D-Clearing Restarting Automata and CFL Peter Černo and František Mráz

Introduction

- <u>*</u>-Clearing Restarting Automata</u>:</u>*
- Restricted model of Restarting Automata.
- In **one step** (based on a **limited context**):
 - Delete a substring,
 - **Replace a substring** by *A*.
- <u>The main result</u>:

• *d***-clearing restarting automata** recognize all context-free languages.

Example

Restarting Automata

• <u>Restarting Automata</u>:

• Tool for modeling some techniques for natural language processing.

• <u>Analysis by Reduction</u>:

- Method for checking [non-]correctness of a sentence.
- Iterative application of simplifications.
- Until the input cannot be simplified anymore.

Organization

- **1.** <u>*A*-clearing restarting automata</u>.
- *2.* Δ^* -clearing restarting automata.
- *3.* Δ^* -clearing restarting automata recognize *CFL*.
- 4. Special coding.
- 5. Reduction: Δ^* to Δ -clearing restarting automata.

△-Clearing Restarting Automata

- Let *k* be a positive integer.
- <u>k-Δ-clearing restarting automaton</u> (k-Δcl-RA)
- Is a couple $M = (\Sigma, I)$:
 - Σ ... input alphabet, ϕ , β , $\Delta \not\in \Sigma$,
 - Γ ... working alphabet, $\Gamma = \Sigma \cup \{\Delta\}$
 - *I* ... finite set of *instructions* $(x, z \rightarrow t, y)$:
 - $x \in \{\emptyset, \lambda\}$. Γ^* , $|x| \leq k$ (left context)
 - $y \in \Gamma^*.\{\lambda, \$\}, |y| \le k$ (right context)
 - $z \in \Gamma^+, t \in \{\lambda, \Delta\}.$
 - *¢* and *\$* ... *sentinels*.

Rewriting

- $u\underline{z}v \vdash_M utv$ iff $\exists \varphi = (x, z \to t, y) \in I$:
- *x* is a *suffix* of *c.u* and *y* is a *prefix* of *v.\$*.

- $L(M) = \{ w \in \Sigma^* / w \vdash_M^* \lambda \}.$
- $L_C(M) = \{ w \in \Gamma^* / w \vdash^*_M \lambda \}.$

Empty Word

- **Note**: For every Δcl -RA M: $\lambda \vdash_{M}^{*} \lambda$ hence $\lambda \in L(M)$.
- Whenever we say that Δcl -RA M recognizes a language L, we always mean that $L(M) = L \cup \{\lambda\}$.

Example 1

- $L_1 = \{a^n b^n | n > 0\} \cup \{\lambda\}$:
- $1 \Delta cl RA M = (\{a, b\}, I),$
- Instructions *I* are:
 - $R1 = (a, \underline{ab} \rightarrow \lambda, b)$,
 - $R2 = (\mathfrak{a}, \underline{ab} \to \lambda, \mathfrak{s}).$

- <u>Note</u>:
 - We did not use ⊿.

Example 2

- $L_2 = \{a^n c b^n / n > 0\} \cup \{\lambda\}$:
- $1 \Delta cl RA M = (\{a, b, c\}, I),$
- Instructions *I* are:
 - $R1 = (a, \underline{c} \to \Delta, b),$
 - $R2 = (a, \underline{a\Delta b} \rightarrow \Delta, b),$
 - $R3 = (\mathfrak{a}, \underline{a\Delta b} \to \lambda, \mathfrak{s}).$
- <u>Note</u>:
 - We must use ⊿.

Organization

- **1**. Δ-clearing restarting automata.
- **2**. <u>Δ*-clearing restarting automata</u>.
- *3.* Δ^* -clearing restarting automata recognize *CFL*.
- 4. Special coding.
- 5. Reduction: Δ^* to Δ -clearing restarting automata.

∆*-Clearing Restarting Automata

- **Similar** to *A*-clearing restarting automata.
- We allow instructions $(x, z \rightarrow \Delta^k, y)$, where $k \le |z|$.

Organization

- **1**. Δ-clearing restarting automata.
- *2.* Δ^* -clearing restarting automata.
- 3. <u>⊿*-clearing restarting automata recognize CFL</u>.
- 4. Special coding.
- 5. Reduction: Δ^* to Δ -clearing restarting automata.

*∆*cl-RA* and *CFL*

<u>Theorem</u>: For each context-free language *L* there exists a *1-Δ*cl-RA M* recognizing *L*.

• <u>Idea</u>.

- *M* works in a **bottom-up manner**.
- 1. If the **input is small**, *M* may "**clear**" the whole input.
- 2. If the **input is long**, *M* may **"replace**" some subword by the **"code**" of nonterminal.

• If the input is small:

*∆*cl-RA* and *CFL*

• If the **input is long**:

- Proof.
 - *L* ... context-free language over *L*.
 - $G = (V_N, V_T, S, P)$... context-free grammar :
 - *G* is in: **Chomsky normal form**,
 - *G* generates: $L(G) = L \{\lambda\}$,
 - Nonterminals: $V_N = \{N_1, N_2, ..., N_m\},\$

 - Start:
 - Terminals: $V_T = \Sigma, \Gamma = \Sigma \cup \{\Delta\},$ $S = N_1$,

 $\mathcal{C}, \mathcal{S}, \Delta \notin V_N \cup V_T.$

- **Proof** (Continued).
 - **Auxiliary** *G*' = (*V*_{*N*}, *V*'_{*T*}, *S*, *P*') obtained from *G*:
 - 1. By adding symbol Δ to V_T ,
 - $V'_T = V_T \cup \{\Delta\} = \Gamma$,
 - 2. By adding productions $N_i \rightarrow a \Delta^i b$ to P,
 - $P' = P \cup \{ N_i \to a \Delta^i b \mid i = 1, ..., m; a, b \in V_T \}.$
 - Our goal: $1 \Delta^* cl RAM : L_C(M) = L(G') \cup \{\lambda\}$.
 - Then: $L(M) = L_C(M) \cap \Sigma^* = L(G) \cup \{\lambda\}.$

- **Proof** (Continued).
 - $a\Delta^i b$ code for N_i ($\forall a, b \in V_T$).
 - $a, b \in V_T$ separators (between codes).

*∆*cl-RA* and *CFL*

- **Proof** (Continued).
- <u>Idea</u>:
 - If *z* can be derived from *N_i* (in *G'*),
 - Then *M* can replace *z* by a "code" for *N_i*.
 - *M* replaces only the **inner part of** *z* by Δ^i .
 - *M* leaves **first** and **last letter** of *z* as **separator**.

• <u>Idea</u>:

*∆*cl-RA* and *CFL*

- **Proof** (Continued).
- <u>Two problems</u>:
 - 1. |Inner part| $\geq |\Delta^i|$.
 - 2. Finite many instructions.
- <u>Proposition</u>:
 - For any $w \in L(G')$:
 - If $/w/>c = /V_N/+2$, then w = xzy:
 - $1. \quad c < |z| \le 2c,$
 - 2. $S \Rightarrow^* x N_i y \Rightarrow^* x z y$ for some N_i .

- **Proof** (Continued).
- <u>Construction</u>:
 - *I*₁ ... set of **all instructions**:

 $(\mathfrak{c}, w \rightarrow \lambda, \mathfrak{s})$

- Where $w \in L(G')$ and $|w| \leq c$.
- This resolves the **"small" inputs**.

- **Proof** (Continued).
- <u>Construction</u>:
 - For every $N_i \Rightarrow^* z_1 \dots z_s$, where $c < s \leq 2c$:

$$(\mathbf{Z}_1, \mathbf{Z}_2 \dots \mathbf{Z}_{s-1} \to \Delta^i, \mathbf{Z}_s)$$

- *I*₂ ... set of all such instructions.
- *I*₁, *I*₂ ... finite sets of instructions.
- $M = (\Sigma, I_1 \cup I_2) \dots \text{required automaton}$. Q.E.D.

Generalization

• <u>We can choose</u>:

Generalization

• **Observation**:

- For every $t \ge 1 ... \exists m_1, k$:
- *z* contains $v \in \Sigma^{\geq t} \dots \underline{empty space}$.

Trivial Reduction

- <u>Why empty space</u>?
- Trivial simulation:

Trivial Reduction

- <u>Why empty space</u>?
- Partial *4*-instructions:
 - $\varphi_1 = (x, z_1 \rightarrow \Delta, z_2 z_3 \dots z_s y)$,
 - $\varphi_2 = (X \Delta, Z_2 \rightarrow \Delta, Z_3 \dots Z_s y),$
 - ...
 - $\varphi_r = (X \Delta^{r-1}, Z_r \dots Z_s \to \Delta, y).$
- <u>Problem</u>:
 - The **equivalence** is **not guaranteed**.

Avoiding Conflicts

- <u>How to avoid conflicts</u>?
- We can **encode** some **extra information** into *z*.

Organization

- **1**. Δ-clearing restarting automata.
- 2. Δ^* -clearing restarting automata.
- *3.* Δ^* -clearing restarting automata recognize *CFL*.
- 4. <u>Special coding</u>.
- 5. Reduction: Δ^* to Δ -clearing restarting automata.

Coding

• We require:

- Coding by means of ⊿-clearing restarting automata.
- Ability to **recover** the original word at any time.

• Consider the following **game**:

Protocol

• <u>We assume</u>:

- fixed alphabet Σ,
- fixed length of all initial messages given to Alice.

Is there any such protocol?

- Yes. Basic intuition:
 - Alice **adds** information by choosing a position of Δ .
 - Alice **loses** information by deleting one letter.

Coding

- <u>Idea</u>: Length of */messages / = |\Sigma|*.
- For $\Sigma = \{a, b, c\}$:

Example – 3-Letter Alphabet

• **Perfect matching** for *Σ* = {*a*, *b*, *c*} :

aaa ⇔⊿aa	baa ↔ b∆a	caa ↔ c∆a
aab ⇔ ∆ab	$bab \leftrightarrow b\Delta b$	$cab \leftrightarrow ca\Delta$
aac ↔ aa∆	<i>bac ↔ ba∆</i>	cac ↔ ∆ac
aba ⇔ ∆ba	bba ↔ bb∆	$cba \leftrightarrow cb\Delta$
$abb \leftrightarrow a\Delta b$	$bbb \leftrightarrow \Delta bb$	$cbb \leftrightarrow c\Delta b$
abc ↔ ab∆	$bbc \leftrightarrow \Delta bc$	$cbc \leftrightarrow c\Delta c$
aca ↔ a∆a	bca ↔ Δca	$cca \leftrightarrow cc\Delta$
$acb \leftrightarrow ac\Delta$	$bcb \leftrightarrow bc\Delta$	$ccb \leftrightarrow \Delta cb$
acc ↔ a∆c	$bcc \leftrightarrow b\Delta c$	$ccc \leftrightarrow \Delta cc$

Coding – Encoding Example

- Consider word \boldsymbol{w} over $\boldsymbol{\Sigma} = \{a, b, c\}$:
 - w = accbabccacaabbcabcbcacaa.
- Let us factorize *w* into groups of $|\Sigma| = 3$ letters:
 - w = acc | bab | cca | caa | bbc | abc | bca | caa .
- We want to **encode information** *i* into *w*:
 - *i* = 11001000.

Coding – Encoding Example • i = 1 1 0 0 1 0 0 0: • w = acc/bab/cca/caa/bbc/abc/bca/caa, • $w' = a\Delta c/b\Delta b/cca/caa/\Delta bc/abc/bca/caa$.

aaa ↔ ∆aa	baa ↔ b∆a	caa ↔ c∆a
aab ⇔∆ab	bab ↔ b∆b	<i>cab ↔ ca∆</i>
aac ↔ aa∆	<i>bac ↔ ba∆</i>	cac ↔ ∆ac
aba ⇔∆ba	bba ↔ bb∆	$cba \leftrightarrow cb\Delta$
abb ↔ a∆b	$bbb \leftrightarrow \Delta bb$	$cbb \leftrightarrow c\Delta b$
abc ↔ ab∆	bbc ↔ Δbc	$cbc \leftrightarrow c\Delta c$
aca ↔ a∆a	bca ↔ Δca	cca ↔ cc∆
$acb \leftrightarrow ac\Delta$	$bcb \leftrightarrow bc\Delta$	$ccb \leftrightarrow \Delta cb$
acc ↔ a∆c	$bcc \leftrightarrow b \Delta c$	$ccc \leftrightarrow \Delta cc$

Coding – Major Drawback

- The major drawback:
- If *w* does not start with left sentinel *¢* then we cannot factorize *w* into groups of /Σ/ letters.
- Word *w* can be factorized as:
- 1. acc | bab | cca | caa | bbc | abc | bca | caa ,
- 2. ac | cba | bcc | aca | abb | cab | cbc | aca | a ,
- 3. a | ccb | abc | cac | aab | bca | bcb | cac | aa .

Coding – Fixed Points

• <u>Simple trick</u>:

- To factorize *w* we need some "**fixed point**".
- The **left sentinel** *¢* is **one example**.
- In the first phase we **distribute fixed points** throughout the whole input tape.

Coding – Fixed Points

- Suppose that we have:
 - $w = abacc \Delta accbabccacaabbcabcbcacaa$.
- The symbol **1** in **w** is our **fixed point**:
 - $w = abacc\Delta | acc | bab | cca | caa | bbc | abc | bca | caa .$
- Now we can place the **next fixed point**:
 - $w = abacc\Delta | acc | bab | cca | caa | bbc | abc | bca | c\Delta a$.

Organization

- **1**. Δ-clearing restarting automata.
- *2.* Δ^* -clearing restarting automata.
- *3.* Δ^* -clearing restarting automata recognize *CFL*.
- 4. Special coding.
- **<u>5.</u>** <u>**Reduction**</u>: Δ*- to Δ-clearing restarting automata.

Algorithmic Viewpoint

- Imagine a ⊿-clearing restarting automaton as a nondeterministic machine *N*, which repeatedly executes the following **two steps**:
 - 1. "Choosing Step": *N* chooses a subword *w* of the input eu, $w/ \le K$. (*K* is a fixed constant)
 - "Solving Step": N runs a computation on w, which either rejects, or replaces a subword of w by λ or Δ.

• *N* accepts *u* iff it can "clear" the whole word *u*.

Algorithmic Viewpoint

• <u>Illustration</u>:

Algorithmic Viewpoint

- To define **any** *A*-clearing restarting automaton:
- 1. Define the **solving algorithm** *S*, called the **solver**.
- 2. Show the existence of a **suitable limit** *K*.
- We put **no resource limits** on the solving algorithm.

- Consider <u>A*cl-RA M</u> whose [generalized] construction was based on a context-free grammar <u>G</u> in ChNF.
- We want the **solving algorithm** *S* **imitating** *M*.
- We **do not preserve** the original representation of *M*.

 First, we distribute fixed points throughout the whole input tape in approximately equal distances:

- **Suppose** that *w* already **contains fixed points**.
- 1. We [internally] translate Δ symbols occurring in W.
- 2. We find an instruction $\varphi = (x, z \to \Delta^r, y)$ of the original Δ^* *cl-RA M* applicable inside *w*.
- 3. If there is no such instruction, **reject**.

• Suppose $\varphi = (x, z \to \Delta^r, y)$ is applicable inside *w*.

- $\varphi = (x, z \to \Delta^r, y)$ is applicable inside w
- <u>Our goal</u>: replace z by Δ^r .
- To avoid conflicts we encode information into *z*.
- *z* contains a long enough empty space $v \in \Sigma^*$.
- *v* may be **interrupted** by **fixed points**.
- **Space** between fixed points is **long enough**.
- We choose one such space ... working space.
- We reserve this space ... reference point *4*.

• <u>Illustration</u>: $\varphi = (x, z \to \Delta^r, y)$

• <u>Working space</u>: $\varphi = (x, z \to \Delta^r, y)$

• <u>Cleaning</u>: $\varphi = (x, z \to \Delta^r, y)$

Conclusion

References

- *Černo, P., Mráz, F.*: **Clearing restarting automata**. Fundamenta Informaticae 104(1), 17 – 54 (2010)
- *Černo, P., Mráz, F.*: **Delta-clearing restarting automata and CFL**. Tech. rep., Charles University, Faculty of Mathematics and Physics, Prague (2011)

http://popelka.ms.mff.cuni.cz/cerno/structure_and_recognition/