
Peter Černo and František Mráz

Introduction
 Δ-Clearing Restarting Automata:

 Restricted model of Restarting Automata.

 In one step (based on a limited context):

 Delete a substring,

 Replace a substring by Δ.

 The main result:

 Δ-clearing restarting automata recognize all
context-free languages.

Example

Restarting Automata
 Restarting Automata:

 Tool for modeling some techniques for natural language
processing.

 Analysis by Reduction:

 Method for checking [non-]correctness of a sentence.

 Iterative application of simplifications.

 Until the input cannot be simplified anymore.

Organization
1. Δ-clearing restarting automata.

2. Δ*-clearing restarting automata.

3. Δ*-clearing restarting automata recognize CFL.

4. Special coding.

5. Reduction: Δ*- to Δ-clearing restarting automata.

Δ-Clearing Restarting Automata
 Let k be a positive integer.

 k-Δ-clearing restarting automaton (k-Δcl-RA)

 Is a couple M = (Σ, I) :

 Σ … input alphabet, ¢, $, Δ ∉ Σ,

 Γ … working alphabet, Γ = Σ ∪ {Δ}

 I … finite set of instructions (x, z → t, y) :

 x ∊ *¢, λ}.Γ*, |x|≤k (left context)

 y ∊ Γ*.{λ, $+, |y|≤k (right context)

 z ∊ Γ+, t ∊ *λ, Δ}.

 ¢ and $ … sentinels.

Rewriting
 uzv ⊢M utv iff ∃ φ = (x, z → t, y) ∊ I :

 x is a suffix of ¢.u and y is a prefix of v.$.

 L(M) = {w ∊ Σ* | w ⊢*
M λ}.

 LC (M) = {w ∊ Γ* | w ⊢*
M λ}.

Empty Word
 Note: For every Δcl-RA M: λ ⊢*

M λ hence λ ∊ L(M).

 Whenever we say that Δcl-RA M recognizes a
language L, we always mean that L(M) = L ∪ {λ}.

Example 1
 L1 = {anbn | n > 0} ∪ *λ} :

 1-Δcl-RA M = ({a, b}, I) ,

 Instructions I are:

 R1 = (a, ab → λ, b) ,

 R2 = (¢, ab → λ, $) .

 Note:

 We did not use Δ.

Example 2
 L2 = {ancbn | n > 0} ∪ *λ} :

 1-Δcl-RA M = ({a, b, c}, I) ,

 Instructions I are:
 R1 = (a, c → Δ, b) ,

 R2 = (a, aΔb → Δ, b) ,

 R3 = (¢, aΔb → λ, $) .

 Note:

 We must use Δ.

Organization
1. Δ-clearing restarting automata.

2. Δ*-clearing restarting automata.

3. Δ*-clearing restarting automata recognize CFL.

4. Special coding.

5. Reduction: Δ*- to Δ-clearing restarting automata.

Δ*-Clearing Restarting Automata
 Δ*-clearing restarting automata

 Similar to Δ-clearing restarting automata.

 We allow instructions (x, z → Δk, y), where k ≤ |z|.

Organization
1. Δ-clearing restarting automata.

2. Δ*-clearing restarting automata.

3. Δ*-clearing restarting automata recognize CFL.

4. Special coding.

5. Reduction: Δ*- to Δ-clearing restarting automata.

Δ*cl-RA and CFL
 Theorem: For each context-free language L there

exists a 1-Δ*cl-RA M recognizing L.

 Idea.

 M works in a bottom-up manner.

1. If the input is small, M may “clear” the whole input.

2. If the input is long, M may “replace” some subword
by the “code” of nonterminal.

Δ*cl-RA and CFL
 If the input is small:

Δ*cl-RA and CFL
 If the input is long:

Δ*cl-RA and CFL
 Proof.

 L … context-free language over Σ.

 G = (VN , VT , S, P) … context-free grammar :

 G is in: Chomsky normal form,

 G generates: L(G) = L – {λ} ,

 Nonterminals: VN = {N1 , N2 , …, Nm } ,

 Terminals: VT = Σ , Γ = Σ ∪ {Δ} ,

 Start: S = N1 ,

 ¢, $, Δ ∉ VN ∪ VT .

Δ*cl-RA and CFL
 Proof (Continued).

 Auxiliary G’ = (VN , V’T , S, P’) obtained from G :

1. By adding symbol Δ to VT ,

 V’T = VT ∪ {Δ} = Γ ,

2. By adding productions Ni → aΔib to P ,

 P’ = P ∪ { Ni → aΔib | i = 1, …, m; a, b ∊ VT } .

 Our goal: 1-Δ*cl-RA M : LC (M) = L(G’) ∪ {λ} .

 Then: L(M) = LC (M) ∩ Σ* = L(G) ∪ {λ}.

Δ*cl-RA and CFL
 Proof (Continued).

 aΔib code for Ni (∀ a, b ∊ VT).

 a, b ∊ VT separators (between codes).

Δ*cl-RA and CFL
 Proof (Continued).

 Idea:

 If z can be derived from Ni (in G’),

 Then M can replace z by a “code” for Ni .

 M replaces only the inner part of z by Δi .

 M leaves first and last letter of z as separator.

Δ*cl-RA and CFL
 Idea:

Δ*cl-RA and CFL
 Proof (Continued).

 Two problems:

1. |Inner part| ≥ |Δi |.

2. Finite many instructions.

 Proposition:

 For any w ∊ L(G’) :

 If |w| > c = |VN | + 2 , then w = x z y :

1. c < |z| ≤ 2c ,

2. S ⇒* x Ni y ⇒* x z y for some Ni .

Δ*cl-RA and CFL
 Proof (Continued).

 Construction:

 I1 … set of all instructions:

 (¢, w → λ, $)

 Where w ∊ L(G’) and |w| ≤ c .

 This resolves the “small” inputs.

Δ*cl-RA and CFL
 Proof (Continued).

 Construction:

 For every Ni ⇒
* z1 … zs , where c < s ≤ 2c :

 (z1 , z2 … zs-1 → Δi , zs)

 I2 … set of all such instructions.

 I1 , I2 … finite sets of instructions.

 M = (Σ, I1 ∪ I2) … required automaton. Q.E.D. ∎

Generalization
 We can choose:

Generalization
 Observation:

 For every t ≥ 1 … ∃ m1 , k :

 z contains v ∊ Σ ≥ t … empty space.

Trivial Reduction
 Why empty space?

 Trivial simulation:

Trivial Reduction
 Why empty space?

 Partial Δ-instructions:

 φ1 = (x, z1 → Δ, z2 z3 … zs y) ,

 φ2 = (x Δ, z2 → Δ, z3 … zs y) ,

 …

 φr = (x Δr-1, zr … zs → Δ, y) .

 Problem:

 The equivalence is not guaranteed.

Avoiding Conflicts
 How to avoid conflicts?

 We can encode some extra information into z.

Organization
1. Δ-clearing restarting automata.

2. Δ*-clearing restarting automata.

3. Δ*-clearing restarting automata recognize CFL.

4. Special coding.

5. Reduction: Δ*- to Δ-clearing restarting automata.

Coding
 We require:

 Coding by means of Δ-clearing restarting automata.

 Ability to recover the original word at any time.

Alice and Bob
 Consider the following game:

Alice and Bob

Alice and Bob

Alice and Bob

Protocol
 We assume:

 fixed alphabet Σ ,

 fixed length of all initial messages given to Alice.

 Is there any such protocol?

 Yes. Basic intuition:

 Alice adds information by choosing a position of Δ.

 Alice loses information by deleting one letter.

Coding
 Idea: Length of | messages | = |Σ| .

 For Σ = {a, b, c} :

Example – 3-Letter Alphabet
 Perfect matching for Σ = {a, b, c} :

 aaa ↔ Δaa baa ↔ bΔa caa ↔ cΔa

aab ↔ Δab bab ↔ bΔb cab ↔ caΔ

aac ↔ aaΔ bac ↔ baΔ cac ↔ Δac

aba ↔ Δba bba ↔ bbΔ cba ↔ cbΔ

abb ↔ aΔb bbb ↔ Δbb cbb ↔ cΔb

abc ↔ abΔ bbc ↔ Δbc cbc ↔ cΔc

aca ↔ aΔa bca ↔ Δca cca ↔ ccΔ

acb ↔ acΔ bcb ↔ bcΔ ccb ↔ Δcb

acc ↔ aΔc bcc ↔ bΔc ccc ↔ Δcc

Coding – Encoding Example
 Consider word w over Σ = {a, b, c} :

 w = accbabccacaabbcabcbcacaa .

 Let us factorize w into groups of |Σ| = 3 letters:

 w = acc | bab | cca | caa | bbc | abc | bca | caa .

 We want to encode information i into w :

 i = 11001000 .

Coding – Encoding Example
 i = 1 1 0 0 1 0 0 0 :

 w = acc | bab | cca | caa | bbc | abc | bca | caa ,

 w' = aΔc | bΔb | cca | caa | Δbc | abc | bca | caa .

aaa ↔ Δaa baa ↔ bΔa caa ↔ cΔa

aab ↔ Δab bab ↔ bΔb cab ↔ caΔ

aac ↔ aaΔ bac ↔ baΔ cac ↔ Δac

aba ↔ Δba bba ↔ bbΔ cba ↔ cbΔ

abb ↔ aΔb bbb ↔ Δbb cbb ↔ cΔb

abc ↔ abΔ bbc ↔ Δbc cbc ↔ cΔc

aca ↔ aΔa bca ↔ Δca cca ↔ ccΔ

acb ↔ acΔ bcb ↔ bcΔ ccb ↔ Δcb

acc ↔ aΔc bcc ↔ bΔc ccc ↔ Δcc

Coding – Major Drawback
 The major drawback:

 If w does not start with left sentinel ¢ then we
cannot factorize w into groups of |Σ| letters.

 Word w can be factorized as:

1. acc | bab | cca | caa | bbc | abc | bca | caa ,

2. ac | cba | bcc | aca | abb | cab | cbc | aca | a ,

3. a | ccb | abc | cac | aab | bca | bcb | cac | aa .

Coding – Fixed Points
 Simple trick:

 To factorize w we need some “fixed point”.

 The left sentinel ¢ is one example.

 In the first phase we distribute fixed points
throughout the whole input tape.

Coding – Fixed Points
 Suppose that we have:

 w = abaccΔaccbabccacaabbcabcbcacaa .

 The symbol Δ in w is our fixed point:

 w = abaccΔ | acc | bab | cca | caa | bbc | abc | bca | caa .

 Now we can place the next fixed point:

 w = abaccΔ | acc | bab | cca | caa | bbc | abc | bca | cΔa .

Organization
1. Δ-clearing restarting automata.

2. Δ*-clearing restarting automata.

3. Δ*-clearing restarting automata recognize CFL.

4. Special coding.

5. Reduction: Δ*- to Δ-clearing restarting automata.

Algorithmic Viewpoint
 Imagine a Δ-clearing restarting automaton as a

nondeterministic machine N, which repeatedly
executes the following two steps:

1. “Choosing Step”: N chooses a subword w of the
input ¢u$, |w| ≤ K . (K is a fixed constant)

2. “Solving Step”: N runs a computation on w, which
either rejects, or replaces a subword of w by λ or Δ.

 N accepts u iff it can “clear” the whole word u.

Algorithmic Viewpoint
 Illustration:

Algorithmic Viewpoint
 To define any Δ-clearing restarting automaton:

1. Define the solving algorithm S, called the solver.

2. Show the existence of a suitable limit K.

 We put no resource limits on the solving algorithm.

Idea of the Algorithm
 Consider Δ*cl-RA M whose [generalized] construction

was based on a context-free grammar G in ChNF.

 We want the solving algorithm S imitating M.

 We do not preserve the original representation of M.

Idea of the Algorithm
 First, we distribute fixed points throughout the

whole input tape in approximately equal distances:

Idea of the Algorithm
 Suppose that w already contains fixed points.

1. We [internally] translate Δ symbols occurring in w.

2. We find an instruction φ = (x, z → Δr, y) of the
original Δ*cl-RA M applicable inside w.

3. If there is no such instruction, reject.

Idea of the Algorithm
 Suppose φ = (x, z → Δr, y) is applicable inside w.

Idea of the Algorithm
 φ = (x, z → Δr, y) is applicable inside w

 Our goal: replace z by Δr.

 To avoid conflicts we encode information into z.

 z contains a long enough empty space v ∊ Σ* .

 v may be interrupted by fixed points.

 Space between fixed points is long enough.

 We choose one such space … working space.

 We reserve this space … reference point Δ.

Idea of the Algorithm
 Illustration: φ = (x, z → Δr, y)

Idea of the Algorithm
 Working space: φ = (x, z → Δr, y)

Idea of the Algorithm
 Cleaning: φ = (x, z → Δr, y)

Conclusion

References
 Černo, P., Mráz, F.: Clearing restarting automata.

Fundamenta Informaticae 104(1), 17 – 54 (2010)

 Černo, P., Mráz, F.: Delta-clearing restarting
automata and CFL. Tech. rep., Charles University,
Faculty of Mathematics and Physics, Prague (2011)

http://popelka.ms.mff.cuni.cz/cerno/structure_and_recognition/

