Δ-Clearing Restarting Automata and CFL
 Peter Černo and František Mráz

Introduction

- -Clearing Restarting Automata:
- Restricted model of Restarting Automata.
- In one step (based on a limited context):
- Delete a substring,
- Replace a substring by Δ.
- The main result:

- Δ-clearing restarting automata recognize all context-free languages.

Example

input word

Restarting Automata

- Restarting Automata:
- Tool for modeling some techniques for natural language processing.
- Analysis by Reduction:
- Method for checking [non-]correctness of a sentence.
- Iterative application of simplifications.
- Until the input cannot be simplified anymore.

Organization

1. Δ-clearing restarting automata.
2. Δ^{*}-clearing restarting automata.
3. Δ^{*}-clearing restarting automata recognize CFL.
4. Special coding.
5. Reduction: Δ^{*} - to Δ-clearing restarting automata.

Δ-Clearing Restarting Automata

- Let k be a positive integer.

- Is a couple $M=(\Sigma, I)$:
- Σ... input alphabet, $₫, \$, \Delta \notin \Sigma$,
- Γ... working alphabet, $\Gamma=\Sigma \cup\{\Delta\}$
- I ... finite set of instructions ($x, z \rightarrow t, y$):
- $x \in\{d, \lambda\} . \Gamma^{*},|x| \leq k \quad$ (left context)
- $y \in \Gamma^{*} .\{\lambda, \$\},|y| \leq k$
- $z \in \Gamma^{+}, t \in\{\lambda, \Delta\}$.
- \downarrow and $\$$... sentinels.

Rewriting

- $u \underline{Z V} \vdash_{M} u t v$ iff $\exists \varphi=(x, z \rightarrow t, y) \in I:$
- x is a suffix of $4 . u$ and y is a prefix of $v_{0} \$$.

- $L(M)=\left\{w \in \Sigma^{*} / W \vdash^{*}{ }_{M} \lambda\right\}$.
- $L_{C}(M)=\left\{w \in \Gamma^{*} / w \vdash^{*}{ }_{M} \lambda\right\}$.

Empty Word

- Note: For every $\Delta c l-R A M: \lambda \vdash^{*}{ }_{M} \lambda$ hence $\lambda \in L(M)$.
- Whenever we say that $\Delta c l-R A M$ recognizes a language L, we always mean that $L(M)=L \cup\{\lambda\}$.

Example 1

- $L_{1}=\left\{a^{n} b^{n} / n>0\right\} \cup\{\lambda\}:$
- 1- $\Delta c l-R A M=(\{a, b\}, I)$,
- Instructions I are:
- $R 1=(a, \underline{a b} \rightarrow \lambda, b)$,
- $R 2=(\phi, \underline{a b} \rightarrow \lambda, \$)$.
- Note:
- We did not use Δ.

Example 2

- $L_{2}=\left\{a^{n} c b^{n} / n>0\right\} \cup\{\lambda\}:$
- 1- $\Delta c l-R A ~ M=(\{a, b, c\}, I)$,
- Instructions I are:
- $R 1=(a, \underline{c} \rightarrow \Delta, b)$,
- $R 2=(a, \underline{a \Delta b} \rightarrow \Delta, b)$,
- $R 3=(\phi, \underline{a \Delta b} \rightarrow \lambda, \$)$.
- Note:
- We must use Δ.

Organization

1. Δ-clearing restarting automata.
2. Δ^{*}-clearing restarting automata.
3. Δ^{*}-clearing restarting automata recognize $C F L$.
4. Special coding.
5. Reduction: Δ^{*} - to Δ-clearing restarting automata.

Δ^{*}-Clearing Restarting Automata
Δ^{*}-clearing restarting automata

- Similar to Δ-clearing restarting automata.
- We allow instructions ($x, z \rightarrow \Delta^{k}, y$), where $k \leq \mid z /$.

Organization

1. Δ-clearing restarting automata.
2. Δ^{*}-clearing restarting automata.
3. Δ^{*}-clearing restarting automata recognize CFL.
4. Special coding.
5. Reduction: Δ^{*} - to Δ-clearing restarting automata.

$\Delta^{*} C l-R A$ and $C F L$

- Theorem: For each context-free language L there exists a $1-\Delta^{*} c l-R A M$ recognizing L.
- Idea.
- M works in a bottom-up manner.

1. If the input is small, M may "clear" the whole input.
2. If the input is long, M may "replace" some subword by the "code" of nonterminal.
$\Delta^{*} C l-R A$ and $C F L$

- If the input is small:
input word

$\Delta^{*} C l-R A$ and $C F L$
- If the input is long:

$\Delta^{*} C l-R A$ and $C F L$

- Proof.
- L... context-free language over Σ.
- $G=\left(V_{N}, V_{T}, S, P\right) \ldots$ context-free grammar :
- G is in:

Chomsky normal form,

- G generates: $L(G)=L-\{\lambda\}$,
- Nonterminals: $V_{N}=\left\{N_{1}, N_{2}, \ldots, N_{m}\right\}$,
- Terminals: $V_{T}=\Sigma, \Gamma=\Sigma \cup\{\Delta\}$,
- Start:
$S=N_{1}$,
\&, \$, $\Delta \notin V_{N} \cup V_{T}$.

$\Delta^{*} C l-R A$ and $C F L$

- Proof (Continued).
- Auxiliary $G^{\prime}=\left(V_{N}, V_{T}^{\prime}, S, P^{\prime}\right)$ obtained from G :

1. By adding symbol Δ to V_{T},

- $V_{T}^{\prime}=V_{T} \cup\{\Delta\}=\Gamma$,

2. By adding productions $N_{i} \rightarrow a \Delta^{i} b$ to P,

- $P^{\prime}=P \cup\left\{N_{i} \rightarrow a \Delta^{i} b / i=1, \ldots, m ; a, b \in V_{T}\right\}$.
- Our goal: 1- ${ }^{*} c l-R A M: L_{C}(M)=L\left(G^{\prime}\right) \cup\{\lambda\}$.
- Then: $L(M)=L_{C}(M) \cap \Sigma^{*}=L(G) \cup\{\lambda\}$.
$\Delta^{*} C l-R A$ and $C F L$
- Proof (Continued).
- $a \Delta^{i} b$
- $a, b \in V_{T}$
code for $\boldsymbol{N}_{\boldsymbol{i}}\left(\forall a, b \in V_{T}\right)$. separators (between codes).

$\Delta^{*} C l-R A$ and $C F L$
- Proof (Continued).
- Idea:
- If z can be derived from N_{i} (in G^{\prime}),
- Then M can replace z by a "code" for N_{i}.
- M replaces only the inner part of z by Δ^{i}.
- M leaves first and last letter of z as separator.
$\Delta^{*} C l-R A$ and $C F L$
- Idea:

$\Delta^{*} C l-R A$ and $C F L$

- Proof (Continued).
- Two problems:

1. \mid Inner part $\left|\geq\left|\Delta^{i}\right|\right.$.
2. Finite many instructions.

- Proposition:
- For any $w \in L\left(G^{\prime}\right)$:
- If $\left|\boldsymbol{w} />\boldsymbol{c}=\left|V_{N}\right|+2\right.$, then $\boldsymbol{w}=\boldsymbol{x} \boldsymbol{z} \boldsymbol{y}$:

1. $c<|z| \leq 2 c$,
2. $S \Rightarrow{ }^{*} \boldsymbol{X} N_{i} y={ }^{*} \boldsymbol{x} Z \boldsymbol{y}$ for some N_{i}.
$\Delta^{*} C l-R A$ and $C F L$

- Proof (Continued).
- Construction:
- $I_{1} \ldots$ set of all instructions:

$$
(\phi, w \rightarrow \lambda, \$)
$$

- Where $w \in L\left(G^{\prime}\right)$ and $/ w / \leq c$.
- This resolves the "small" inputs.

$\Delta^{*} c l-R A$ and $C F L$

- Proof (Continued).
- Construction:
- For every $N_{i}{ }^{*} z_{1} \ldots z_{s}$, where $c<s \leq 2 c$:

$$
\left(z_{1}, z_{2} \ldots z_{s-1} \rightarrow \Delta^{i}, z_{s}\right)
$$

- $I_{2} \ldots$ set of all such instructions.
- I_{1}, I_{2}... finite sets of instructions.
- $M=\left(\Sigma, I_{1} \cup I_{2}\right)$... required automaton. Q.E.D. ■

Generalization

- We can choose:

Generalization

- Observation:
- For every $t \geq 1$... $\exists m_{1}, k$:
- z contains $v \in \Sigma^{\geq t} \ldots$ empty space.

Trivial Reduction

- Why empty space?
- Trivial simulation:

Trivial Reduction

- Why empty space?
- Partial Δ-instructions:
- $\varphi_{1}=\left(x, z_{1} \rightarrow \Delta, z_{2} z_{3} \ldots z_{s} y\right)$,
- $\varphi_{2}=\left(x \Delta, z_{2} \rightarrow \Delta, z_{3} \ldots z_{s} y\right)$,
- $\varphi_{r}=\left(X \Delta^{r-1}, z_{r} \ldots z_{s} \rightarrow \Delta, y\right)$.
- Problem:
- The equivalence is not guaranteed.

Avoiding Conflicts

- How to avoid conflicts?
- We can encode some extra information into z.

Organization

1. Δ-clearing restarting automata.
2. Δ^{*}-clearing restarting automata.
3. Δ^{*}-clearing restarting automata recognize CFL.
4. Special coding.
5. Reduction: Δ^{*} - to Δ-clearing restarting automata.

Coding

- We require:
- Coding by means of Δ-clearing restarting automata.
- Ability to recover the original word at any time.

Alice and Bob

- Consider the following game:

Alice and Bob

Alice and Bob

Alice and Bob

Protocol

- We assume:
- fixed alphabet Σ,
- fixed length of all initial messages given to Alice.
- Is there any such protocol?
- Yes. Basic intuition:
- Alice adds information by choosing a position of Δ.
- Alice loses information by deleting one letter.

Coding

- Idea: Length of /messages $/=/ \Sigma /$.
- For $\Sigma=\{a, b, c\}$:

Example - 3-Letter Alphabet

- Perfect matching for $\Sigma=\{a, b, c\}$:

$a a a \leftrightarrow \Delta a a$	$b a a \leftrightarrow b \Delta a$	$c a a \leftrightarrow c \Delta a$
$a a b \leftrightarrow \Delta a b$	$b a b \leftrightarrow b \Delta b$	$c a b \leftrightarrow c a \Delta$
$a a c \leftrightarrow a a \Delta$	$b a c \leftrightarrow b a \Delta$	$c a c \leftrightarrow \Delta a c$
$a b a \leftrightarrow \Delta b a$	$b b a \leftrightarrow b b \Delta$	$c b a \leftrightarrow c b \Delta$
$a b b \leftrightarrow a \Delta b$	$b b b \leftrightarrow \Delta b b$	$c b b \leftrightarrow c \Delta b$
$a b c \leftrightarrow a b \Delta$	$b b c \leftrightarrow \Delta b c$	$c b c \leftrightarrow c \Delta c$
$a c a \leftrightarrow a \Delta a$	$b c a \leftrightarrow \Delta c a$	$c c a \leftrightarrow c c \Delta$
$a c b \leftrightarrow a c \Delta$	$b c b \leftrightarrow b c \Delta$	$c c b \leftrightarrow \Delta c b$
$a c c \leftrightarrow a \Delta c$	$b c c \leftrightarrow b \Delta c$	$c c c \leftrightarrow \Delta c c$

Coding - Encoding Example

- Consider word w over $\Sigma=\{a, b, c\}$:
- $w=$ accbabccacaabbcabcbcacaa .
- Let us factorize w into groups of $/ \Sigma /=3$ letters:
- w = acc / bab / cca / caa / bbc / abc / bca / caa .
- We want to encode information i into w :
- $i=11001000$.

Coding - Encoding Example

- $i=1 \quad 1 \quad 0 \quad 0 \quad 1 \quad 0 \quad 0 \quad 0$:
- w = acc/bab/cca/caa/bbc/abc/bca/caa,
- $w^{\prime}=a \Delta c / b \Delta b / c c a / c a a / \Delta b c / a b c / b c a / c a a$.

$a a a \leftrightarrow \Delta a a$	$b a a \leftrightarrow b \Delta a$	$c a a \leftrightarrow c \Delta a$
$a a b \leftrightarrow \Delta a b$	$b a b \leftrightarrow b \Delta b$	$c a b \leftrightarrow c a \Delta$
$a a c \leftrightarrow a a \Delta$	$b a c \leftrightarrow b a \Delta$	$c a c \leftrightarrow \Delta a c$
$a b a \leftrightarrow \Delta b a$	$b b a \leftrightarrow b b \Delta$	$c b a \leftrightarrow c b \Delta$
$a b b \leftrightarrow a \Delta b$	$b b b \leftrightarrow \Delta b b$	$c b b \leftrightarrow c \Delta b$
$a b c \leftrightarrow a b \Delta$	$b b c \leftrightarrow \Delta b c$	$c b c \leftrightarrow c \Delta c$
$a c a \leftrightarrow a \Delta a$	$b c a \leftrightarrow \Delta c a$	$c c a \leftrightarrow c c \Delta$
$a c b \leftrightarrow a c \Delta$	$b c b \leftrightarrow b c \Delta$	$c c b \leftrightarrow \Delta c b$
$a c c \leftrightarrow a \Delta c$	$b c c \leftrightarrow b \Delta c$	$c c c \leftrightarrow \Delta c c$

Coding - Major Drawback

- The major drawback:
- If w does not start with left sentinel $₫$ then we cannot factorize w into groups of $/ \Sigma /$ letters.
- Word w can be factorized as:

1. $a c c / b a b / c c a / c a a / b b c / a b c / b c a / c a a$,
2. $a c / c b a / b c c / a c a / a b b / c a b / c b c / a c a / a$,
3. $a / c c b / a b c / c a c / a a b / b c a / b c b / c a c / a a$.

Coding - Fixed Points

- Simple trick:
- To factorize w we need some "fixed point".
- The left sentinel \mathbb{d} is one example.
- In the first phase we distribute fixed points throughout the whole input tape.

Coding - Fixed Points

- Suppose that we have:
- $w=$ abacc $\Delta a c c b a b c c a c a a b b c a b c b c a c a a$.
- The symbol Δ in w is our fixed point:
- $w=a b a c c \Delta / a c c / b a b / c c a / c a a / b b c / a b c / b c a / c a a$.
- Now we can place the next fixed point:
- $w=a b a c c \Delta / a c c / b a b / c c a / c a a / b b c / a b c / b c a / c \Delta a$.

Organization

1. Δ-clearing restarting automata.
2. Δ^{*}-clearing restarting automata.
3. Δ^{*}-clearing restarting automata recognize CFL.
4. Special coding.
5. Reduction: Δ^{*} - to Δ-clearing restarting automata.

Algorithmic Viewpoint

- Imagine a Δ-clearing restarting automaton as a nondeterministic machine N, which repeatedly executes the following two steps:

1. "Choosing Step": N chooses a subword w of the input $\psi u \$, \mid w / \leq K$. (K is a fixed constant)
2. "Solving Step": N runs a computation on w, which either rejects, or replaces a subword of w by λ or Δ.

- N accepts u iff it can "clear" the whole word u.

Algorithmic Viewpoint

- Illustration:

Algorithmic Viewpoint

- To define any Δ-clearing restarting automaton:

1. Define the solving algorithm S, called the solver.
2. Show the existence of a suitable limit K.

- We put no resource limits on the solving algorithm.

Idea of the Algorithm

- Consider $\Delta^{*} C l-R A M$ whose [generalized] construction was based on a context-free grammar G in ChNF.
- We want the solving algorithm S imitating M.
- We do not preserve the original representation of M.

Idea of the Algorithm

- First, we distribute fixed points throughout the whole input tape in approximately equal distances:

Idea of the Algorithm

- Suppose that w already contains fixed points.

1. We [internally] translate Δ symbols occurring in w.
2. We find an instruction $\varphi=\left(x, z \rightarrow \Delta^{r}, y\right)$ of the original $\Delta^{*} c l-R A M$ applicable inside w.
3. If there is no such instruction, reject.

Idea of the Algorithm

- Suppose $\varphi=\left(x, z \rightarrow \Delta^{r}, y\right)$ is applicable inside w.

Idea of the Algorithm

- $\varphi=\left(x, z \rightarrow \Delta^{r}, y\right)$ is applicable inside w
- Our goal: replace z by Δ^{r}.
- To avoid conflicts we encode information into z.
- z contains a long enough empty space $v \in \Sigma^{*}$.
- v may be interrupted by fixed points.
- Space between fixed points is long enough.
- We choose one such space ... working space.
- We reserve this space ... reference point Δ.

Idea of the Algorithm

- Illustration: $\quad \varphi=\left(x, z \rightarrow \Delta^{r}, y\right)$

Idea of the Algorithm

- Working space: $\varphi=\left(x, z \rightarrow \Delta^{r}, y\right)$

Idea of the Algorithm

- Cleaning: $\varphi=\left(x, z \rightarrow \Delta^{r}, y\right)$

Conclusion

References

- Černo, P., Mráz, F.: Clearing restarting automata. Fundamenta Informaticae 104(1), 17-54 (2010)
- Černo, P., Mráz, F.: Delta-clearing restarting automata and CFL. Tech. rep., Charles University, Faculty of Mathematics and Physics, Prague (2011) http://popelka.ms.mff.cuni.cz/cerno/structure and recognition/

