure of the representation. 

 But only take a finite set of congruence classes V 

consisting of the classes corresponding to a finite set 

of strings K: V = { [u] | u ∊ K }. 

 This gives us a finite representation Φ(L, K). 



CFGS WITH CONGRUENCE CLASSES 

 If we have only finite subset of productions, 

then: ,w- ⇒* v   only implies v ∊ [w]. 
 Therefore: L(Φ(L, K)) ⊆ L. 

 The class we can represent is: 

𝔏CCFG = { L | ∃ finite K ⊂ Σ*: L(Φ(L, K)) = L}. 

 This class includes all regular languages. 

 It also includes some non-regular context-free 

languages. For Lab : K = { λ, a, b, ab, aab, abb }. 

 The language L = { anbm | n < m }  is not in 𝔏CCFG , as L 

is the union of infinite number of congruence classes. 

 By restricting non-terminals to correspond to the 

congruence classes, we lose a bit of representational 

power, but we gain efficient learnability. 



BACK TO REGULAR LANGUAGES 

 Let A  be the minimal DFA  for a language L. 

 Let Q  be the set of states of A  and n = |Q|. 

 A string w  defines a function fw  from Q  to Q: 

 fw(q) = δ(q, w). 

 There are nn  possible such functions. 

 If fu = fv then u ≡L v, thus there are at most  

 nn  possible congruence classes. 

 Holzer and Konig: we can approach this bound. 

 Using one non-terminal per congruence class 

could be an expensive mistake. 

 There is often some non-trivial structure. 



BACK TO REGULAR LANGUAGES 

 Congruence classes correspond to functions. 

 It seems reasonable to represent them using 

some basis functions. 

 If we represent each congruence class as n × n  

Boolean matrix T : Tij  is 1  iff  fu : qi ⟼ qj , 

 Then the basis functions are the n2  matrices 

that have just a single 1. 

 Rather than having a very large number of 

very specific rules that show how individual 

congruence classes combine, we can have a very 

much smaller set of more general rules. 

 Elements = sets of congruence classes. 



DISTRIBUTIONAL LATTICE GRAMMARS 

 A congruence class [u]  defines the 

distribution CL(u)  and vice versa. 

 It is natural to consider therefore as our 

primitive elements ordered pairs <S, C>  where: 

 S  is a subset of Σ*. 

 C  is a subset of Σ*⨯Σ*. 

 Given a language L  we will consider only those 

pairs that satisfy two conditions: 

 C ⊙ S  is a subset of L. 

 Both of these sets are maximal. 

 If a pair <S, C>  satisfies these conditions, then 

we call it a syntactic concept of the language. 



GALOIS CONNECTION 

 Another way is to consider Galois connection 

between the sets of strings and contexts. 

 For a given language L  we can define maps from 

sets of strings to sets of contexts and vice versa. 

 Given a set of strings S  we can define a set of 

contexts S’  as S’ = * (l, r) : ∀ w ∈ S  lwr ∈ L }. 

 Dually we can define for a set of contexts C  the set of 

strings C’  as C’ = * w : ∀ (l, r) ∈ C  lwr ∈ L }. 

 A concept is then an ordered pair <S, C>  such 

that: S’ = C  and C’ = S. 

 The most important point here is that these 

are closure operations: S’’’ = S’  and C’’’ = C’ . 



BASIC PROPERTIES 

 We write 𝒞(S)  for <S’’, S’>  and 𝒞(C)  for <C’, C’’>.  

 There is an inverse relation between the size of 

the set of strings S  and the set of contexts C : 
 The larger that S  is the smaller that C  is. 

 In the limit there is a concept 𝒞(Σ*) ; normally this 

will have C = ∅. 

 Conversely we will always have 𝒞(Σ*⨯Σ*) . 

 One important concept is 𝒞(L)  = 𝒞( { (𝜆, 𝜆) } ) . 

 The set of concepts is a partially ordered set. 

 We can define: <S1 , C1>  ≤  <S2 , C2>   iff  S1 ⊆  S2 . 

 Apparently: S1 ⊆  S2   iff  C1 ⊇  C2 . 



SYNTACTIC CONCEPT LATTICE 

 This partial order is a complete lattice 𝔅(L), 

called syntactic concept lattice. 

 Topmost element is: ⊤ = 𝒞(Σ*) . 

 Bottommost element is: ⊥ = 𝒞(Σ*⨯Σ*) . 

 Meet operation: <S1 , C1>  ∧  <S2 , C2>  can be defined 

as: < S1 ∩ S2  ,  (S1 ∩ S2 )’ >. 

 Join operation: <S1 , C1>  ∨  <S2 , C2>  can be defined 

as: < (C1 ∩ C2 )’ , C1 ∩ C2  >. 

 The following figure shows the syntactic concept 

lattice for the regular language L = { (ab)* }. 

 L  is infinite, but the lattice 𝔅(L)  is finite. 



FIGURE - SYNTACTIC CONCEPT LATTICE 

  



MONOID STRUCTURE 

 Crucially, this lattice structure also has a 

monoid structure.  

 We can define a binary operation: 

 <S1 , C1>  ∘  <S2 , C2>  = 𝒞(S1 S2) . 

 Operation ∘  is associative and has a unit 𝒞(𝜆) . 

 Moreover, it is monotonic: 

 If  X ≤ Y  then X ∘ Z ≤ Y ∘ Z . 

 We can also define residual operations, so this 

syntactic concept lattice becomes a so-called 

residuated lattice. 



REPRESENTATION 

 Having defined and examined the syntactic 

concept lattice, we can now define a 

representation based on this. 

 Again, if the language is not regular, the lattice 

will be infinite. 

 We will start by considering how we might define 

a representation given the whole lattice. 

 We want to be able to compute for every string w, 

the concept of w, 𝒞(w) . 

 If  𝒞(w) ≤ 𝒞(L)  then we know that w ∈ L . 

 If we know the whole lattice, then the 

computation of 𝒞(w)  is quite easy. 



REPRESENTATION 

 However, if we have a non-regular language, 

then we will need to restrict the lattice. 

 We can do this by taking a finite set of 

contexts F ⊆ Σ*⨯Σ* , which will include (𝜆, 𝜆). 

 This gives us a finite lattice 𝔅(L, F), which will 

have at most 2|F|  elements. 

 Lattice 𝔅(L, F)  is the lattice of concepts <S, C>  

where C ⊆ F, and where C = S’ ∩ F, and S = C’. 

 We can define concatenation ∘  as before: 

<S1 , C1>  ∘  <S2 , C2>  =  < ((S1 S2)’ ∩ F )’ , (S1 S2)’ ∩ F > 

 This is however no longer a residuated lattice. 



ISSUES WITH FINITE LATTICE 

 The operation ∘  is no longer associative. 

 There may not be an identity element. 

 Nor are the residuation operations well defined. 

 However, we should still be able to approximate 

the computation. 

 For some languages, and for some set of features 

the approximation will be accurate. 

 It is no longer the case, that: 𝒞(u) ∘ 𝒞(v) = 𝒞(uv). 

 However, we can prove that: 𝒞(u) ∘ 𝒞(v) ≥ 𝒞(uv) . 

 This means that given some string w, we can 

compute an upper bound on 𝒞(w)  quite easily. 



UPPER BOUND 

 We will call this upper bound 𝜙(w). 

 It may not give us exactly the right answer but it 

will sill be useful. 

 If the upper bound 𝜙(w)  is below 𝒞(L)  then we 

know that the string w  will be in the language. 

 In fact, we can compute many different upper 

bounds: since the operation ∘  is not associative. 

 By using effective dynamic programming 

algorithm we can compute the lowest possible 

upper bound 𝜙(w)  in 𝛰(|w|3). 



LOWEST POSSIBLE UPPER BOUND 

 Given a language L  and set of contexts F  we 

define 𝜙: Σ* → 𝔅(L, F)  recursively by: 

 𝜙(λ) = 𝒞(λ) , 

 𝜙(a) = 𝒞(a)  for all a ∊ Σ, 

 for all w  with |w| > 1, 

 𝜙(w) = ⋀ * 𝜙(u) ∘ 𝜙(v)  |  u, v ∊ Σ+,  uv = w } 

 We can define the language generated by this 

representation to be: 

  L(𝔅(L, F)) = { w | 𝜙(w) ≤ 𝒞( (𝜆, 𝜆) ) } 

 For any language L  and any set of contexts F :  

 L(𝔅(L, F)) ⊆ L 



DISTRIBUTIONAL LATTICE GRAMMARS 

 As we increase the set of contexts, the 

language defined increases monotonically. 

 In the infinite limit when F = Σ*⨯Σ*  we have: 

 L(𝔅(L, Σ*⨯Σ* )) = L 

 We can define a natural class of languages as 

those which are represented by finite lattices. 

 We will call this class the Distributional 

Lattice Grammars (DLGs). 

 The corresponding class of languages is: 

 𝔏DLG  =  * L |  ∃  finite set  F ⊆ Σ*⨯Σ*  :  L(𝔅(L, F)) = L } 



DISTRIBUTIONAL LATTICE GRAMMARS 

 𝔏DLG  properly includes 𝔏CCFG . 

 𝔏DLG  includes some non-context free languages. 

 𝔏DLG  also includes much larger set of context 

free languages than 𝔏CCFG  including some non-

deterministic and inherently ambiguous 

languages. 

 A problem is that lattices can be exponentially 

large. We can however represent them lazily 

using a limited set of examples. 

 An important future direction of research is to 

exploit the algebraic structure of the lattice 

to find more compact representations. 
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