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1. Introduction

Grammatical inference is concerned with finding a description (representation or model) of a language
when given only some information about the language, e.g. some words of the language, the structure of
the language, counter-examples or access to an oracle. One common root of many of the formalizations
used in grammatical inference is Gold’s model of identification in the limit. E. Mark Gold [18] can be
justly called a pioneer in this field thanks to his seminal paper on “Language identification in the limit.”
The question of how children learn languages was part of his motivation; however, his focus was on
theoretical investigations. In Gold’s [18] model, a language is a set of strings over some fixed finite
alphabet. In the following, we will use the term farget language to refer to a language which has to be
learned. Assume, for a moment, that there is some fixed system of representations of languages, called a
hypothesis space, such that at least one correct model for the target language is contained in that system.
Gold considers a learner to be an algorithmic device which is given examples, step by step, and which,
in each of the infinitely many steps, returns a hypothesis. A learner is considered successful if after some
step the learner returns the same hypothesis over and over again for all future steps and the hypothesis it
converges to is a correct representation for the target language in the underlying hypothesis space. Gold
considers both learning from text, i.e. the case when only positive examples (strings belonging to the
target language) are available for the learner, as well as learning from informant, i.e. the case when both
positive and negative examples (strings labeled according to whether or not they belong to the target
language) are available.

When concerned about efficient grammatical inference [15]] the main definitions of polynomial infer-
ence have been proposed by Pitt and Angluin. In his seminal paper [30]] Pitt discusses different possible
ideas as to what polynomial complexity for the problem of identification in the limit of deterministic
finite automata (DFA) should be. Pitt proposes that for an identification algorithm to be polynomial it
must have polynomial update time, and also make a polynomial number of implicit errors (in the size
of the automaton). An implicit error is made when the current hypothesis does not agree with a new
example. This definition alas is shown (by Pitt) to be very restrictive, in the sense that no superclasses of
regular languages allow polynomial time inference.

Another model of learning has been proposed by Angluin [1]] where the presentation of the language
can be controlled by asking queries to an oracle. There are two types of queries: the membership queries
(a string is proposed to the oracle which returns its correct classification), and equivalence queries,
where a representation is proposed to the oracle, which either accepts it as a correct representation of the
language to be inferred, or returns a counter-example: a string from the symmetrical difference of the
proposed language and the target one. This is known as the MAT model (minimally adequate teacher).
With time complexity depending on the size of the automaton to be inferred and the length of the longest
counter-example returned by the oracle, Angluin proves that DFA can be identified in polynomial time
with membership queries and equivalence queries. However, both of these queries are necessary: neither
membership queries alone, nor equivalence queries alone allow polynomial inference.

Since both of these models show that even DFA can’t be inferred in polynomial time (unless strong
oracles are used), we follow another theoretical framework provided by Gold [19]: he presented a model
for identification from given data, where a sample of labeled strings (S™,57), with ST a set of positive
instances, and S~ a set of negative instances, is presented to the inference algorithm that must return
a representation compatible with (S™,S7). The further conditions are that for each language there ex-
ists a characteristic sample with which the algorithm returns a correct representation, and this must be
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monotonous in the sense that if correctly labeled examples are added to the characteristic set, then the
algorithm infers the same language. These conditions insure identification, and it is easy to see that a
class of representations is identifiable in the limit from given data if and only if it is identifiable in the
limit from a complete presentation of examples.

Most of the work in grammatical inference has focused on the area of learning regular languages.
Now there are several good algorithms to deal with the case of learning from an informant [11]. On
the other hand, moving up the Chomsky hierarchy gives rise to some difficult problems. Characteristic
samples (needed for identification) may not be of polynomial size, and it is believed, for instance, that
context-free grammars cannot be identified, in the framework of active learning, from a minimum ade-
quate teacher. In [12] Alexander Clark emphasized the importance of learnability of the representation
classes of formal languages. He proposed that one way to build learnable representations is by making
them objective or empiricist: the structure of the representation should be based on the structure of the
language. He illustrated this approach with three classes corresponding to the lowest three levels of the
Chomsky hierarchy. All these classes were efficiently learnable under suitable learning paradigms. In
defining these representation classes the author followed a simple slogan: “Put learnability first!” It
means that we should design representations from the ground to be learnable. Rather than defining a
representation, and then defining a function from the representation to the language, we should start by
defining the map from the language to the representation. The basic elements of such formalism, whether
they are states in an automaton, or non-terminals in a phrase-structure grammar, must have a clear defi-
nition in terms of sets of strings. In the conclusive remarks the author suggested that the representations,
which are both efficiently learnable and capable of representing mildly context-sensitive languages seem
to be good candidates for models of human linguistic competence.

Another promising alternative to tackle the learning barriers is to choose a non-classical representa-
tion. One approach is to consider models which do not use auxiliary elements at all. Typical representa-
tives of this category are contextual grammars in [23|], pure context-free grammars in [24l], and locally
testable languages in [25, [32]. In this paper, we use the so-called context rewriting systems (CRS),
which are similar to string-rewriting systems (SRS) except that the rewriting rules of CRS are extended
by contexts that limit their application. In the literature SRS are also known as semi-Thue systems as
they were invented in 1914 by Axel Thue. Since their inception a lot of attention has been paid to the
theory of SRS [5] and a lot of models used today in formal language theory are based on some kind of
string-rewriting. For instance, SRS play a central role in the definition of the so called Church-Rosser
languages (CRL) [26]]. A language is called a Church-Rosser language, if it consists of those strings
that, placed within the context of certain auxiliary strings #; and #,, reduce to a certain “accepting” sym-
bol with respect to a finite, length-reducing and confluent string-rewriting system. Apart from the final
symbol and the symbols occurring in the contexts #; and #,, also other non-terminal symbols are allowed
in this definition. Although the rewriting process with respect to the string-rewriting system considered
is inherently non-deterministic, the confluence of the system ensures that each reduction sequence will
lead to the same result. The natural generalization of this definition led to the development of the broad
concept of the so-called McNaughton families [4]. By placing various restrictions on the finite string-
rewriting systems used we will obtain different families of languages. We refer the interested reader to
the paper [4] where these families are studied in detail. Our approach is reminiscent of the delimited
string-rewriting systems (DSRS) introduced in [17]], which are expressive enough to define a nontrivial
class of languages containing all regular languages and some context-free languages. In [[17] there was
presented a novel algorithm LARS (Learning Algorithm for Rewriting Systems) which identifies a large
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subclass of these languages in polynomial time. In fact, a simplified version of LARS [16] identifies any
delimited string-rewriting system in the limit. The main difference between delimited string-rewriting
systems and context rewriting systems is that delimited string-rewriting systems use a specific order rela-
tion over the set of all terms and rules in order to make always only one single rule eligible for application
for any given input string. This makes them an efficient (often linear) parsing device for strings with the
membership problem decidable in polynomial time. Context rewriting systems, on the other hand, are
nondeterministic and do not use any ordering. To test whether a word w belongs to the language L(M)
accepted by a given CRS M, one has to check whether w can be reduced to the empty word A by a
sequence of applications of the instructions of M. If we assume that the instructions are length-reducing,
then every such sequence has at most |w| steps. But as there could be several instructions that are ap-
plicable to the same word, or there could be several places at which a given instruction can be applied,
all such sequences must be checked. It would be much better if we could assume that each and every
sequence of applications of instructions of M reduces w to A4, if w € L(M). In this case we could re-
strict ourselves only to leftmost sequences of reductions, and accordingly, membership in L(M) would
be decidable deterministically in time O(|w|). We call such context rewriting systems A-confluent and
show that the proposed learning algorithm can be used to identify A-confluent context rewriting system
in the limit from informant. Although A-confluence can be useful in practical applications, in [29] it has
been shown that A-confluence is not even recursively enumerable for very restricted context rewriting
systems. Nevertheless, we will show that the proposed learning algorithm works in the limit even if we
do not check the A-confluence of the inferred model.

The proposed inference algorithm can work with many different types of restricted context-rewriting
systems (including A-confluent systems). One special type of CRS that we consider in this paper is the
so-called clearing restarting automaton, which, based on a limited context, can only delete a substring
of the current content of its tape. We use clearing restarting automata to prove some lower bounds on
the complexity of learning. Clearing restarting automata and other related models are studied intensively
in [9]. As their name suggests, clearing restarting automata have roots in the broad family of restarting
automata [21]], which were introduced as a tool for modeling some techniques used for natural language
processing. The interested reader is referred to an excellent survey [27]].

The paper has the following structure. In Section[2]we fix the notation and introduce context rewriting
systems as our main framework for all models considered in this paper. In Section |3| we discuss the
paradigm of polynomial identification, as defined in [19, [I5]. In Section ] we introduce our learning
algorithm built on this learning paradigm. In Section [5] we relate clearing restarting automata to the
model of deterministic finite automata. Conclusions are presented in Section [6]

This paper is an extended version of the paper [8]]. In this paper we have improved the notation and
added several sections concerning primarily the complexity of learning.

2. Theoretical Background

We assume that the reader is familiar with the basic concepts of formal language and automata theory.
As our reference concerning this field we use the monograph [20]. An alphabet is a finite nonempty set.
The elements of an alphabet X are called letters or symbols. A word or string over an alphabet ¥ is a
finite sequence consisting of zero or more letters of X, whereby the same letter may occur several times.
The sequence of zero letters is called the empty word, written A. The set of all words (all nonempty
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words, respectively) over an alphabet X is denoted by X* (X", respectively). If x and y are words over
Y, then so is their catenation (or concatenation) xy (or x - y), obtained by juxtaposition, that is, writing x
and y one after another. Catenation is an associative operation and the empty word A acts as an identity:
wA = Aw = w holds for all words w. Because of the associativity, we may use the notation w' in the
usual way. By definition, w® = A.

Let u be a word in X¥, say u = a, ...a, with @; € £. We say that n is the length of u and we write
|u| = n. The sets of all words over X of length k, or at most k, are denoted by X* and =, respectively.
By |u|4, for a € X, we denote the total number of occurrences of the letter a in u. The reversal (mirror
image) of u, denoted uR, is the word a,...q,. Finally a factorization of u is any sequence uy, ..., u; of
words such that u = uy - - - u;.

For a pair u, v of words we define the following relations: u is a prefix of v, if there exists a word z
such that v = uz; u is a suffix of v, if there exists a word z such that v = zu; and u is a factor (or subword)
of v, if there exist words z and 7’ such that v = zuz’. Observe that u itself and A are subwords, prefixes
and suffixes of u. Other subwords, prefixes and suffixes are called proper.

Subsets, finite or infinite, of X* are referred to as (formal) languages over X.

In formal language theory in general, there are two major types of mechanisms for defining lan-
guages: acceptors and generators. Acceptors are usually defined in terms of automata, which work as
follows: they are given an input word and after some processing they either accept or reject this input
word. For instance, the so-called finite automata consist of a finite set of internal states and a set of rules
that govern the change of the current state when reading a given input symbol. The finite automaton
reads a given input word from left to right starting in a specific starting state. After reading the input
word it accepts only if it ends in one of its accepting states, otherwise it rejects. If the next state is always
uniquely determined by the current state and the current input symbol, we say that the automaton is de-
terministic. More formally, we define a deterministic finite automaton as follows: A deterministic finite
automaton (DFA) A is a quintuple (Q,X, 8, qo, F), where Q is a finite set of states, ¥ is an input alphabet,
0 : O X X — Qs a state transition function, qo € Q is a starting state, and F C Q is a set of final states.
The language recognized by A is L(A) = {w € £* | §*(qo,w) € F}, where 6 is defined recursively as:
0*(q,A) = g and 6*(q,wa) = 8(6*(q,w),a) forall g € O, w € £* and a € X. Finite automata recognize
the family of regular languages, which plays a central role in the whole formal language theory.

Generators, on the other hand, usually generate the language using some finite set of rules. Typi-
cally they are defined in terms of grammars. One of the most famous is the classical Chomsky hierar-
chy of grammars (and corresponding languages), which consists of phrase-structure, context-sensitive,
context-free, and regular grammars (they are also called type 0, type 1, type 2, and type 3 grammars,
respectively). A context-free grammar (CFG) is a quadruple G = (X,V, P,S) where X is a finite alphabet
of terminal symbols, V is a finite alphabet of variables or non-terminals, P C'V x (£UV)* is a finite set
of production rules, and S € V is the axiom (start symbol). We will denote uTv = uwv when (T,w) € P.
=" is the reflexive and transitive closure of =-. We denote by L(G) the language {w € £* | § =* w}.

In this paper we use the so-called context rewriting systems as a framework for all considered models.

Definition 2.1. (Context rewriting systems [9])

A context rewriting system (CRS for short) is a system M = (X,T",®), where X is an input alphabet,
I' D X is a working alphabet not containing the special symbols ¢ and $, called sentinels, and @ is a finite
set of instructions of the form:

(x7z_>t7y)7
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where x is called the left context, x € {A,¢}-T™*, y is called the right context,y € T*-{1,$}, and z — ¢
is called the instruction-rule, z,t € I'*. The width of the instruction ¢ = (x,z — t,y) is |@| = |xzty].
The width of the context rewriting system M is |M| = maxycae |¢| and the size of the context rewriting
system M is size(M) = Y 4cq |¢|. If the input alphabet and the working alphabet of M are known from
the context, we use M and P interchangeably. We also use a shorter notation (X,®) to denote a CRS
(X,X,®) without auxiliary symbols.

For arbitrary words u,v,z,t € I'*, a word w = uzv can be rewritten into utv (denoted as uzv by utv or
uzv Fo urv) if and only if there exists an instruction ¢ = (x,z — t,y) € @ such that x is a suffix of ¢ - u
and y is a prefix of v-$. We often underline the rewritten part of the word w, and if the instruction ¢ is
known we use I—I(V?) instead of -y, i.e., uzv '_1(1/?) utv.

The relation -y, C I x I'* is called the rewriting relation.

Let/ € {A,¢}- T, and re I - {1,$}. A word w = uzv can be rewritten in the context (l,r) into utv
(denoted as uzv -y utv in the context (1,r)) if and only if there exists an instruction ¢ = (x,z —¢,y) € D,
such that x is a suffix of /- u and y is a prefix of v-r. Each definition that uses the rewriting relation ), can
be relativized to any context (/,r). Unless told otherwise, we will use the standard context (L,r) = (¢, $).

A context rewriting system M = (X,T",®) is called simplified if for every ¢ = (x,z — t,y) € O :
274y 1 in the context (x,).

The language associated with M is defined as L(M) = {w € X* | w3}, A}, where I}, is the reflexive
and transitive closure of -j;. Note that, by definition, A € L(M).

Example 2.2. ([8])
Let M = (X,®) be a CRS with £ = {a,b} and ® consisting of the following two instructions:

(1) (a,ab— A,D),
(2) (¢,ab—A,8).
2

Then we have aaaabbbb '_1(\/}) aaabbb '_z(vll) aabb '_1(1/}) ab M) A, which means that aaaabbbb -, A. So the
word aaaabbbb is accepted by M. It is easy to see that M recognizes the language L(M) = {a"b" | n > 0}.

Example 2.3. Let M = (£,®) be a CRS with £ = {a,b} and P consisting of only one instruction
(A,ab— A, 1). Then we have abaabbab |-y ababab \-y; abab t-yr ab -y A, which means that abaabbab 5,
A. So the word abaabbab is accepted by M. 1t is easy to see that M recognizes the Dyck language of
correct parentheses over L, i.e., the language generated by S in the grammar: S — TS| A; T — aSh.

Definition 2.4. Let M = (X,T",®) be a context rewriting system. We say that M is:
1. length-reducing, if for each instruction ¢ = (x,z —1,y) € D : |z] > |¢].

2. confluent if, for all u,v,w € I'*, u =}, v and u =}, w imply that there exists some z € I'* such that
vy zand w =), z hold.

3. A-confluent if, for all u,v € I'*, u 3, A and u \-}, v imply that v -5, A.
All context rewriting systems have the following basic property.

Lemma 2.5. (Error Preserving Property, [27])
Let M = (£,I',®) be a CRS and u, v be two words over I'. If u -3, vand u ¢ L(M), then v & L(M).
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All A-confluent context rewriting systems can be characterized in the following way.

Lemma 2.6. (Correctness Preserving Property, [27])
Let M = (X£,I',®) be a CRS. M is A-confluent if and only if for all u,v € I'* the following property
holds: if u 3, vand u € L(M), then v € L(M).

It is easy to see that general CRS can simulate any type 0 grammar (according to the Chomsky
hierarchy [20]). Hence we will not study CRS in their general form, since they are too powerful (they
can represent all recursively enumerable languages). Instead, we will always put some restrictions on the
instructions and then study such restricted models.

Definition 2.7. (Restrictions [8])

In this paper we consider only length-reducing context rewriting systems without auxiliary symbols. In
addition, we consider two types of restrictions: local and global restrictions. Local restrictions
E[) restrict each instruction individually (in other words, the decision whether the instruction satisfies a
local restriction does not depend on other instructions). Global restrictions () restrict the whole set of
instructions.

1. We can restrict the length of contexts to a positive integer constant k. More precisely, we can
restrict each instruction (x,z — #,y) of a CRS M = (£,T",®) to satisfy the following constraints:
x€LC, :=T*u{¢} - T=landy € RCy :=TFur=k-1.18}.

We also include a special case k = 0. In this case we require that each instruction (x,z —7,y) of a
CRS M = (X,T',®) satisfies: x =y = 1.

In addition, we use a special notation k = -, if the length of contexts k is not specified. In this case
we define LG, = {A,¢} - and RC, =T* - {1,$}.

If a context rewriting system M = (X, ", ®) satisfies the above restrictions, then we call such system
M a k-context rewriting system (k-CRS for short). We extend this notation to all classes derived
from context rewriting systems: If .Z is a class of context rewriting systems, then k-.# denotes
the class of all context rewriting systems M = (X£,I',®) € .# such that, for every instruction
(x,z—1t,y) € P: x € LCy and y € RCy.

Naturally, if we increase the length of contexts used in instructions of a context rewriting system,
we do not decrease their expressiveness.

2. We can restrict the widrh of a context rewriting system M = (X,I",®) to be bounded from above
by a positive integer constant /. In that case every instruction ¢ = (x,z — t,y) € & satisfies the
following constraint: |¢| = |xzty| < L.

We call such system M a context rewriting system with maximal width .

If .# is a class of context rewriting systems, then (-,/)-.# denotes the class of all context rewriting
systems M € . such that, for every instruction ¢ € ®: |¢| < [. Similarly, (k,/)-.# denotes the
class of all context rewriting systems M € k-.# such that, for every instruction ¢ € ®: |¢| <.

3. We can restrict the instruction-rules of a context rewriting system M = (X,I",®). There are too
many possibilities how to restrict instruction-rules, so we list only few examples. We can restrict
each instruction ¢ = (x,z —¢,y) of a CRS M to satisfy:
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(@ r=A.
(b) tis a subword of z.

(c) t is at most one letter, i.e., |f| < 1.

4. Finally, we can restrict the context rewriting system to be A-confluent. Notice that this is a global
restriction affecting the whole set of instructions.

For each combination of the above restrictions we get a different class of context rewriting systems .#
with possibly different properties and expressiveness. By . (.#') we denote the corresponding class of
languages, i.e., Z(#) ={L(M) |M € 4 }.

Definition 2.8. ([8])
Let .# be a class of CRS restricted according to Definition [2.7| We say that M = (X,P) € .# has:

1. Minimal set of instructions, if for every N = (X,¥) € 4, ¥ C ® = L(N) # L(M).
2. Minimal width, if for every N = (£,¥) € .#, [N| < |M| = L(N) # L(M).

By using the framework of context rewriting systems we can define many interesting classes that have
been studied intensively in several papers. In the following, we discuss clearing, A-clearing, subword-
clearing and limited-context restarting automata.

Definition 2.9. (Derived Classes)
1. A clearing restarting automaton [9] (cl-RA for short) is a CRS M = (X, ®), where for each in-
struction ¢ = (x,z — ,y) € ®: z€ X" and r = A. Since 7 is always the empty word, we use the
short notation ¢ = (x,z,y).

2. A A-clearing restarting automaton [9)] (Acl-RA for short) is a CRS M = (£,T",®), where I' =
Y U{A}, A ¢ %, and for each instruction ¢ = (x,z —t,y) € P: z€ " andr € {A,A}.

3. A subword-clearing restarting automaton [[1] (scl-RA for short) is a CRS M = (£, ®), where for
each instruction ¢ = (x,z —f,y) € ®: z€ X" and 7 is a subword of z, such that |¢| < |z|.

4. A limited-context restarting automaton (2, 3, 28] (Ic-RA for short) of type %, is a CRS M =
(X,I",®), where each instruction ¢ = (x,z — t,y) € ® is length-reducing. For Ic-RA of type %,
we require, in addition, that || < 1, and for Ic-RA of type %, we require, in addition, that |¢| < I,
xe{¢,A},andy € {$,1}.

Remark 2.10. Speaking about a cl-RA M (Acl-RA, scl-RA, Ic-RA M, respectively) we use “automata
terminology,” e.g., we say that M accepts a word w if w € L(M). By definition, each cl-RA (Acl-RA,
scl-RA, Ic-RA) accepts A. If we say that a Cl-RA (Acl-RA, scl-RA, Ic-RA) M recognizes (or accepts) a
language L, we always mean that L(M) = LU {A}. This implicit acceptance of the empty word can be
avoided by a slight modification of context rewriting systems, but in principle, we would not get a more
powerful model. We simply ignore the empty word in this setting.
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Clearing restarting automata are studied in [9]. In this paper they play a role of the most restricted
model and we will use them to prove some lower bounds on the complexity of learning. Although clear-
ing restarting automata are very restricted, they can recognize all regular languages, some context-free
languages and even some non-context-free languages. However, there are some context-free languages
that are outside the class of languages accepted by clearing restarting automata. For instance, the lan-
guage L = {a"cb" | n > 0} is not recognized by any clearing restarting automaton. On the other hand,
it can be easily shown that this language is recognized by the subword-clearing restarting automaton
M = ({a,b,c},®) with ® = {(a,acb — ¢,b),(¢,acb — A,$)}. In general, however, not all context-
free languages can be recognized by subword-clearing restarting automata [8]]. Interestingly, in [10] it
has been shown that CFL C .Z(Acl-RA), thus only one auxiliary symbol A is needed to recognize all
context-free languages.

Obviously, limited-context restarting automaton (Ic-RA) of type £ is a proper extension of the
clearing restarting automaton, while Ic-RA of type %, is incomparable to the clearing restarting automa-
ton. In [28] limited context restarting automata and their confluent versions are put into the context of
McNaughton families of languages [4], relating the classes of languages accepted by these automata in
particular to the class GCSL of growing context-sensitive languages [0, [14] and to the class CRL of
Church-Rosser languages [26].

The decidability of A-confluence for clearing restarting automata and limited-context restarting au-
tomata is studied in [29]. It turns out that A-confluence is not even recursively enumerable for clearing
restarting automata and that it is decidable in double exponential time for limited-context restarting au-
tomata of type %,. Although the undecidability of A-confluence for clearing restarting automata might
seem prohibitive for learning A-confluent CRS, we will see that we do not need to verify A-confluence at
all. Interestingly, a stronger notion of confluence is decidable for all limited-context restarting automata
of type Zy.

3. Learning

We now turn to our learning problem. We follow the approach used in [[17].

Definition 3.1. ([17])
Let .Z be a class of languages represented by some class .# of models.

1. A sample S for alanguage L € . is a pair (ST,57) of two finite sets ST, 5~ C X* such thatif w € ST
then w € L and if w € S~ then w ¢ L. The size of S, denoted as size(S), is the sum of the lengths
of all the strings in ST, S~. Formally, size(S) = size(S*) +size(S™), where size(T) =Y,,.r |w|-

2. An (%, .# )-learning algorithm ¢/ is a program that takes as input a sample and outputs a repre-
sentation from .Z .

We use the paradigm of polynomial identification, as defined in [19}[15]]. In this paradigm we require
that the learning algorithm has a running time polynomial in the size of the data from which it has to learn
from. Next we want the algorithm to converge in some way to a chosen target, ideally after having seen
a polynomial number of examples only. As this constraint is usually too hard, we want the convergence
to take place in the limit, i.e., after having seen a finite number of examples. The polynomial aspects
are then taken into account by using the size of a minimal characteristic sample, whose presence should
ensure identification.
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Definition 3.2. (Polynomial Identification [17])
A class .Z of languages is identifiable in polynomial time and data for a class .# of models if and only
if there exists an algorithm .7 and two polynomials ¢(-) and f3(+) such that:

1. Given a sample S = (S*,57) for L € .Z of size m, o/ returns a model (hypothesis) M € .# in
O(a(m)) time and M is consistent with S, i.e. ST C L(M) and S" NL(M) = 0.

2. For each model M € .# representing the language L € ., there exists a finite characteristic
sample So = (S; .Sy ) of size at most O(B(size(M))) such that, on all samples S = (S*,57) for L
that verify Sg C St and Sy €57, o/ returns a model N € . which is equivalent to M.

4. Learning Algorithm

In this section we propose a general learning algorithm for inferring various restricted context rewriting
systems from informant and show that, under certain conditions, it is possible to identify any hidden
target (ordinary or A-confluent) context rewriting system in the limit by using this algorithm.

In the following, the term model refers to any context rewriting system M € .# , where ./ is a fixed
class of context rewriting systems restricted according to Definition (our hypothesis space). Our
focus will be on the polynomial identification [17] of the corresponding class of languages .2 = {L(M) |
M € .} as defined in Section[3] In other words, we would like to design a (£, .#)-learning algorithm
&7/ such that both conditions of Definition are satisfied. The Condition |1| of Definition is easily
satisfied by returning a model M = (X, ®) with ® = {(¢,w — 1,$) | w € ST,w # A}, when given a
sample S = (§T,87). In this case L(M) = S and, in addition, M is confluent, and thus also A-confluent.
Unfortunately, as the language L(M) is always finite, only finite languages can be learned in this way. We
need a more sophisticated algorithm that is able to deal also with infinite languages. To this end we first
present in Sectiond.T|an auxiliary inference procedure (Algorithm [I)) that tries to infer a model consistent
with the given sample such that the width of the model is restricted from above by some constant. This
restriction is useful because it leads to models that can generalize over the presented sample. Then, in
Section[4.2] we use this auxiliary inference procedure as a component in our final learning algorithm.

There is one additional subtlety involved in our learning schema that we need to discuss — one of
the (optional) input parameters of our learning algorithm is the length of contexts k. This parameter, if
specified, restricts the hypothesis space .# to the class k-.# (see Definition for details). The class
k-7 allows only instructions, where the length of contexts is constrained to be exactly k letters long.
The only exception is, of course, the case when the contexts contain a sentinel. In that case they can be
shorter than k letters. An informal intuition behind constraining the contexts is as follows. The context
(x,y) used in the instruction ¢ = (x,z — ¢,y) limits the applicability of the instruction-rule z — t, so
that we can rewrite the word z to ¢ only if z is placed inside the context (x,y). The longer the contexts
x and y are the smaller is the “chance” that the instruction-rule z — ¢ will be applied in a “wrong”
context. The main motivation for constraining the contexts arises from the famous n-gram model, which
is often used, e.g., in language modeling or statistical machine translation [22]. By changing the length
of contexts k we can influence the sparsity of the resulting model just as we can influence the sparsity
of the n-gram model by specifying n. If we overestimate the length of contexts &, the resulting model
may become too sparse and may not generalize well. On the other hand, underestimating k can lead to
overgeneralization and divergence, as our target language may not be in the class .Z (k-.#). It can be
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an interesting research direction to investigate some heuristics for choosing the right length of contexts.
But from the perspective of the identification in the limit we only need to choose long enough contexts,
because it can be easily shown that for any class .# of context rewriting systems restricted according to
Definition [2.7] the following inclusions hold: .Z(0-.#) C £ (1-.#) C Z(2-.#4) C .... Moreover, if we
do not specify the length of contexts &, the proposed learning algorithm will figure it out in the limit.

4.1. Learning With Restricted Width

The problem we are interested in here can be best described as follows. Given a sample S = (S7,57)
for some language L € ., we would like to find a model (hypothesis) M € (k,l)-.# consistent with S
(i.e., ST C L(M) and S~ NL(M) = 0), where k is the optional length of contexts and / > 1 is the finite
prescribed maximal width of instructions. We use the notation k = - if k is not specified, and we assume
that STNS™ =0and A € S*. As (k,I)-.# is a finite class, we could enumerate all models M € (k,l)-.#
and return the first model M consistent with S. There are, however, two obstacles in doing the inference
in this way. First, there are, in general, double exponentially many models M € (k,[)-.# with respect to
the width /. This follows easily from the fact that there are, in general, exponentially many instructions
that have the width bounded from above by / and each model M € (k,1)-.# can be specified as a subset
of these instructions. Second, A-confluence is often undecidable. Since we are interested in polynomial
identification as described in Section[3] we need to use a different apporach. The following Algorithm ]
is an auxiliary inference procedure that will be used as a core component in our learning algorithm.

Algorithm 1: Auxiliary inference procedure Infer , (S,k,1)
Input : Sample S= (ST, ) overZ,StT NS~ =0,1 € ST.
Length of contexts k > 0, or k = -, if not specified.
Maximal width of instructions / > 1.
Output: A model M € (k,l)-.# consistent with S, or Fail.
1 @ < Assumptions(S™,k,1);
while Iw_e S~ w, e ST, p e ®:w_+9 w, do
| 2@\ {0}
if A/ is a class of A-confluent models then
while Iw, € ST, w_eS . pc®:w, P w_do
Lt¢e¢wm;
® «+ Simplify(P);
if Consistent(®, S) then
L return Model M with the set of instructions ®;

w N

S A

e e 3

10 return Fail;

Algorithmdeserves an explanation. First, in Stepthe function Assumptions(S™, k,[) returns some
set of instruction candidates. We may assume that every returned instruction ¢ = (x,z —t,y) € Pisa
legal instruction of the class (k,[)-.# (i.e., ¢ satisfies all local restrictions of the class (k,[)-.#). Let us
assume, for a moment, that ® already contains all instructions of a hidden target model H. Then in Cycle
[2H3] we gradually remove all instructions that allow a reduction from a negative sample to a positive
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sample, i.e., instructions that violate the error preserving property (Lemma[2.5). If ./ is a class of A-
confluent models (i.e., if we want to infer a A-confluent model) then in Cycle we gradually remove
all instructions that allow a reduction from a positive sample to a negative sample, i.e., instructions that
violate the correctness preserving property (Lemmal[2.6). These filtered instructions are definitely not in
the set of instructions of the target model H, therefore their removal will not cause any problem. In Step
we remove redundant instructions in order to get a simplified model. In Step [8| we check whether the
remaining set of instructions @ is consistent with the given sample S, i.e.: (1) forall w; € ST 1wy Fj A
and (2) for all w_ € S~ : w_ /3 A. The condition (1) obviously holds if we obtained all instructions of
the target model H in Step [l However, the condition (2) is not guaranteed after Cycle 2H3] Similarly,
if ./ is a class of A-confluent models, it is not guaranteed that after Cycle the resulting model will
be A-confluent. The success of the above algorithm, therefore, depends both on the initial instruction
candidates obtained in Step[I]and on the given sample S. Nevertheless, we will show that if we have a
“reasonable” function Assumptions, then there always exists a finite characteristic sample Sy = (Sg So)
corresponding to the target model H.

The time complexity of Algorithm[I|depends both on the time complexity of the function Assumptions
in Step [1] and on the time complexity of the simplification function and the consistency check in Steps
and [8} As we will see below, there exist “correct” functions Assumptions (for any class .# of CRS
restricted according to Definition that run in polynomial time. If the function Assumptions runs in
polynomial time, then also the size of the set & is polynomial (with respect to the size of the input) and
therefore also Cycles and run in polynomial time. If .# is a class of A-confluent models then
the Steps [7] and [§] can be done in polynomial time, because we can restrict ourselves to the leftmost se-
quences of reductions. In most cases, however, we are not able to verify the A-confluence of the inferred
model, because A-confluence is not even recursively enumerable for clearing restarting automata [29].
In addition, if ./ is a class of ordinary context rewriting systems then it is an open problem whether we
can do Steps|[7]and[8]in polynomial time. Nevertheless, in the case of A-confluent models we do not need
to verify the A-confluence at all, as we will converge to the A-confluent model in the limit.

In the following Definition 4.1| we define what we mean by the term correct function Assumptions.

Definition 4.1. (Correct assumptions [8])
We call the function Assumptions correct with respect to a class .# of context rewriting systems re-
stricted according to Definition if:

1. For every set ST C X*, the set of instructions ® = Assumptions(S*,k,l) is finite. Additionally,
every instruction ¢ = (x,z — t,y) € ® is a legal instruction of the class (k,/)-.# (i.e., ¢ satisfies
all local restrictions of the class (k,1)-.#).

2. For every M = (X,®) € (k,l)-.# with minimal set of instructions, there exists a finite set S C
L(M) such that for every ST D S : @ C Assumptions(S™,k, /).

Definition 4.2. (Monotone assumptions [8])
We call the function Assumptions monotone if:

1. Forevery S| C S5 C X*: Assumptions(S},k,l) C Assumptions(S; ,k,[), and

2. Forevery I; <, : Assumptions(S™,k,/;) C Assumptions(S™,k,1).
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Example 4.3. ([8])

The most trivial example of a correct function Assumptions is to return all possible legal instructions ¢
of the class (k,1)-.# . The correctness and monotonicity follow easily. However, the number of returned
instructions is, in general, exponentially large with respect to [, therefore such function would be of little
interest in real applications.

Example 4.4. ([8])
In this example we define two very natural examples of monotone functions Assumptions that are correct
with respect to any particular class .# of context rewriting systems restricted according to Definition[2.7]

1. WeakAssumptions (S ,k,1) := {¢ = (x,z —t,y) | ¢ is a legal instruction of the class (k,[)-.#
and Iwy,wy € ST : xzy is a subword of ¢w$ and xty is a subword of ¢wy$}.

The basic intuition behind this function is the assumption that if both patterns xzy and xty occur
in the set of positive samples as subwords, then it is justified to replace the word z with ¢ in the
context (x,y). Note that if k is specified then the more we increase the length of contexts k the
smaller (or equal) the number of such patterns we will find in the set of positive samples. The
contexts serve here as a safety cushion against the inference of incorrect instructions.

2. StrongAssumptions (S*,k,1) := {¢ = (x,z —1,y) | ¢ is alegal instruction of the class (k,[)-.#
and Iwy,wy € ST 1wy H@) wo}.

This condition is even more restrictive than the previous one. It basically says that the instruction
¢ = (x,z —t,y) is justified only in the case when there are positive samples wi,w, € ST such that
we can obtain wy from w by using this instruction.

Note that WeakAssumptions and StrongAssumptions are analogous to respectively k,[ substitutability
used in [31] and k,! local substitutability introduced in [13].

Lemma 4.5. ([8])
Both functions Assumptions from Example 4.4| are monotone and correct with respect to any fixed class
A of context rewriting systems restricted according to Definition [2.7]

Proof:

It is easy to see that both functions from Example are monotone and, in addition, for every set
St Cxr* StrongAssumptions ,,(S*,k,1) C WeakAssumptions ,,(S*,k,1). Therefore, we only need to
prove the correctness for the more restrictive function StrongAssumptions /. The correctness of the
function WeakAssumptions ,, will follow immediately. Let M = (X,®) be any CRS from (k,[)-.#
with minimal set of instructions. The minimality of M implies that for every instruction ¢ € P there
exists a word wy € L(M) such that the instruction ¢ is used in every accepting computation wy 3, 4
(otherwise we could remove the instruction ¢ from M). Without loss of generality we may assume that
the instruction ¢ must be used in the very first step of every accepting computation wg 3, 4. (It does
not mean that ¢ is the only applicable instruction. There may also be some other instructions applicable
to wy, but they will definitely not lead to any accepting computation). Let us fix, for every ¢ € ®, some
accepting computation wy H@) wi 3, A. Now define S§ := Ugea{wo,wy}. Apparently S§ C L(M).
Moreover, @ C StrongAssumptions //Z(S(J{ ,k,1). The correctness follows easily from the monotonicity
of the function StrongAssumptions - ]
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Algorithm 2{shows a possible implementation of the function WeakAssumptions , and Al gorithm
shows a possible implementation of the function StrongAssumptions , . Both of these algorithms have
polynomial time complexity with respect to size of the input ST, because there are at most quadratically
many subwords in the set of positive samples (with respect to the size(S™)). In both of these algorithms
we use the variable Map as a dictionary-like data structure (e.g., hash table).

Algorithm ] shows a possible implementation of the function Simplify.

Algorithm 2: Implementation of WeakAssumptions (S, k,1)

Input : Set of positive samples ST over £, A € S*.
Length of contexts k > 0, or k = -, if not specified.
Maximal width of instructions / > 1.
Output: A set of legal instructions & of the class (k,l)-.# .
D 0
Map + 0;
foreach w, € S and each axzyf = ¢w. $ such that x € LCy, y € RC,
| Mapl(x,y)] < Mapl[(x,y)]U{z};
foreach x,y,z,t, such that 7 # t and z,t € Map|[(x,y)] do
if ¢ = (x,z —t,y) is a legal instruction of (k,l)-.# then
L L D+~ dU{(x,z—1,)};

xzy| <1do

AW N -

I ) |

8 return 9,

Algorithm 3: Implementation of StrongAssumptions , (S*,k,1)

Input : Set of positive samples ST over X, A € S*.
Length of contexts k > 0, or k = -, if not specified.
Maximal width of instructions [ > 1.
Output: A set of legal instructions P of the class (k,l)-.# .
D — 0
Map + 0;
foreach w, € S* and each oxtyf = ¢w. $ such that x € LCy, y € RCy, |xty| <1 do
| Mapl(x,y)] + Mapl(x,y)] U{t};
DSt +¢-ST-$={¢w $|wpeSt}
foreach w, € ST and each oxzyf = ¢w. $ such that x € LGy, y € RCy,
foreach r € Map[(x,y)],t # z do
if = (x,z —t,y) is a legal instruction of (k,l)-.# and axtyf € DS™ then
L L P DdU{(x,z—1,y)};

W N -

xzy| <1do

o e &N W

10 return &o;

In the following Example .6 we illustrate how Algorithm[I|behaves when used on clearing restarting
automata as the underlying class of models. We use the parameters k = 1 and [ = 6.
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Algorithm 4: Implementation of Simplify(®)
Input : Set of instructions ®.
Output: Simplified set of instructions .
1 while 3¢ = (x,z > 1,y) €D :z Fo_ (g} 1 in the context (x,y) do

2 | @=0-{¢)

3 return 9;

Example 4.6. ([7])

Consider the class of clearing restarting automata (cl-RA) and the function Wea kAssumptionss|.RA
(from Example . Imagine that our goal is to infer a model for the language L = {a"b" | n > 0}. Let us
try S* = {4,ab,aabb}. First, we would like to estimate the set ® = WeakAssumptions|_ga (5™, /,k)
for k =1 and [ = 6. The set of all subwords of the delimited positive samples ¢S*$ is: SWT = {4, ¢,
a, b, $, ¢$, ¢a, aa, ab, bb, b$, ¢taa, ¢ab, aab, abb, ab$, bb$, ¢ab$, caab, aabb, abb$, ¢aabb, aabb$,
caabb$}. An instruction (x,z,y), where x € LCy = {a,b,¢}, y € RCy = {a,b,$}, |z > 0 and |xzy| <1, is
justified, according to the definition of WeakAssumptions;|_R. if and only if both xzy, xy € SWT. Thus,
only the following reductions are justified: ¢aa b~ ¢a, aab & ab, abb & ab, bb$ - b$, ¢ab$ + ¢$, aabb +-
ab, caabb$ F ¢$. Therefore, WeakAssumptionsd_RA(S*,l,k) = {(¢,a,a), (a,a,b), (a,b,D), (b,b,$),
(¢,ab,$), (a,ab,b), (¢,aabb,$)}. Apparently, the following instructions are bad: (¢,a,a), (a,a,b),
(a,b,b), (b,b,$). We can remove them easily by taking S~ = {aab,abb}. We do not need to add anything
else to S*. The inference procedure (Algorithm (1) Infery| g ((S™,S87),/,k) will correctly output the
model N = ({a,b}, {(¢,ab,$), (a,ab,b)}) (after simplification). The function Simplify removes the
instruction (¢, aabb, $) from the inferred automaton as it can be simulated by the remaining instructions.

In the following Theorem 4.7| we state our first positive result concerning the grammatical inference
of restricted (ordinary or A-confluent) context rewriting systems.

Theorem 4.7. ([8])

Let .# be a class of context rewriting systems restricted according to Definition [2.7| and let function
Assumptions be correct with respect to .#. Then, for every model M € (k,l)-.# there exists a finite
characteristic sample Sy = (Sg , S, ) such that, on all samples S = (S*,S™) for L(M) that verify S C S*
and §; C S, Algorithm Infer (S,k,1) returns a model N € (k,l)-.# equivalent to M.

Proof:

Let M = (X,®) € (k,I)-.#. Without loss of generality we may assume that M has a minimal set of
instructions. According to Definition there exist Sg C L(M) such that for every ST 2 S5 : @ C
Assumptions(S*,k,[). Let us initialize the set of negative samples S to the empty set. Let @ denote
the set of all legal instructions ¢ = (x,z — t,y) of the class (k,l)-.# . (There are only finitely many such
instructions, as |¢| < [). There are two cases we need to consider.

1. The class .# is not restricted to be A-confluent.
2. The class . is restricted to be A-confluent.

In the first casewe say that the instruction ¢ € @ is bad if there exist w_ ¢ L(M),w, € L(M) : w_ ()
w . In the second case 2] we say that the instruction ¢ € © is bad if there exist w_ ¢ L(M),wy € L(M) :
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(w_ F9 w, )V (wy H®) w ). In both cases, we call the pair of words (w_,w ) the wimess for the bad
instruction ¢. Similarly, in the first case|l| we say that the instruction ¢ is disabled by (Sg ;S ) if there
existw_ € §;,wy € Sg :w_ F) . In the second casewe say that the instruction ¢ is disabled by
(Sq,Sy) if there exist w_ € Sy, wy € S3 : (w— 9 wi )V (wy 9 w_). Now consider the following
Algorithm 5}

Algorithm 5: Extension of Sample S = (S, S, )
Input : Sample Sy = (S7,S; )-
Output: Extended sample So = (S5, Sy )-
1 while 3 bad instruction ¢ € © such that ¢ is not disabled by (S; ,S, ) do
2 Letw_ ¢ L(M),w € L(M) be a witness for ¢;
3 8§ SgU{wi}s
4 | Sy S;u{w )

Every added pair w,,w_ effectively disables at least one instruction from ®, so the whole procedure
is definitely finite. Now consider any finite set of positive samples S* D S and any finite set of negative
samples S~ 2 S, consistent with M. If we run the learning Algorithm |1| Infer %(SJ“,S_,k,l), then in
Step [T] we obtain some set of instructions including all instructions from &. (This is guaranteed by the
correctness of the function Assumptions). Note that no instruction from @ is bad. In Cycle (and
also in Cycle if ./ is a class of A-confluent models) the Algorithm [1| gradually removes all bad
instructions. (This is because the sets Sg and S, are constructed in such a way, that all bad instructions
are disabled by (Sar ;8o ).) After these cycles we are left only with correct instructions including all
instructions from &, so the resulting model is apparently equivalent to the model M. In addition, if .#Z
is a class of A-confluent models, the resulting model is also A-confluent. This is because if we take
any w € L(M), then for every instruction ¢ of the resulting model and for every w’ such that w H©@) y/
we have w' € L(M). Otherwise the instruction ¢ would be bad. This means that the resulting model is
correctness-preserving, and therefore also A-confluent. O

Example 4.8. ([7])

Consider the class of clearing restarting automata (cl-RA) and the function WeakAssumptionsC|_R A
as in Example If we use M = ({a,b},{(¢,ab,$),(a,ab,b)}) as our target model recognizing the
language L(M) = {a"b" | n > 0} and the parameters k = 1, [ = 6, then it can be shown that the following
sets of positive and negative samples: S(J{ ={a"b" |0 <n <6} and S, = {aab, abb, aaab, abbb, aaaab,
aaabb, aabbb, abbbb, aaaaab, aaaabb, aabbbb, abbbbb, aaaaabb, aabbbbb, aaaaaabb, aabbbbbb}
represent the corresponding characteristic sample from Theorem §.7]

Theorem only guarantees the existence of the characteristic sample Sy = (S7,S; ). It does not
provide any bounds on the size of the sample Sg. The size of the resulting characteristic sample Sy
depends not only on the target model M € (k,l)-.#, but also on the used function Assumptions. In
the following Example 4.9] we will see that, in general, the size of the smallest characteristic sample
So = (Sg .Sy ) can be exponentially large with respect to the size of the target model. We use clearing
restarting automata and the function StrongAssumptions (from Example to prove this fact.
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Example 4.9. In this example we will construct a sequence of 2-clearing restarting automata: My =
(Xo,Pp),M; = (£,9y),..., such that for all i € {0,1,2,...} : £; = {ao,ai,...,a;}, and ®; C P; ;. We
will prove that for each i € {0, 1,2,...} the size of the automaton M; is polynomial with respect to i, and
that there exists an instruction ¢; € ®; such that the smallest word w; € L(M;), for which the instruction
¢; is applicable, has an exponential length with respect to i, and thus also with respect to the size of
the automaton M;. In constructing these automata we will use a technique of sending signals from one
sentinel to the other (and vice versa), which was widely applied in [9].

The automaton My = (Xo, Do) accepts only one word: apapapag, where Xy = {ap} and P, contains
only one instruction (¢, agapapagp, $).

The best way, how to describe other automata in the sequence is to show how they work in the re-
verse direction (i.e. how they generate words starting from the empty word by using the inverse of the
rewriting relation 4 defined as -—'). The automaton M, just sends a signal a; from the left sentinel ¢ to
the right sentinel $ starting from the word agagagay, as follows:

¢l$ = ¢a0aoaoao$ = ¢ﬂaoaoaoao$ = ¢a1a0ﬂa0a0ao$ = ¢ala0a1aoﬂaoao$ =
¢ajapayapaaparap$ - ¢cajaparapaaparapas$.

This can be easily achieved by the following set of instructions: ®; = {(¢, apaoaoao,$), (¢, a1,a0a0),
(arag,ai,aoa), (arag,ai,ao$), (a1ag,a1,$)}. It can be easily verified that the only words accepted by
the automaton M, are the words shown in the above accepting computation. This is because if you
proceed in the reverse direction, starting from the empty word, then you basically cannot get anything
else than what we have in the above computation. This property also holds for all subsequent automata
in the sequence.

The automaton M, = (X,,®;) is similar to M, except that this time it will send a signal a, from the
right sentinel $ to the left sentinel ¢. The reason why we want to send a signal in a reverse direction
is that we want to preserve the nice property of having only one possible accepting computation. The
automaton M, works as follows (it starts exactly where the previous automaton M; has ended):

¢araparaparaparapar$ 4 ¢ayapaaparagaraparaz$
¢ajaparaparapalapdzaaz$ - ¢cajaparaparapar azapazaaz$
¢ayaparapalapazarazapaza az$ 4 cajaparapa azapazaazapazaaz$ -

Caxa122a0A2a1A2A0A2012200A241 2202241 32$

To enable this kind of computation we only need to add the following instructions: (co,as,$),
(00,a2,0a3), (¢o,az,0a,), and (¢,az,0a,), where o is a placeholder for any of the symbols from {ag,a; }
(of course, different occurrences of the placeholder o can be substituted by different symbols). As in the
previous case, we have only one possible computation.

Now we can generalize the above construction also to other automata in the sequence. The automaton
M;, for i > 0, is obtained from the automaton M;_; as follows:

1. If i is odd then the automaton M; will send a signal from the left sentinel ¢ to the right sentinel
$, thus, in order to obtain ®;, we only need to add the following instructions to ®;_;: (¢,@, 00),
(ajo,ai,00), (a;o,a;,0$), and (a;0,a;,$), where o is a placeholder for any of the symbols from
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{ao,al,. .. ,ai_1}.

2. If i is even then the automaton M; will send a signal from the right sentinel $ to the left sentinel
¢, thus, in order to obtain ®;, we only need to add the following instructions to ®;_;: (c0,a;,$),
(00,ai,0a;), (¢o0,ai,0a;), and (¢&,a;,0a;), where o is a placeholder for any of the symbols from
{ao,ai,...,ai_1}.

First observe that the size of the automaton M; is polynomial with respect to i. This can be easily
proved inductively by using a simple observation that we add only O(i*) new instructions to ®; | when
constructing P;.

Now consider any i > 0. If i is even then let us take the instruction ¢; = (¢,a;,a;-1a;—2). This
instruction can be applied only after the previous signal a;_; has arrived to the left sentinel ¢. In other
words, it can be applied only to the longest word in L(M;_;). However, the length of the longest word
in L(M;) is exponential with respect to j, for all j > 0, because every time the signal traverses from one
end to the other, the length of the resulting word more than doubles.

In the case when i is odd we can take the instruction ¢; = (a;_2a;_1, a;, $), which can be applied only
after the previous signal a;_ has arrived to the right sentinel $.

The above example clearly shows that sometimes we need to consider an exponentially large set
(i.e. a set that has an exponentially large binary representation) of positive samples S* in order to
obtain all instructions of the hidden target model. The argument is based on the use of the function
StrongAssumptions (from Example combined with the class of clearing restarting automata. This
naturally rises an open question, whether this phenomenon also applies to other functions and other
classes of restricted context rewriting systems.

As you can see, our auxiliary inference procedure (Algorithm|[I)) is relatively simple and straightfor-
ward, and, in addition, it sometimes fails. This naturally rises a question whether one can design a more
sophisticated algorithm that can, for instance, always return a model with the restricted maximal width
that is consistent with the given set of positive and negative samples. It turns out that there is little hope
in finding such algorithm, because the task of finding a clearing restarting automaton consistent with a
given set of positive and negative samples is NP-hard, provided there is an upper bound on the width of
its instructions.

Theorem 4.10. ([7])
Let [ > 2 be a fixed integer. It is NP-complete to decide whether there exists a (0,/)-cl-RA M = (X, D)
consistent with a given sample S = (S7,57), ST NS =0,1 € S*.

In this paper we prove a more general Theorem|4.11

Theorem 4.11. Let k > 1 and [ > 4k + 4 be fixed integers. It is NP-hard to decide whether there exists
a (k,1)-cl-RA M = (X, ®) consistent with a given sample S = (§*,57), ST NS~ =0,1 € S™.

Proof:

Consider a 3-SAT formula y = A}, C;, where clause C; = ;1 V{2V {;3, and ¥; 1, ¢; 5, {; 3 are literals
having pairwise different variables, for all i € {1,2,...,n}. Let Q = {aj,az,...,an} be the set of all
variables occurring in . In the following, we will (effectively) construct a finite sample S = (ST,57),
STNS™ =0, €S, such that the following holds: the formula  is satisfiable if and only if there exists
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a (k,1)-cl-RA M = (X,®) consistent with S = (§7,57). Our alphabet £ will contain all symbols from
QUQ, where Q = {a; | a; € Q}, and QN Q = 0. We define @ = a for all a € Q. In addition, ¥ will contain
also some other special symbols. First set ST := {1},5~ := 0. For each clause C; = ¢;; V {;» V {; 3 add
the negative sample w., = kaDk@kaDk to the set of negative samples S~, where [] is a special
dummy symbol that will later match the contexts of the instructions. For each variable a € Q, add the
following positive samples: w§ = fallalk, wi = OFaOF, wy = 0@k, and wi = O% to the set
of positive samples S*, and also add the negative sample w, = O aO%*a@0 to the set of negative samples
S™, where t =1 —2k—3. Since [ > 4k +4, it follows that t > 2k + 1, and thus Wa_ # wy . Our next goal
is to allow only the following types of instructions, where a € Q:

(@) (OF,a,0%).
(b)
(©
(d)
(@ (¢,0%8).

All of these instructions have the width at most /. (The longest are the instructions of the type (c) and
(d), having the width 2k +1 4 3 = [). On the other hand, it is not possible to store the whole word w(‘)" =
O*a0'@0* in one instruction containing both sentinels (such us, for instance, (¢, faX'al*, $)), since its
width would be 2k+1+4 =1+ 1 > . Also note, that the instructions (c) and (d) will never interfere with
any of the negative samples w, = [*¢; 1 [0%¢; ,00°0; 300, because: |0 DFOFOH| = |FOFOAE 3 0F| =
4k + 1, while |TFa0%| = |OFa0*| = 2k +1+ 1 =1—2 > 4k +2. The same holds for the negative
sample w, = O*aO%*a¥, because |TFaO* 0| = |TFO%*al¥| = 4k + 1.

In the following we introduce a general technique, how to prohibit the inference of any specific
undesirable instruction. Suppose that we want to prohibit the instruction ¢ = (x,z,y), where |xzy| < /.
Let X' (y/, respectively) be the largest possible subword of x (y, respectively) not containing the sentinels
(¢, $); thus either x = x/, or x = ¢x’ (either y = y/, or y = y'$, respectively). There are only the following
four possible cases:

(
(O%,a,0),

(¢, ka0 $).
(¢,

DkthaDk $)

l. x=¢xX andy=y'$
2. x=¢xandy=y
3. x=x'andy=y'$
4. x=x"andy =y

In the first case we only need to add the word x'zy’ to the set of negative samples S~ and the word x'y’ to
the set of positive samples ST in order to prohibit the instruction ¢ = (x,z,y) = (¢x',z,'$). In the other
cases let us first introduce a new symbol [y, which we also add to our alphabet ¥. This is what we do in
the particular cases:

1. ST :=8"U{Xz/}, ST :=STu{xy}.
2. S =85 U{¥zyOy}, ST :=STU{xyDy}.
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3. § =85 U{0px'zy'}, ST :=STu{0px'y'}.
4. 87 =85 U{0px'zy'0y }, ST :=STU{Oexy'Oy }.

For every prohibited instruction ¢ we add two new samples: a positive sample w;,r to the set ST and
a negative sample w, to the set S~. It is easy to see, that in each case we have effectively prohibited
the instruction ¢ = (x,z,y). Note that this is the only instruction not containing the symbol [y (and
having x € LCy,y € RCy) that reduces wqf to wy. Later, we will have to verify the consistency of the
constructed (k,7)-cl-RA M also with these newly added samples, i.e. that for every prohibited instruction
¢ the following holds: wé{ Fu A and W /3 A. In all cases, the newly added positive sample wg can
always be reduced to the empty word in one step by using the instruction (¢, w;[, $). This is because the
width of this instruction is 2 + ]w;ﬂ <242+ |xy| <442k < 1. If we use a new symbol [y in wg,
then the instruction (¢, w;;, $) will be applicable only to this specific sample w;,r € ST, and thus will not
interfere with other samples. On the other hand, the verification of the second condition (w(; Vo A) is
more difficult. Fortunately, we will always use the symbol [y in Wo s i.e. the first case (x = ¢x’ and
y = y'$) will never occur in our proof.

Now we have all necessary ingredients to finish the proof. For every a € Q consider the following
positive sample: wj = O*aD'al*. By using the above technique, we disable all instructions applicable
to this word having the width at most / except for the instructions of the form (a) — (e). Observe, that
we will never attempt to disable any instruction of the form ¢ = (¢x’,z,y’$). This is because the word
wy = [O*a'ald* (as we have already mentioned above) is too long. Moreover, there is only polynomially
many disabled instructions, since there is only polynomially many subwords of the above word. Now
we have completely specified the sets of positive and negative samples ST, S, STNS™ =0, A € S, and
thus we can proceed with the proof.

(=) Suppose that y is satisfiable, i.e. there exists an assignment v : Q — {0, 1} such that v*(C;) =1
for all i € {1,2,...,n}, where v* denotes the natural extension of v to formulas. We will show that
there exists a (k,l)-cl-RA M = (X, ®) consistent with S = (§*,57). Consider the following (k,l)-cl-RA
M = (Z,®): First, add to ® the following set of instructions: ®; = {(*,a,[*) |a € Q: v(a) = 1} U
{(OF,@,0 | a € Q:v(a) = 0}. It can be easily observed that, for all literals / € QU Q : OFICF 1y,
YO < v(I) = 1, or equivalently: (*/(J* -y, OFO0* < v(I) = 0. Therefore no negative sample we, =
O%¢; 1 OKE; , 00K, 300, where i € {1,2,...,n}, can be reduced to the positive sample [1* by using the
instructions from @;, because otherwise it would mean that v(¢; 1) = v({;2) = v({;3) = 0. Next, add
to @ the following set of instructions ®, = {(¢,[* a0 $), (¢, 0@k, $) | a € Q} U {(¢,0%,$)}.
As we have already stated above, no instruction from &, will ever interfere with any negative sample
we, = O 10,040 530%, or wy, = OFa0?@0*. Finally, add to @ all instructions (¢, wy ,$), where w;;
was added to the set of positive samples St during the process of disabling the undesirable instruction ¢.
These instructions are applicable only to words containing these special symbols [y, so we do not have
to care about them at all. Now we will show that the constructed (k,!)-cl-RA M = (X, ®) is consistent
with the sample S = (S7,57). (The width of instructions of M is apparently bounded from above by [).
First, it is easy to see, that for each variable a € Q the following positive samples: war = Oka'al,
wi = Ok a0k, wy = Ok @, wy = O% are all reducible to the empty word A. The positive sample
wyg is always reducible to either w, or w3, depending on whether (¥, a,[0%) € @y, or (OF,@,[0%) € &;.
The other positive samples: w;’, w;r , w}r can be reduced to the empty word A in one single step by
using the corresponding instruction from ®,. The negative sample w, = *a0?*a* clearly cannot be
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reduced to the empty word A. We can clear either the letter a, or @ by using the corresponding instruction
from &, but then we get the irreducible word [K%kGF, or (¥aJ*%. None of the instructions
from &, can be applied to such a word, since the length |J*a0%*(0F| = |OFO%*a¥| = 4k + 1, while
|Ofa*+| = |OFalk| = 2k + 141 =1 —2 > 4k + 2. It remains to be shown, that no negative sample
Wo s which was added to the set of negative samples S~ during the process of disabling some instruction
¢, can be reduced to the empty word A. Both the negative sample W and the corresponding positive
sample w(‘; contain the special symbol Lly. The negative sample We without this special symbol Ly is

basically a subword of some word (I*a[J'alJ*. First observe, that the only instruction from ®, that could
be possibly applied to the negative sample Wy s is some instruction from ®;. Without loss of generality

assume that we can apply the instruction p = (¥, a,[0¥) € ®; to the word Wy, le. wy F(P) w'. This

also implies that ((0%,@,[0%) ¢ ®,. It is easy to see, that no other instruction from & can be applied to
the resulting word w’, except possibly the instruction (¢,w$, $). Butif (¢, w;;, $) was applicable to w/,
it would have implied that we wanted to disable the instruction p itself, which is not possible, since p
is of the form (a). Thus, we have shown that the constructed (k,7)-cl-RA M = (X,®) is consistent with
S = (S*,87). The size of the constructed set of positive and negative samples is linear with respect to
the size of the formula y.

(<) Now suppose that there exists a (k,/)-cl-RA M = (X, ®) consistent with S = (S7,57). We will
show that y is satisfiable, i.e. we will construct an assignment v : Q — {0, 1} such that v*(C;) = 1
for all i € {1,2,...,n}. First observe, that for each a € Q: either (¥, a,[I¥) € ®, or (¥,a,0F) €
®. Consider the positive sample wg = kaald*. We know that (Fa)'al)* i, A. Let ¢ € ® be
the first instruction used in any such accepting computation. The instruction ¢ is either of the form
(OF,a,%), or (OF,@,[%), because all other instructions are disabled. Moreover, it cannot happen that
both instructions ((0¥, @, %), (T, @, 0F) are in @, because it would mean that (F*a(1%*a@0* 3, 0%, where
O*aO*a0* € S~ and 0% € S*. Now let us define the assignment v : Q — {0,1} as follows: for each
acQ:v(a)=1if (A,a,A) € @, and v(a) =0if (1,a,A) € ®. For each clause C; = ¢; 1 V ;> \V {;3 we
have a negative sample w, = (%0 ;00,0047 300% € S~ Therefore, (O, £; 1, 0%) ¢ ® or (0%, 4;,,1) ¢
® or (K, 0 3,00F) ¢ @, which is equivalent to v(¢;1) = 1 or v(¢; ) = 1 or v({; 3) = 1. This means that y
is satisfiable. O

Note that if the consistency check for cl-RA was in NP, then also deciding the existence of a
(k,1)-cl-RA M = (X,®) consistent with a given sample S = (S7,5) would be in NP. This follows
from the fact that the number of instructions that we need to guess is bounded from above by size(S™),
because for every positive sample w,. € ST the accepting computation w. 3, A uses at most |w, | many
instructions.

4.2. Learning Without Restrictions

Now we turn to learning without the restricted width of instructions. As we have already stated we will
use the auxiliary inference procedure (Algorithm (1)) from Section 4.1| as a component in our learning
algorithm. The inference procedure itself requires the specification of the maximal width of instructions
[ > 1, so it is only natural to try all widths / = 1,2,..., until the inference procedure succeeds. The
resulting learning algorithm is shown in Algorithm [6]

In turns out that the learning Algorithm [6]is not only able to identify any hidden target model in the
limit, it also infers a model with minimal width.
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Algorithm 6: Learning algorithm Unconstrainedinfer , (S, k)

Input : Sample S= (ST,S7)over L, ST NS~ =0,1 € ST.
Length of contexts k > 1, or k = -, if not specified.
Output: A model M € k-.# consistent with §

1 Ipax < 2+max{|w| |we St}
2 for!=1... 15 do

3 M « Infer_,/(S,k,1);

4 if M +# Fail then

5 L return M,

return M with instructions ® = {(¢,w — 1,$) |[we ST};

=)}

Theorem 4.12. Let ./ be a class of ordinary k-CRS restricted according to Definition 2.7] (where k > 1
or k = - if not used) and .Z be the corresponding class of languages. Let function Assumptions be
monotone and correct with respect to .# . Then:

1. Given a sample S = (S*,57) for L € ., Unconstrainedinfer ,(S,k) returns a model (hypothesis)
N € M consistent with S.

2. For each model M € .# representing the language L € .2, there exists a finite characteristic
sample Sy = (S{ , S, ) such that, on all samples S = (S*,S5™) for L that verify S; C St and S; C S,
Unconstrainedinfer (S, k) returns an equivalent model N € . with minimal width.

Proof:

Cycle 2] - [3] is finite and in both Steps [5] and [6] we return a model from .# consistent with S.
Without loss of generality we may assume that the the model M = (X,®) € .# representing the target
language L has minimal width |M| = [y and a minimal set of instructions. Similarly as in the proof
of Theorem we can define the term bad instruction with respect to the target language L(M). Let
©® D d denote the set of all legal instruction of the class (k,ly)-.# that are not bad w.r.t. L(M). Then
apparently M := (X,0) € (k,ly)-.# and L(M) = L(M). In addition, there exists a word wy € L(M) such
that every accepting computation wy -y, 4 must use some instruction ¢ € ® with [@| = [y (otherwise the
width |[M| = [y would not be minimal). According to Theorem 4.7 there exists a characteristic sample
So = (Sg,Sy ) such that, on all samples S = (S*,57) for L(M) that verify Sj C S* and S; C S~ the
inference procedure Infer (S, k,lo) will return a model N € (k, ly)-.# equivalent to M. We may assume
that wg € Sar . Our goal is now to show that for every / < [y the inference procedure Infer %(S,k,l)
will Fail. For every [ < [y : Assumptions(S™,k,l) C Assumptions(S™,k,lp). This is because the set
Assumptions(S™,k,ly) contains all instructions of M (this follows from the minimality of &), and some
of these instructions have the width equal to /y. Since all bad instructions from Assumptions(S™,,ly)
are disabled by (S*,S7), the inference procedure Infer //Z(S,k, 1) will filter all bad instructions returned
by Assumptions(S™,k,[). The resulting set of instructions @’ will contain only the correct instructions,
i.e., @ C @. However, the instructions of M that have the width equal to Iy will be missing in this set @’.
This implies that the word w( cannot be reduced to A by using only the instructions from &'. Therefore,
the inference procedure Infer ,/(S,k,1) will Fail. O
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If ./ is a class of A-confluent models, then both the simplification (Step (7)) and the consistency check
(Step[) in the inference procedure Infer (Algorithm can be done in polynomial time (provided that
we restrict ourselves to the left-most reductions). The only problem is that the A-confluence itself is
undecidable in most cases. Fortunately, according to Theorem 4.7} if we use a sample § that contains the
characteristic sample Sy, then we do not need to check the A-confluence at all as the inferred model will
be A-confluent. Additionally, according to proof of Theorem[4.12] if we use a width / that is smaller than
the minimal width [ of the target model then the inference procedure Infer  (S,k,) will Fail, because
it will not be able to reduce the word wg € S(J{ to the empty word (by using any kind of reductions, not
only the left-most reductions). This gives us the following Corollary {.13]

Corollary 4.13. Let .# be a class of A-confluent k-CRS restricted according to Definition [2.7) (where
k > 1 or k = - if not used) and . be the corresponding class of languages. Let function Assumptions
be monotone and correct with respect to .#. Then for each model M € .# representing the language
L € Z, there exists a finite characteristic sample Sy = (S, S, ) such that, on all samples S = (S*,5™) for
L that verify SS’ CS*TandS, €S, Unconstrainedinfer %(S, k) returns an equivalent model N € . with
minimal width in polynomial time (provided that we restrict ourselves only to the left-most reductions).

Note that this result deviates from our original goal of the polynomial identification as defined in
Definition[3.2] First, we are not able to satisfy the condition [I]of Definition [3.2] because we are not able
to verify the A-confluence of the inferred model. Second, we are not able to guarantee that the function
B(+) in the condition [2| of Definition [3.2|is polynomially bounded.

S. Clearing Restarting Automata and Finite Automata

The NP-hardness results from Section [4.1] resemble the famous result of Gold [19] who showed that
the construction of a deterministic finite state automaton consistent with the given data is, in general,
computationally difficult, if the number of states is bounded from above by n.

Theorem 5.1. For every n-state deterministic finite automaton A there exists an equivalent clearing
restarting automaton M such that [M| =n+ 1.

Proof:

Let A= (Q,X,08,q0,F) be a deterministic finite state automaton, where Q is a set of n states, X is an
alphabet, 6 : Q x ¥ — Q is a transition function, go € Q is a start state and F' C Q is a set of accept states.
Let 0% : Q x £* — Q denote the transition function extended to words, i.e. for every g € Q: 0*(q,4) :=¢q
and forevery w € X* anda € X: §*(¢,wa) := 8(8*(q,w),a). For every word w =w; ...w, € L" there exist
words X, 2y, Yy € X* such that w = x,,z,yy, 0 < |24] < 1, and 8*(qo,xw) = 8*(qo,xwzw). This follows
from the so-called pigeon hole principle: There are only n states and the following sequence: 8*(go, A ),
0*(qo,w1), 6*(qo,w1w2), ..., 6*(qo,wiwz ... w,) contains exactly n+ 1 elements. Therefore, there exist
0 <i < j<nsuchthat: 6*(qo,wi...w;) = 8"(qo,w1...w;). If you set x,, = wi... Wi, Zy = Wip1... W,
and y,, = wji1...wy, then w = x, 2y, 0 < |z,| < n, and 6*(go,xw) = 6 (qo,xwzw). Now consider a
cl-RAM = (X,®), where ® = {(¢,w,$) |w € L(A) and |w| < n} U{(¢xw, 20, Yw) | w € E"}. Apparently,
M| = n+ 1. Consider any word w € X*. If 0 < |w| < n, then w € L(M) < w € L(A). Suppose that
|[w| > n, i.e. w=x,z,y,v, where u € X" and v € X*. Apparently, x,z,y,v € L(A) < x,y,v € L(A). The
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application of the instruction (¢x,,z,,y,) € P on the word w does not change the acceptance of this
word by the automaton A. It only shortens the length of this word, so after a finite many steps we get a
nonempty word that is shorter than n letters. O

On the other hand, the number of instructions of a clearing restarting automaton is not, in general,
polynomially bounded with respect to the number of states of an equivalent deterministic finite state
automaton. We illustrate this in the following Example

Example 5.2. For every positive integer k > 1 consider the finite language Ly = {w € {a,b}* | |w|, =
|[w|p = k}. It is easy to find a deterministic finite state automaton Ay with polynomially many states with
respect to k that recognizes the language L;. The automaton A; only needs to store in its state how many
as and bs it has read so far, i.e. it needs only (k+ 1)? states. On the other hand, if a cl-RA M = (Z,®)
recognizes the language L then for every word w € L : (¢,w,$) € ®. Proof (by contradiction): Suppose
that there exists a word w € L : (¢,w,$) ¢ ®. No instruction of M can rewrite the whole word w to
the empty word in one single step. Therefore, any accepting computation starting from the input word
w consists of at least two steps, e.g. w by w' F}j, A. But the word w' ¢ L, because if you clear any
proper subword of the word w you get a word outside the language L. This is a contradiction, because
w Fi A =w' € L(M). We have shown that |®| > |L;| = (zkk) which is exponential with respect to k.

Nevertheless, there exist regular languages that have a compact representation in the class of clearing
restarting automata, but that cannot be compactly represented by using deterministic finite state automata.
Consider, for instance, the sequence of finite languages L(My), L(M1), L(M>), ... from Example[4.9] This
sequence of languages has a compact representation in the class of clearing restarting automata because
the size of every automaton M, is polynomial with respect to i. On the other hand, for every i the length
of the longest word w; € L(M;) is exponential with respect to i. Therefore, the smallest deterministic
finite state automaton A; recognizing the language L(M;) must have at least |w;| states, i.e. exponentially
many states. Otherwise, we could apply the pigeon hole principle on the word w; which would imply
that the language L(A;) is an infinite language.

6. Conclusions

We have introduced a general learning algorithm for inferring various restricted types of context rewrit-
ing systems. We have shown that, under certain conditions, it is possible to identify in the limit any
target context rewriting system with minimal width of instructions from informant. In addition, we have
shown that the learning algorithm works in polynomial time with respect to the size of the given sample
when used on A-confluent context rewriting systems. For ordinary context rewriting systems the time
complexity of the consistency check is an open problem.
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