
THREE LEARNABLE MODELS

FOR THE DESCRIPTION OF

LANGUAGE
Alexander Clark

Presentation by Peter Černo

ABOUT

 Introduction

 Representation classes should be defined in such a

way that they are learnable.

 1. Canonical deterministic finite automata

 The states of the automaton correspond to right

congruence classes of the language.

 2. Context free grammars

 The non-terminals of the grammar correspond to

the syntactic congruence classes.

 3. Residuated lattice structure

 From the Galois connection between strings and

contexts, called the syntactic concept lattice.

INTRODUCTION

 Formal Language Theory (FLT)

 Has its roots in the modeling of learning and of

language.

 Originates from linguistics. Yet it has moved far

from its origins.

 Now it is an autonomous part of computer

science, and only few papers at the major

conferences in FLT are directly concerned with

linguistics.

INTRODUCTION

 Learnability

 The original intention was for phrase-structure

grammars (PSGs) to be learnable.

 The PSGs were meant to represent, at a suitable

level of abstraction, the linguistics knowledge of

language.

 Chomsky says:

 The concept of “phrase structure grammar” was explicitly

designed to express the richest system that could

reasonable be expected to result from the application of

Harris-type procedures to a corpus…

 “Harris-type procedures” refer to the methods of

distributional learning developed by Zellig Harris.

INTRODUCTION

 Learnability

 PSGs in general, and CFGs in particular, were

intended to be learnable by distributional methods.

 But they were not.

 The problem is not with distributional methods.

 The problem is with these formalisms.

 The natural question therefore is:

 Are there other formalisms, different from

Chomsky hierarchy, that are learnable?

INTRODUCTION

 What we mean by learning?

 We construct our representation for the language

from information about language.

 We need to:

 Define representations.

 Define algorithms for constructing these representations.

 Prove, under a suitable regime, that these algorithms will

converge to the right answer.

 We assume a very good source of information:

 We have positive data and membership queries.

 We consider only algorithms that are efficient.

INTRODUCTION

 Why is learning important?

 1st domain: We have information about the

language, but not about the representation.

 Not only linguistics.

 Engineering domains:

 We have some data that we want to model.

 Computational biology – strings of bases, amino acids.

 Robotics – sequences of actions, sequences of events.

 Learnability is essential!

 2nd domain: We have direct information about the

representation.

 Programming languages, mark up languages:

 We know the structure of the language.

HOW

 Slogan: “Put learnability first!”

 Basic strategy:

 Representations are objective or “empiricist”.

 Basic elements (states, non-terminals) must have a

clear definition in terms of sets of strings.

 Rather than defining a function from the

presentation to the language, we should go

backwards.

 We should define the map from the language to

the representation.

EXAMPLE

 From representation G to the language L(G).

 In a CFG, we define a derivation relation ⇒*.

 For each non-terminal N we define:

 L(N) = * w | N ⇒* w +.

 Result: map from the set of CFGs to the set of CFLs.

 There is however an obstacle to going in the

reverse direction.

 Consider CFL L, and a grammar G: L(G) = L.

 If N is a non-terminal in G, what constraints are

there on L(N)?

 We can say literally nothing about this set, other

than that it is a context free language.

CANONICAL DFA

 We start by considering regular languages.

 We end up with the class of representations

equivalent to a subclass of DFA.

 Notation:

 Σ – finite nonempty alphabet.

 Σ* – free monoid with λ the empty string.

 A language L is a subset of Σ*.

 The residual language of a given string u is:

 u-1 L = { w | uw ∊ L }.

 The following relation: u ∼L v iff u-1 L = v-1 L is an

equivalence relation and right congruence:

 if u ∼L v and w ∊ Σ* then uw ∼L vw.

CANONICAL DFA

 Notation:

 We will write [u]R for the congruence class of the

string u under this right congruence ∼L.

 It is better to consider pair <P, S>, where:

 P is a congruence class,

 S is the residual language of all strings in P.

 We will have elements of the form:

 <[u]R, u-1L>.

 One important element is:

 <[λ]R, L>.

CANONICAL DFA

 Representation based on congruence classes:

 States – primitive elements of our representation.

 The state q0 = <[λ]R, L>.

 Observations:

 If u ∊ L then every element of [u]R is also in L.

 Final state is <P, S> such that λ ∊ S.

 If we can tell for each string which congruence class

it is in, then we will have predicted the language.

 Idea:

 We will try to compute for each string w which

congruence class it is in.

CANONICAL DFA

 We have defined the primitive elements.

 Now we have to define a derivation.

 Observation:

 If we have a string that we know is in the

congruence class [u]R and we append the string v

we know that it will be in the class [uv]R.

 We can restrict ourselves to the case where |v|=1.

 We now have something that looks very like an

automaton.

 We have defined a function from L to ℛ(L).

CANONICAL DFA

 The representation ℛ(L) consists of:

 Q – possibly infinite set of all these states,

 q0 – the initial state,

 δ – the transition function defined by:

 δ([u]R, a) = [ua]R ,

 F – the set of final states {[u]R | u ∊ L}.

 We can define the function from the

representation ℛ(L) to the language L(ℛ(L)) :
L(ℛ(L)) = * w | δ(q0 , w) ∊ F }.

 For any language L: L(ℛ(L)) = L.

 Myhill-Nerode Theorem:

 ℛ(L) is finite iff L is regular.

CANONICAL DFA

 It is possible to infer theses representations for

regular languages, using a number of different

techniques depending on the details of the

source of information about the language.

 For instance:

 If we have membership and equivalence queries,

we can use Dana Angluin’s L* algorithm.

 Membership query is that a teacher has to decide

whether to accept or reject a given word.

 Equivalence query is that a teacher gets a

conjecture (DFA) and he has to decide whether this

DFA is a desired DFA or not. If it is not then he also

has to provide a counterexample.

CFGS WITH CONGRUENCE CLASSES

 We move to representations capable of

representing context-free languages.

 We use the idea of distributional learning.

 These techniques were originally described by

structuralist linguists.

 Notation:

 Context (l, r), where l, r ∊ Σ*.

 Operation ⊙: (l, r) ⊙ u = lur.

 u occurs in a context (l, r) in L ⊆ Σ* if lur ∊ L.

 (L, R), (L, r) refer to the obvious sets of contexts:

 L×R, L×{r}, and so on.

CFGS WITH CONGRUENCE CLASSES

 Notation:

 Distribution of a string w in a language L:

 CL(w) = { (l, r) | lwr ∊ L }.

 We extend the operation ⊙ to contexts:

 (l, r) ⊙ (x, y) = (lx, yr).

 ⊙ is obviously an associative operation.

 Definition:

 Strings u and v are syntactically congruent iff

they have the same distribution:

 u ≡L v iff CL(u) = CL(v).

 We write [u] for the congruence class of u.

CFGS WITH CONGRUENCE CLASSES

 Classical result:

 The number of congruence classes is finite if and

only if the language is regular.

 Our primitive elements will correspond to

these congruence classes.

 Problem:

 We will be restricted to regular languages, since we

are interested in finite representations.

 This turns out not to be the case.

CFGS WITH CONGRUENCE CLASSES

 Empty context (λ, λ) has a special significance:

 (λ, λ) ∊ CL(u) means that u ∊ L.

 If we can predict the congruence class of a

string, we will know the language.

 We can now proceed to derivation rules.

 The relation ≡L is a congruence:

 If u ≡L v then xuy ≡L xvy.

 If we take any u’ ∊ [u] and v’ ∊ [v] then u’v’ ∊ [uv].
 u’v ≡L uv and u’v’ ≡L u’v implies u’v’ ≡L uv.

 We get context-free productions: [uv- → ,u-,v-.

 And productions: ,a- → a, [λ- → λ.

CFGS WITH CONGRUENCE CLASSES

 The representation Φ(L) consists of:

 Set of congruence classes [u] (possibly infinite),

 Set of productions:

 { [uv- → ,u-,v- | u, v ∊ Σ* },

 * ,a- → a | a ∊ Σ },

 [λ- → λ.

 Set of initial symbols I:
 I = { [u] | u ∊ L }.

 We define derivation as in a CFG.

 Apparently: ,w- ⇒* v iff v ∊ [w].

 We define L(Φ(L)) = { w | ∃N ∊ I: N ⇒* w +.
 Apparently: L(Φ(L)) = L.

CFGS WITH CONGRUENCE CLASSES

 We have used the following schemas:

 [uv- → ,u-,v-, ,a- → a, [λ- → λ.

 This looks something like a context-free grammar

in Chomsky normal form.

 We can have different schemas:

 Finite grammars: ,w- → w.

 Linear grammars: [lwr- → l,w-r.

 Regular grammars: ,aw- → a,w-.

 Invariant:

 These schemas will only derive strings of the same

congruence class.

CFGS WITH CONGRUENCE CLASSES

 There are two differences:

 We may have more than one start symbol.

 If the language is not regular then the number of

congruence classes will be infinite.

 Consider Lab = { anbn | n ≥ 0 }.

 If i ≠ j then ai is not congruent to aj.

 Let us suppose that:

 We maintain the structure of the representation.

 But only take a finite set of congruence classes V

consisting of the classes corresponding to a finite set

of strings K: V = { [u] | u ∊ K }.

 This gives us a finite representation Φ(L, K).

CFGS WITH CONGRUENCE CLASSES

 If we have only finite subset of productions,

then: ,w- ⇒* v only implies v ∊ [w].
 Therefore: L(Φ(L, K)) ⊆ L.

 The class we can represent is:

𝔏CCFG = { L | ∃ finite K ⊂ Σ*: L(Φ(L, K)) = L}.

 This class includes all regular languages.

 It also includes some non-regular context-free

languages. For Lab : K = { λ, a, b, ab, aab, abb }.

 The language L = { anbm | n < m } is not in 𝔏CCFG , as L

is the union of infinite number of congruence classes.

 By restricting non-terminals to correspond to the

congruence classes, we lose a bit of representational

power, but we gain efficient learnability.

BACK TO REGULAR LANGUAGES

 Let A be the minimal DFA for a language L.

 Let Q be the set of states of A and n = |Q|.

 A string w defines a function fw from Q to Q:

 fw(q) = δ(q, w).

 There are nn possible such functions.

 If fu = fv then u ≡L v, thus there are at most

 nn possible congruence classes.

 Holzer and Konig: we can approach this bound.

 Using one non-terminal per congruence class

could be an expensive mistake.

 There is often some non-trivial structure.

BACK TO REGULAR LANGUAGES

 Congruence classes correspond to functions.

 It seems reasonable to represent them using

some basis functions.

 If we represent each congruence class as n × n

Boolean matrix T : Tij is 1 iff fu : qi ⟼ qj ,

 Then the basis functions are the n2 matrices

that have just a single 1.

 Rather than having a very large number of

very specific rules that show how individual

congruence classes combine, we can have a very

much smaller set of more general rules.

 Elements = sets of congruence classes.

DISTRIBUTIONAL LATTICE GRAMMARS

 A congruence class [u] defines the

distribution CL(u) and vice versa.

 It is natural to consider therefore as our

primitive elements ordered pairs <S, C> where:

 S is a subset of Σ*.

 C is a subset of Σ*⨯Σ*.

 Given a language L we will consider only those

pairs that satisfy two conditions:

 C ⊙ S is a subset of L.

 Both of these sets are maximal.

 If a pair <S, C> satisfies these conditions, then

we call it a syntactic concept of the language.

GALOIS CONNECTION

 Another way is to consider Galois connection

between the sets of strings and contexts.

 For a given language L we can define maps from

sets of strings to sets of contexts and vice versa.

 Given a set of strings S we can define a set of

contexts S’ as S’ = * (l, r) : ∀ w ∈ S lwr ∈ L }.

 Dually we can define for a set of contexts C the set of

strings C’ as C’ = * w : ∀ (l, r) ∈ C lwr ∈ L }.

 A concept is then an ordered pair <S, C> such

that: S’ = C and C’ = S.

 The most important point here is that these

are closure operations: S’’’ = S’ and C’’’ = C’ .

BASIC PROPERTIES

 We write 𝒞(S) for <S’’, S’> and 𝒞(C) for <C’, C’’>.

 There is an inverse relation between the size of

the set of strings S and the set of contexts C :
 The larger that S is the smaller that C is.

 In the limit there is a concept 𝒞(Σ*) ; normally this

will have C = ∅.

 Conversely we will always have 𝒞(Σ*⨯Σ*) .

 One important concept is 𝒞(L) = 𝒞({ (𝜆, 𝜆) }) .

 The set of concepts is a partially ordered set.

 We can define: <S1 , C1> ≤ <S2 , C2> iff S1 ⊆ S2 .

 Apparently: S1 ⊆ S2 iff C1 ⊇ C2 .

SYNTACTIC CONCEPT LATTICE

 This partial order is a complete lattice 𝔅(L),

called syntactic concept lattice.

 Topmost element is: ⊤ = 𝒞(Σ*) .

 Bottommost element is: ⊥ = 𝒞(Σ*⨯Σ*) .

 Meet operation: <S1 , C1> ∧ <S2 , C2> can be defined

as: < S1 ∩ S2 , (S1 ∩ S2)’ >.

 Join operation: <S1 , C1> ∨ <S2 , C2> can be defined

as: < (C1 ∩ C2)’ , C1 ∩ C2 >.

 The following figure shows the syntactic concept

lattice for the regular language L = { (ab)* }.

 L is infinite, but the lattice 𝔅(L) is finite.

FIGURE - SYNTACTIC CONCEPT LATTICE

MONOID STRUCTURE

 Crucially, this lattice structure also has a

monoid structure.

 We can define a binary operation:

 <S1 , C1> ∘ <S2 , C2> = 𝒞(S1 S2) .

 Operation ∘ is associative and has a unit 𝒞(𝜆) .

 Moreover, it is monotonic:

 If X ≤ Y then X ∘ Z ≤ Y ∘ Z .

 We can also define residual operations, so this

syntactic concept lattice becomes a so-called

residuated lattice.

REPRESENTATION

 Having defined and examined the syntactic

concept lattice, we can now define a

representation based on this.

 Again, if the language is not regular, the lattice

will be infinite.

 We will start by considering how we might define

a representation given the whole lattice.

 We want to be able to compute for every string w,

the concept of w, 𝒞(w) .

 If 𝒞(w) ≤ 𝒞(L) then we know that w ∈ L .

 If we know the whole lattice, then the

computation of 𝒞(w) is quite easy.

REPRESENTATION

 However, if we have a non-regular language,

then we will need to restrict the lattice.

 We can do this by taking a finite set of

contexts F ⊆ Σ*⨯Σ* , which will include (𝜆, 𝜆).

 This gives us a finite lattice 𝔅(L, F), which will

have at most 2|F| elements.

 Lattice 𝔅(L, F) is the lattice of concepts <S, C>

where C ⊆ F, and where C = S’ ∩ F, and S = C’.

 We can define concatenation ∘ as before:

<S1 , C1> ∘ <S2 , C2> = < ((S1 S2)’ ∩ F)’ , (S1 S2)’ ∩ F >

 This is however no longer a residuated lattice.

ISSUES WITH FINITE LATTICE

 The operation ∘ is no longer associative.

 There may not be an identity element.

 Nor are the residuation operations well defined.

 However, we should still be able to approximate

the computation.

 For some languages, and for some set of features

the approximation will be accurate.

 It is no longer the case, that: 𝒞(u) ∘ 𝒞(v) = 𝒞(uv).

 However, we can prove that: 𝒞(u) ∘ 𝒞(v) ≥ 𝒞(uv) .

 This means that given some string w, we can

compute an upper bound on 𝒞(w) quite easily.

UPPER BOUND

 We will call this upper bound 𝜙(w).

 It may not give us exactly the right answer but it

will sill be useful.

 If the upper bound 𝜙(w) is below 𝒞(L) then we

know that the string w will be in the language.

 In fact, we can compute many different upper

bounds: since the operation ∘ is not associative.

 By using effective dynamic programming

algorithm we can compute the lowest possible

upper bound 𝜙(w) in 𝛰(|w|3).

LOWEST POSSIBLE UPPER BOUND

 Given a language L and set of contexts F we

define 𝜙: Σ* → 𝔅(L, F) recursively by:

 𝜙(λ) = 𝒞(λ) ,

 𝜙(a) = 𝒞(a) for all a ∊ Σ,

 for all w with |w| > 1,

 𝜙(w) = ⋀ * 𝜙(u) ∘ 𝜙(v) | u, v ∊ Σ+, uv = w }

 We can define the language generated by this

representation to be:

 L(𝔅(L, F)) = { w | 𝜙(w) ≤ 𝒞((𝜆, 𝜆)) }

 For any language L and any set of contexts F :

 L(𝔅(L, F)) ⊆ L

DISTRIBUTIONAL LATTICE GRAMMARS

 As we increase the set of contexts, the

language defined increases monotonically.

 In the infinite limit when F = Σ*⨯Σ* we have:

 L(𝔅(L, Σ*⨯Σ*)) = L

 We can define a natural class of languages as

those which are represented by finite lattices.

 We will call this class the Distributional

Lattice Grammars (DLGs).

 The corresponding class of languages is:

 𝔏DLG = * L | ∃ finite set F ⊆ Σ*⨯Σ* : L(𝔅(L, F)) = L }

DISTRIBUTIONAL LATTICE GRAMMARS

 𝔏DLG properly includes 𝔏CCFG .

 𝔏DLG includes some non-context free languages.

 𝔏DLG also includes much larger set of context

free languages than 𝔏CCFG including some non-

deterministic and inherently ambiguous

languages.

 A problem is that lattices can be exponentially

large. We can however represent them lazily

using a limited set of examples.

 An important future direction of research is to

exploit the algebraic structure of the lattice

to find more compact representations.

REFERENCES

 Clark, A., Three learnable models for the

description of language

in Language and Automata Theory and Applications,

edited by A.-H. Dediu, H. Fernau, and C. Martn-Vide,

vol. 6031 of Lecture Notes in Computer Science, pp. 16 -

31, Springer Berlin / Heidelberg, 2010.

