Three Learnable Models FOR THE DESCRIPTION OF LANGUAGE

Alexander Clark
Presentation by Peter Černo

ABOUT

- Introduction
- Representation classes should be defined in such a way that they are learnable.
- 1. Canonical deterministic finite automata
- The states of the automaton correspond to right congruence classes of the language.
- 2. Context free grammars
- The non-terminals of the grammar correspond to the syntactic congruence classes.
- 3. Residuated lattice structure
- From the Galois connection between strings and contexts, called the syntactic concept lattice.

INTRODUCTION

- Formal Language Theory (FLT)
- Has its roots in the modeling of learning and of language.
- Originates from linguistics. Yet it has moved far from its origins.
- Now it is an autonomous part of computer science, and only few papers at the major conferences in FLT are directly concerned with linguistics.

INTRODUCTION

- Learnability
- The original intention was for phrase-structure grammars (PSGs) to be learnable.
- The PSGs were meant to represent, at a suitable level of abstraction, the linguistics knowledge of language.
- Chomsky says:
- The concept of "phrase structure grammar" was explicitly designed to express the richest system that could reasonable be expected to result from the application of Harris-type procedures to a corpus...
- "Harris-type procedures" refer to the methods of distributional learning developed by Zellig Harris.

INTRODUCTION

- Learnability
- PSGs in general, and CFGs in particular, were intended to be learnable by distributional methods.
- But they were not.
- The problem is not with distributional methods.
- The problem is with these formalisms.
- The natural question therefore is:
- Are there other formalisms, different from Chomsky hierarchy, that are learnable?

INTRODUCTION

- What we mean by learning?
- We construct our representation for the language from information about language.
- We need to:
- Define representations.
- Define algorithms for constructing these representations.
- Prove, under a suitable regime, that these algorithms will converge to the right answer.
- We assume a very good source of information:
- We have positive data and membership queries.
- We consider only algorithms that are efficient.

INTRODUCTION

- Why is learning important?
- $1^{\text {st }}$ domain: We have information about the language, but not about the representation.
- Not only linguistics.
- Engineering domains:
- We have some data that we want to model.
- Computational biology - strings of bases, amino acids.
- Robotics - sequences of actions, sequences of events.
- Learnability is essential!
- $\underline{2}^{\text {nd }}$ domain: We have direct information about the representation.
- Programming languages, mark up languages:
- We know the structure of the language.

How

- Slogan: "Put learnability first!"
- Basic strategy:
- Representations are objective or "empiricist".
- Basic elements (states, non-terminals) must have a clear definition in terms of sets of strings.
- Rather than defining a function from the presentation to the language, we should go backwards.
- We should define the map from the language to the representation.

EXAMPLE

- From representation G to the language $L(G)$.
- In a CFG, we define a derivation relation \Rightarrow^{*}.
- For each non-terminal N we define:

$$
L(N)=\left\{w / N \Rightarrow^{*} w\right\} .
$$

- Result: map from the set of CFGs to the set of CFLS.
- There is however an obstacle to going in the reverse direction.
- Consider CFL L, and a grammar $G: L(G)=L$.
- If N is a non-terminal in G, what constraints are there on $L(N)$?
- We can say literally nothing about this set, other than that it is a context free language.

CANONICAL DFA

- We start by considering regular languages.
- We end up with the class of representations equivalent to a subclass of DFA.
- Notation:
- Σ - finite nonempty alphabet.
- Σ^{*} - free monoid with λ the empty string.
- A language L is a subset of Σ^{*}.
- The residual language of a given string u is: $u^{1} L=\{w / u w \in L\}$.
- The following relation: $u \sim_{L} v$ iff $u^{1} L=v^{1} L$ is an equivalence relation and right congruence: if $u \sim_{L} V$ and $w \in \Sigma^{*}$ then $u w \sim_{L} V W$.

CANONICAL DFA

- Notation:
- We will write $[u]^{R}$ for the congruence class of the string u under this right congruence \sim_{L}.
- It is better to consider pair $\langle P, S\rangle$, where:
$\circ P$ is a congruence class,
$\circ S$ is the residual language of all strings in P.
- We will have elements of the form:
$\left\langle[u]^{R}, u^{1} L\right\rangle$.
- One important element is:
$\left\langle[\lambda]^{R}, L\right\rangle$.

CANONICAL DFA

- Representation based on congruence classes:
- States - primitive elements of our representation.
- The state $q_{0}=\left\langle[\lambda]^{R}, L>\right.$.
- Observations:
- If $u \in L$ then every element of $[u]^{R}$ is also in L.
- Final state is $\langle P, S\rangle$ such that $\lambda \in S$.
- If we can tell for each string which congruence class it is in, then we will have predicted the language.
- Idea:
- We will try to compute for each string w which congruence class it is in.

CANONICAL DFA

- We have defined the primitive elements.
- Now we have to define a derivation.
- Observation:
- If we have a string that we know is in the congruence class $[u]^{R}$ and we append the string v we know that it will be in the class [uv] ${ }^{R}$.
- We can restrict ourselves to the case where $/ v /=1$.
- We now have something that looks very like an automaton.
- We have defined a function from L to $\mathcal{R}(L)$.

CANONICAL DFA

- The representation $\mathcal{R}(L)$ consists of:
- Q - possibly infinite set of all these states,
- q_{0} - the initial state,
- δ - the transition function defined by:

$$
\delta\left([u]^{R}, a\right)=[u a]^{R},
$$

- F - the set of final states $\left\{[u]^{R} / u \in L\right\}$.
- We can define the function from the representation $\mathcal{R}(L)$ to the language $L(\mathcal{R}(L))$:

$$
L(\mathcal{R}(L))=\left\{w / \delta\left(q_{0}, w\right) \in F\right\} .
$$

- For any language $L: L(\mathcal{R}(L))=L$.
- Myhill-Nerode Theorem:
- $\mathcal{R}(L)$ is finite iff L is regular.

CANONICAL DFA

- It is possible to infer theses representations for regular languages, using a number of different techniques depending on the details of the source of information about the language.
- For instance:
- If we have membership and equivalence queries, we can use Dana Angluin's L* algorithm.
- Membership query is that a teacher has to decide whether to accept or reject a given word.
- Equivalence query is that a teacher gets a conjecture (DFA) and he has to decide whether this DFA is a desired DFA or not. If it is not then he also has to provide a counterexample.

CFGs with Congruence Classes

- We move to representations capable of representing context-free languages.
- We use the idea of distributional learning.
- These techniques were originally described by structuralist linguists.
- Notation:
- Context (l, r), where $l, r \in \Sigma^{*}$.
- Operation $\odot(l, r) \odot u=l u r$.
- u occurs in a context (l, r) in $L \subseteq \Sigma^{*}$ if lur $\in L$.
- $(L, R),(L, r)$ refer to the obvious sets of contexts: $L \times R, L \times\{r\}$, and so on.

CFGs with Congruence Classes

- Notation:
- Distribution of a string w in a language L :
$C_{L}(w)=\{(1, r) / \mid w r \in L\}$.
- We extend the operation \odot to contexts:
$(1, r) \odot(x, y)=(l x, y r)$.
- $\mathcal{\odot}$ is obviously an associative operation.
- Definition:
- Strings u and v are syntactically congruent iff they have the same distribution:

$$
u \equiv_{L} v \text { iff } C_{L}(u)=C_{L}(v)
$$

- We write $[u]$ for the congruence class of u.

CFGs with Congruence Classes

- Classical result:
- The number of congruence classes is finite if and only if the language is regular.
- Our primitive elements will correspond to these congruence classes.
- Problem:
- We will be restricted to regular languages, since we are interested in finite representations.
- This turns out not to be the case.

CFGs with Congruence CLAsses

- Empty context (λ, λ) has a special significance:
- $(\lambda, \lambda) \in C_{L}(u)$ means that $u \in L$.
- If we can predict the congruence class of a string, we will know the language.
- We can now proceed to derivation rules.
- The relation \equiv_{L} is a congruence:
- If $u \equiv_{L} v$ then $x u y \equiv_{L} x v y$.
- If we take any $u^{\prime} \in[u]$ and $v^{\prime} \in[v]$ then $u^{\prime} v^{\prime} \in[u v]$.
- $u^{\prime} v \equiv_{L} u v$ and $u^{\prime} v^{\prime} \equiv_{L} u^{\prime} v$ implies $u^{\prime} v^{\prime} \equiv_{L} u v$.
- We get context-free productions: $[u v] \rightarrow[u][v]$.
\circ And productions: $[a] \rightarrow a,[\lambda] \rightarrow \lambda$.

CFGs with Congruence CLAsses

- The representation $\Phi(L)$ consists of:
- Set of congruence classes [u] (possibly infinite),
- Set of productions:
- $\left\{[u v] \rightarrow[u][v] / u, v \in \Sigma^{*}\right\}$,
$-\{[a] \rightarrow a \mid a \in \Sigma\}$,
$\circ[\lambda] \rightarrow \lambda$.
- Set of initial symbols $I:$

$$
\circ I=\{[u] / u \in L\} .
$$

- We define derivation as in a CFG.
\circ Apparently: $[w] \Rightarrow{ }^{*} v$ iff $v \in[w]$.
- We define $L(\Phi(L))=\left\{w / \exists N \in I: N \Rightarrow^{*} w\right\}$.
- Apparently: $L(\Phi(L))=L$.

CFGs with Congruence CLAsses

- We have used the following schemas:
- [uv] $\rightarrow[u][v],[a] \rightarrow a,[\lambda] \rightarrow \lambda$.
- This looks something like a context-free grammar in Chomsky normal form.
- We can have different schemas:
- Finite grammars: $[w] \rightarrow w$.
- Linear grammars: $[l w r] \rightarrow 1[w] r$.
- Regular grammars: [aw] $\rightarrow a[w]$.
- Invariant:
- These schemas will only derive strings of the same congruence class.

CFGs with Congruence Classes

- There are two differences:
- We may have more than one start symbol.
- If the language is not regular then the number of congruence classes will be infinite.
Consider $L_{a b}=\left\{a^{n} b^{n} / n \geq 0\right\}$.
If $i \neq j$ then a^{i} is not congruent to a^{j}.
- Let us suppose that:
- We maintain the structure of the representation.
- But only take a finite set of congruence classes V consisting of the classes corresponding to a finite set of strings $K: V=\{[u] / u \in K\}$.
- This gives us a finite representation $\Phi(L, K)$.

CFGs with Congruence CLAsses

- If we have only finite subset of productions, then: $[w] \Rightarrow^{*} V$ only implies $v \in[w]$.
- Therefore: $L(\Phi(L, K)) \subseteq L$.
- The class we can represent is:
$\mathcal{R}_{C C F G}=\left\{L / \exists\right.$ finite $\left.K \subset \Sigma^{*}: L(\Phi(L, K))=L\right\}$.
- This class includes all regular languages.
- It also includes some non-regular context-free languages. For $L_{a b}: K=\{\lambda, a, b, a b, a a b, a b b\}$.
- The language $L=\left\{a^{n} b^{m} / n<m\right\}$ is not in $\mathfrak{R}_{C C F G}$, as L is the union of infinite number of congruence classes.
- By restricting non-terminals to correspond to the congruence classes, we lose a bit of representational power, but we gain efficient learnability.

Back to Regular Languages

- Let A be the minimal DFA for a language L.
- Let Q be the set of states of A and $n=/ Q /$.
- A string w defines a function f_{w} from Q to Q : $f_{w}(q)=\delta(q, w)$.
- There are n^{n} possible such functions.
- If $f_{u}=f_{V}$ then $u \equiv_{L} v$, thus there are at most n^{n} possible congruence classes.
- Holzer and Konig: we can approach this bound.
- Using one non-terminal per congruence class could be an expensive mistake.
- There is often some non-trivial structure.

Back to Regular Languages

- Congruence classes correspond to functions.
- It seems reasonable to represent them using some basis functions.
- If we represent each congruence class as $n \times n$ Boolean matrix $T: T_{i j}$ is 1 iff $f_{u}: q_{i} \mapsto q_{j}$,
- Then the basis functions are the n^{2} matrices that have just a single 1.
- Rather than having a very large number of very specific rules that show how individual congruence classes combine, we can have a very much smaller set of more general rules.
- Elements = sets of congruence classes.

Distributional Lattice Grammars

- A congruence class [u] defines the distribution $C_{L}(u)$ and vice versa.
- It is natural to consider therefore as our primitive elements ordered pairs $\langle S, C\rangle$ where:
- S is a subset of Σ^{*}.
- C is a subset of $\Sigma^{*} \times \Sigma^{*}$.
- Given a language L we will consider only those pairs that satisfy two conditions:
- $C \odot S$ is a subset of L.
- Both of these sets are maximal.
- If a pair $\langle S, C\rangle$ satisfies these conditions, then we call it a syntactic concept of the language.

Galois Connection

- Another way is to consider Galois connection between the sets of strings and contexts.
- For a given language L we can define maps from sets of strings to sets of contexts and vice versa.
- Given a set of strings S we can define a set of contexts S^{\prime} as $S^{\prime}=\{(I, r): \forall w \in S$ lwr $\in L\}$.
- Dually we can define for a set of contexts C the set of strings C^{\prime} as $C^{\prime}=\{w: \forall(1, r) \in C$ lwr $\in L\}$.
- A concept is then an ordered pair $\langle S, C\rangle$ such that: $S^{\prime}=C$ and $C^{\prime}=S$.
- The most important point here is that these are closure operations: $S^{\prime \prime \prime}=S^{\prime}$ and $C^{\prime \prime \prime}=C^{\prime}$.

Basic Properties

- We write $\mathcal{C}(S)$ for $\left\langle S^{\prime \prime}, S^{\prime}\right\rangle$ and $\mathcal{C}(C)$ for $\left\langle C^{\prime}, C^{\prime \prime}\right\rangle$.
- There is an inverse relation between the size of the set of strings S and the set of contexts C :
- The larger that S is the smaller that C is.
- In the limit there is a concept $\mathcal{C}\left(\Sigma^{*}\right)$; normally this will have $C=\varnothing$.
- Conversely we will always have $\mathcal{C}\left(\Sigma^{*} \times \Sigma^{*}\right)$.
- One important concept is $\mathcal{C}(L)=\mathcal{C}(\{(\lambda, \lambda)\})$.
- The set of concepts is a partially ordered set.
- We can define: $\left\langle S_{1}, C_{1}\right\rangle \leq\left\langle S_{2}, C_{2}\right\rangle$ iff $S_{1} \subseteq S_{2}$.
- Apparently: $S_{1} \subseteq S_{2}$ iff $C_{1} \supseteq C_{2}$.

Syntactic Concept Lattice

- This partial order is a complete lattice $\mathfrak{B}(L)$, called syntactic concept lattice.
- Topmost element is: $T=\mathcal{C}\left(\Sigma^{*}\right)$.
- Bottommost element is: $\perp=\mathcal{C}\left(\Sigma^{*} \times \Sigma^{*}\right)$.
- Meet operation: $\left\langle S_{1}, C_{1}\right\rangle \Lambda\left\langle S_{2}, C_{2}\right\rangle$ can be defined as: $\left\langle S_{1} \cap S_{2}\right.$, $\left.\left(S_{1} \cap S_{2}\right)^{\prime}\right\rangle$.
- Join operation: $\left.\left\langle S_{1}, C_{1}\right\rangle V<S_{2}, C_{2}\right\rangle$ can be defined as: $\left\langle\left(C_{1} \cap C_{2}\right)^{\prime}, C_{1} \cap C_{2}\right\rangle$.
- The following figure shows the syntactic concept lattice for the regular language $L=\left\{(a b)^{*}\right\}$.
- L is infinite, but the lattice $\mathfrak{B}(L)$ is finite.

Figure - Syntactic Concept Lattice

Monoid Structure

- Crucially, this lattice structure also has a monoid structure.
- We can define a binary operation:

$$
<S_{1}, C_{1}>\circ<S_{2}, C_{2}>=\mathcal{C}\left(S_{1} S_{2}\right)
$$

- Operation \circ is associative and has a unit $\mathcal{C}(\lambda)$.
- Moreover, it is monotonic:

If $X \leq Y$ then $X \circ Z \leq Y \circ Z$.

- We can also define residual operations, so this syntactic concept lattice becomes a so-called residuated lattice.

REPRESENTATION

- Having defined and examined the syntactic concept lattice, we can now define a representation based on this.
- Again, if the language is not regular, the lattice will be infinite.
- We will start by considering how we might define a representation given the whole lattice.
- We want to be able to compute for every string w, the concept of $w, \mathcal{C}(w)$.
- If $\mathcal{C}(w) \leq \mathcal{C}(L)$ then we know that $w \in L$.
- If we know the whole lattice, then the computation of $\mathcal{C}(w)$ is quite easy.

REPRESENTATION

- However, if we have a non-regular language, then we will need to restrict the lattice.
- We can do this by taking a finite set of contexts $F \subseteq \Sigma^{*} \times \Sigma^{*}$, which will include (λ, λ).
- This gives us a finite lattice $\mathfrak{B}(L, F)$, which will have at most $2^{|F|}$ elements.
- Lattice $\mathfrak{B}(L, F)$ is the lattice of concepts $\langle S, C>$ where $C \subseteq F$, and where $C=S^{\prime} \cap F$, and $S=C^{\prime}$.
- We can define concatenation o as before:
$\left\langle S_{1}, C_{1}\right\rangle \circ\left\langle S_{2}, C_{2}\right\rangle=\left\langle\left(\left(S_{1} S_{2}\right)^{\prime} \cap F\right)^{\prime},\left(S_{1} S_{2}\right)^{\prime} \cap F\right\rangle$
- This is however no longer a residuated lattice.

Issues with Finite Lattice

- The operation \circ is no longer associative.
- There may not be an identity element.
- Nor are the residuation operations well defined.
- However, we should still be able to approximate the computation.
- For some languages, and for some set of features the approximation will be accurate.
- It is no longer the case, that: $\mathcal{C}(u) \circ \mathcal{C}(v)=\mathcal{C}(u v)$.
- However, we can prove that: $\mathcal{C}(u) \circ \mathcal{C}(v) \geq \mathcal{C}(u v)$.
- This means that given some string w, we can compute an upper bound on $\mathcal{C}(w)$ quite easily.

Upper Bound

- We will call this upper bound $\phi(w)$.
- It may not give us exactly the right answer but it will sill be useful.
- If the upper bound $\phi(w)$ is below $\mathcal{C}(L)$ then we know that the string w will be in the language.
- In fact, we can compute many different upper bounds: since the operation \circ is not associative.
- By using effective dynamic programming algorithm we can compute the lowest possible upper bound $\phi(w)$ in $O\left(/ w /{ }^{3}\right)$.

Lowest Possible Upper Bound

- Given a language L and set of contexts F we define $\phi: \Sigma^{*} \rightarrow \mathfrak{B}(L, F)$ recursively by:
- $\phi(\lambda)=\mathcal{C}(\lambda)$,
- $\phi(a)=\mathcal{C}(a)$ for all $a \in \Sigma$,
- for all w with $/ w />1$,

$$
\phi(w)=\Lambda\left\{\phi(u) \circ \phi(v) / u, v \in \Sigma^{+}, u v=w\right\}
$$

- We can define the language generated by this representation to be:

$$
L(\mathfrak{B}(L, F))=\{w / \phi(w) \leq \mathcal{C}((\lambda, \lambda))\}
$$

- For any language L and any set of contexts F :

$$
L(\mathfrak{B}(L, F)) \subseteq L
$$

Distributional Lattice Grammars

- As we increase the set of contexts, the language defined increases monotonically.
- In the infinite limit when $F=\Sigma^{*} \times \Sigma^{*}$ we have:

$$
L\left(\mathfrak{B}\left(L, \Sigma^{*} \times \Sigma^{*}\right)\right)=L
$$

- We can define a natural class of languages as those which are represented by finite lattices.
- We will call this class the Distributional Lattice Grammars (DLGs).
- The corresponding class of languages is:

$$
\mathfrak{R}_{D L G}=\left\{L / \exists \text { finite set } F \subseteq \Sigma^{*} \times \Sigma^{*}: L(\mathscr{B}(L, F))=L\right\}
$$

Distributional Lattice Grammars

- $\mathfrak{I}_{D L G}$ properly includes $\mathfrak{I}_{C C F G}$.
- $\mathscr{R}_{D L G}$ includes some non-context free languages.
- $\mathfrak{R}_{D L G}$ also includes much larger set of context free languages than $\mathfrak{R}_{\text {CCFG }}$ including some nondeterministic and inherently ambiguous languages.
- A problem is that lattices can be exponentially large. We can however represent them lazily using a limited set of examples.
- An important future direction of research is to exploit the algebraic structure of the lattice to find more compact representations.

References

- Clark, A., Three learnable models for the description of language
in Language and Automata Theory and Applications, edited by A.-H. Dediu, H. Fernau, and C. Martn-Vide, vol. 6031 of Lecture Notes in Computer Science, pp. 16 31, Springer Berlin / Heidelberg, 2010.

