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Introduction 
 Δ-Clearing Restarting Automata: 

 Restricted model of Restarting Automata. 

 In one step (based on a limited context): 

 Delete a substring, 

 Replace a substring by Δ. 

 The main result:  

 Δ-clearing restarting automata recognize all 
context-free languages. 



Example 
  



Restarting Automata 
 Restarting Automata: 

 Tool for modeling some techniques for natural language 
processing. 

 Analysis by Reduction:  

 Method for checking [non-]correctness of a sentence. 

 Iterative application of simplifications. 

 Until the input cannot be simplified anymore. 



Organization 
1. Δ-clearing restarting automata. 

2. Δ*-clearing restarting automata. 

3. Δ*-clearing restarting automata recognize CFL. 

4. Special coding. 

5. Reduction: Δ*- to Δ-clearing restarting automata. 



Δ-Clearing Restarting Automata 
 Let k  be a positive integer. 

 k-Δ-clearing restarting automaton (k-Δcl-RA )  

 Is a couple M = (Σ, I) : 

 Σ  … input alphabet, ¢, $, Δ ∉ Σ,  

 Γ  … working alphabet, Γ = Σ ∪ {Δ} 

 I  … finite set of instructions (x, z → t, y) : 

 x ∊ *¢, λ}.Γ*,  |x|≤k (left context) 

 y ∊ Γ*.{λ, $+,  |y|≤k (right context) 

 z ∊ Γ+, t ∊ *λ, Δ}. 

 ¢  and $  … sentinels. 



Rewriting 
 uzv ⊢M  utv   iff  ∃ φ = (x, z → t, y) ∊ I : 

 x  is a suffix of ¢.u   and  y  is a prefix of v.$ . 

 

 

 

 

 

 L(M) = {w ∊ Σ* | w ⊢*
M  λ}. 

 LC (M) = {w ∊ Γ* | w ⊢*
M  λ}.  



Empty Word 
 Note: For every Δcl-RA M: λ ⊢*

M  λ  hence λ ∊ L(M). 

 Whenever we say that Δcl-RA M  recognizes a 
language L, we always mean that L(M) = L ∪ {λ}. 

 



Example 1 
 L1 = {anbn | n > 0} ∪ *λ} : 

 1-Δcl-RA M = ({a, b}, I) , 

 Instructions I  are: 

 R1 = (a, ab → λ, b) , 

 R2 = (¢, ab → λ, $) . 

 

 

 Note: 

 We did not use Δ. 



Example 2 
 L2 = {ancbn | n > 0} ∪ *λ} :  

 1-Δcl-RA M = ({a, b, c}, I) , 

 Instructions I  are: 
 R1 = (a, c → Δ, b) , 

 R2 = (a, aΔb → Δ, b) ,  

 R3 = (¢, aΔb → λ, $) . 

 

 Note:  

 We must use Δ. 

 



Organization 
1. Δ-clearing restarting automata. 

2. Δ*-clearing restarting automata. 

3. Δ*-clearing restarting automata recognize CFL. 

4. Special coding. 

5. Reduction: Δ*- to Δ-clearing restarting automata. 



Δ*-Clearing Restarting Automata 
 Δ*-clearing restarting automata  

 Similar to Δ-clearing restarting automata. 

 We allow instructions (x, z → Δk, y), where k ≤ |z|. 



Organization 
1. Δ-clearing restarting automata. 

2. Δ*-clearing restarting automata. 

3. Δ*-clearing restarting automata recognize CFL. 

4. Special coding. 

5. Reduction: Δ*- to Δ-clearing restarting automata. 



Δ*cl-RA and CFL 
 Theorem: For each context-free language L  there 

exists a 1-Δ*cl-RA M  recognizing L. 

 Idea. 

 M  works in a bottom-up manner. 

1. If the input is small, M  may “clear” the whole input. 

2. If the input is long, M  may “replace” some subword 
by the “code” of nonterminal. 



Δ*cl-RA and CFL 
 If the input is small: 



Δ*cl-RA and CFL 
 If the input is long: 

 



Δ*cl-RA and CFL 
 Proof.  

 L  … context-free language over Σ. 

 G = (VN , VT , S, P) … context-free grammar :  

 G  is in:    Chomsky normal form, 

 G  generates:  L(G) = L – {λ} , 

 Nonterminals:  VN = {N1 , N2 , …, Nm } , 

 Terminals:  VT = Σ , Γ = Σ ∪ {Δ} , 

 Start:   S = N1 , 

 

   ¢, $, Δ ∉ VN  ∪ VT . 



Δ*cl-RA and CFL 
 Proof (Continued). 

 Auxiliary G’ = (VN , V’T , S, P’)  obtained from G : 

1. By adding symbol Δ  to VT ,  

 V’T = VT ∪ {Δ} = Γ , 

2. By adding productions Ni → aΔib   to P , 

 P’ = P ∪ { Ni → aΔib | i = 1, …, m;  a, b ∊ VT } . 

 

 Our goal: 1-Δ*cl-RA M  : LC (M) = L(G’) ∪ {λ} . 

 Then: L(M) = LC (M) ∩ Σ* = L(G) ∪ {λ}. 



Δ*cl-RA and CFL 
 Proof (Continued). 

 aΔib    code for Ni   (∀ a, b ∊ VT ). 

 a, b ∊ VT    separators  (between codes). 



Δ*cl-RA and CFL 
 Proof (Continued). 

 Idea: 

 If z  can be derived from Ni  (in G’ ),  

 Then M  can replace z  by a “code” for Ni . 

 M  replaces only the inner part of z  by Δi . 

 M  leaves first and last letter of z  as separator. 



Δ*cl-RA and CFL 
 Idea: 



Δ*cl-RA and CFL 
 Proof (Continued). 

 Two problems: 

1. |Inner part|  ≥  |Δi |. 

2. Finite many instructions. 

 Proposition:  

 For any w ∊ L(G’) : 

 If |w| > c = |VN | + 2 , then w = x z y : 

1. c < |z| ≤ 2c ,  

2. S ⇒* x Ni  y ⇒* x z y   for some Ni . 



Δ*cl-RA and CFL 
 Proof (Continued). 

 Construction:  

 I1  … set of all instructions: 

 

  (¢, w → λ, $)  

 

 Where w ∊ L(G’)  and |w| ≤ c . 

 This resolves the “small” inputs. 



Δ*cl-RA and CFL 
 Proof (Continued). 

 Construction:  

 For every Ni ⇒
* z1 … zs , where c < s ≤ 2c  : 

 

  (z1 , z2 … zs-1 → Δi , zs ) 

 

 I2  … set of all such instructions. 

 I1 , I2  … finite sets of instructions.  

 M = (Σ, I1 ∪ I2 )  … required automaton. Q.E.D. ∎ 



Generalization 
 We can choose: 



Generalization 
 Observation: 

 For every t ≥ 1 … ∃  m1  , k  :  

 z  contains v ∊ Σ ≥ t … empty space. 



Trivial Reduction 
 Why empty space? 

 Trivial simulation: 



Trivial Reduction 
 Why empty space? 

 Partial Δ-instructions: 

 φ1 = (x, z1 → Δ, z2 z3 … zs y) , 

 φ2 = (x Δ, z2 → Δ, z3 … zs y) , 

 … 

 φr = (x Δr-1, zr … zs → Δ, y) . 

 

 Problem: 

 The equivalence is not guaranteed. 



Avoiding Conflicts 
 How to avoid conflicts?  

 We can encode some extra information into z. 



Organization 
1. Δ-clearing restarting automata. 

2. Δ*-clearing restarting automata. 

3. Δ*-clearing restarting automata recognize CFL. 

4. Special coding. 

5. Reduction: Δ*- to Δ-clearing restarting automata. 



Coding 
 We require: 

 Coding by means of Δ-clearing restarting automata. 

 Ability to recover the original word at any time. 



Alice and Bob 
 Consider the following game: 



Alice and Bob 
  



Alice and Bob 
  



Alice and Bob 
  



Protocol 
 We assume:  

 fixed alphabet Σ , 

 fixed length of all initial messages given to Alice. 

 

 Is there any such protocol? 

 Yes. Basic intuition:  

 Alice adds information by choosing a position of Δ. 

 Alice loses information by deleting one letter. 



Coding 
 Idea: Length of | messages | = |Σ| . 

 For Σ = {a, b, c} : 



Example – 3-Letter Alphabet 
 Perfect matching for Σ = {a, b, c} : 

 aaa ↔ Δaa baa ↔ bΔa caa ↔ cΔa 

aab ↔ Δab bab ↔ bΔb cab ↔ caΔ 

aac ↔ aaΔ bac ↔ baΔ cac ↔ Δac 

aba ↔ Δba bba ↔ bbΔ cba ↔ cbΔ 

abb ↔ aΔb bbb ↔ Δbb cbb ↔ cΔb 

abc ↔ abΔ bbc ↔ Δbc cbc ↔ cΔc 

aca ↔ aΔa bca ↔ Δca cca ↔ ccΔ 

acb ↔ acΔ bcb ↔ bcΔ ccb ↔ Δcb 

acc ↔ aΔc bcc ↔ bΔc ccc ↔ Δcc 



Coding – Encoding Example 
 Consider word w  over Σ = {a, b, c} : 

 w = accbabccacaabbcabcbcacaa . 

 Let us factorize w  into groups of |Σ| = 3  letters: 

 w = acc | bab | cca | caa | bbc | abc | bca | caa . 

 We want to encode information i  into w : 

 i = 11001000 . 



Coding – Encoding Example 
 i  =    1       1       0       0        1        0       0       0 : 

 w   = acc | bab | cca | caa | bbc | abc | bca | caa , 

 w'  = aΔc | bΔb | cca | caa | Δbc | abc | bca | caa . 

aaa ↔ Δaa baa ↔ bΔa caa ↔ cΔa 

aab ↔ Δab bab ↔ bΔb cab ↔ caΔ 

aac ↔ aaΔ bac ↔ baΔ cac ↔ Δac 

aba ↔ Δba bba ↔ bbΔ cba ↔ cbΔ 

abb ↔ aΔb bbb ↔ Δbb cbb ↔ cΔb 

abc ↔ abΔ bbc ↔ Δbc cbc ↔ cΔc 

aca ↔ aΔa bca ↔ Δca cca ↔ ccΔ 

acb ↔ acΔ bcb ↔ bcΔ ccb ↔ Δcb 

acc ↔ aΔc bcc ↔ bΔc ccc ↔ Δcc 



Coding – Major Drawback 
 The major drawback: 

 If w  does not start with left sentinel ¢  then we 
cannot factorize w  into groups of |Σ|  letters. 

 

 Word w  can be factorized as: 

1. acc | bab | cca | caa | bbc | abc | bca | caa , 

2. ac | cba | bcc | aca | abb | cab | cbc | aca | a , 

3. a | ccb | abc | cac | aab | bca | bcb | cac | aa . 



Coding – Fixed Points 
 Simple trick: 

 To factorize w  we need some “fixed point”. 

 The left sentinel ¢  is one example. 

 In the first phase we distribute fixed points 
throughout the whole input tape. 



Coding – Fixed Points 
 Suppose that we have: 

 w = abaccΔaccbabccacaabbcabcbcacaa . 

 The symbol Δ  in w  is our fixed point: 

 w  = abaccΔ | acc | bab | cca | caa | bbc | abc | bca | caa . 

 Now we can place the next fixed point: 

 w  = abaccΔ | acc | bab | cca | caa | bbc | abc | bca | cΔa . 



Organization 
1. Δ-clearing restarting automata. 

2. Δ*-clearing restarting automata. 

3. Δ*-clearing restarting automata recognize CFL. 

4. Special coding. 

5. Reduction: Δ*- to Δ-clearing restarting automata. 



Algorithmic Viewpoint 
 Imagine a Δ-clearing restarting automaton as a 

nondeterministic machine N, which repeatedly 
executes the following two steps: 

 

1. “Choosing Step”: N  chooses a subword w  of the 
input ¢u$ , |w| ≤ K .  (K  is a fixed constant) 

2. “Solving Step”: N  runs a computation on w, which 
either rejects, or replaces a subword of w  by λ  or Δ. 

 

 N  accepts u  iff  it can “clear” the whole word u. 

 



Algorithmic Viewpoint 
 Illustration: 



Algorithmic Viewpoint 
 To define any Δ-clearing restarting automaton:  

1. Define the solving algorithm S, called the solver.  

2. Show the existence of a suitable limit K. 

 We put no resource limits on the solving algorithm. 



Idea of the Algorithm 
 Consider Δ*cl-RA M  whose [generalized] construction 

was based on a context-free grammar G  in ChNF. 

 We want the solving algorithm S  imitating M. 

 We do not preserve the original representation of M. 



Idea of the Algorithm 
 First, we distribute fixed points throughout the 

whole input tape in approximately equal distances: 



Idea of the Algorithm 
 Suppose that w  already contains fixed points. 

1. We [internally] translate Δ  symbols occurring in w.  

2. We find an instruction φ = (x, z → Δr, y)  of the 
original Δ*cl-RA M  applicable inside w. 

3. If there is no such instruction, reject. 



Idea of the Algorithm 
 Suppose φ = (x, z → Δr, y)  is applicable inside w. 



Idea of the Algorithm 
 φ = (x, z → Δr, y)  is applicable inside w 

 Our goal: replace z  by Δr. 

 To avoid conflicts we encode information into z. 

 z  contains a long enough empty space v ∊ Σ* . 

 v  may be interrupted by fixed points. 

 Space between fixed points is long enough. 

 We choose one such space … working space. 

 We reserve this space … reference point Δ. 



Idea of the Algorithm 
 Illustration:  φ = (x, z → Δr, y) 



Idea of the Algorithm 
 Working space:  φ = (x, z → Δr, y) 



Idea of the Algorithm 
 Cleaning:  φ = (x, z → Δr, y) 



Conclusion 
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