
GRAMMATICAL INFERENCE

OF LAMBDA-CONFLUENT

CONTEXT REWRITING

SYSTEMS

Peter Černo
Department of Computer Science

Charles University in Prague, Faculty of Mathematics and Physics

Table of Contents

• Part I: Motivation,

• Part II: Definitions,

• Part III: Learning Algorithm,

• Part IV: Results,

• Part V: Concluding Remarks.

Part I

Motivation

Part I: Motivation

• Let’s say that we have the following sentence:

Andrej, Monika and Peter like kitesurfing.

• We would like to verify the syntactical correctness of

this sentence.

• One way to do this is to use Analysis by Reduction.

Part I: Motivation

• Analysis by Reduction – Step-wise simplifications.

Andrej, Monika and Peter like kitesurfing.

Andrej and Peter like kitesurfing.

They like kitesurfing.

Part I: Motivation

• But how can we learn these reductions?

Part I: Motivation

• Let’s say that we are lucky and have the following two

sentences in our database:

Andrej, Monika and Peter like kitesurfing.

Andrej and Peter like kitesurfing.

Part I: Motivation

• From these two samples we can, for instance, infer the

following instruction:

Andrej, Monika and Peter like kitesurfing.

Andrej and Peter like kitesurfing.

• Instruction:

, Monika → λ

Part I: Motivation

• But is the instruction (,Monika → λ) correct?

Part I: Motivation

• But is the instruction (,Monika → λ) correct?

• Probably not:

Peter goes with Andrej, Monika stays at home, and …

Peter goes with Andrej stays at home, and …

Part I: Motivation

¢ Andrej and Peter

• What we need to do is to capture a context in which the

instruction (,Monika → λ) is applicable:

Andrej, Monika and Peter like kitesurfing.

Andrej and Peter like kitesurfing.

, Monika → λ

Part II

Definitions

Part II: Definitions

• Context Rewriting System (CRS)

• Is a triple M = (Σ, Γ, I) :

• Σ … input alphabet,

• Γ … working alphabet, Γ ⊇ Σ,

• ¢ and $ … sentinels, ¢, $ ∉ Γ,

• I … finite set of instructions (x, z → t, y) :

• x ∊ {λ , ¢}.Γ * (left context)

• y ∊ Γ *.{λ , $} (right context)

• z ∊ Γ+, z ≠ t ∊ Γ*.

• The width of instruction φ = (x, z → t, y) is |φ| = |xzty| .

Part II: Definitions – Rewriting

• uzv ⊢M utv iff ∃ (x, z → t, y) ∊ I :

• x is a suffix of ¢.u and y is a prefix of v.$.

L(M) = {w ∊ Σ* | w ⊢*
M λ}.

Part II: Definitions – Empty Word

• Note: For every CRS M: λ ⊢*
M λ, hence λ ∊ L(M).

• Whenever we say that a CRS M recognizes a language

L, we always mean that L(M) = L ∪ {λ}.

• We simply ignore the empty word in this setting.

Part II: Definitions – Example

• L = {ancbn | n > 0} ∪ {λ} :

• CRS M = ({a, b, c}, I) ,

• Instructions I are:
• R1 = (a, acb → c, b) ,

• R2 = (¢, acb → λ, $) .

Part II: Definitions – Restrictions

• Context Rewriting Systems are too powerful.

• We consider the following restrictions:

1. Length of contexts = constant k.
• All instructions φ = (x, z → t, y) satisfy:

• x ∊ LCk := Γ k ∪ {¢}.Γ ≤ k - 1 (left context)

• y ∊ RCk := Γ k ∪ Γ ≤ k - 1.{$} (right context)

• In case k = 0 we use LCk = RCk = {λ} .

• We use the notation: k-CRS.

2. Width of instructions ≤ constant l.
• All instructions φ = (x, z → t, y) satisfy:

• |φ| = |xzty| ≤ l .

• We use the notation: (k, l)-CRS.

Part II: Definitions – Restrictions

• Context Rewriting Systems are too powerful.

• We consider the following restrictions:

3. Restrict instruction-rules z → t .
• There are too many possibilities:

• All instructions φ = (x, z → t, y) satisfy:

a) t = λ , (Clearing Restarting Automata)

b) t is a subword of z, (Subword-Clearing Restarting Automata)

c) |t| ≤ 1 .

4. Lambda-confluence.
• We restrict the whole model to be lambda-confluent.

• Fast membership queries, undecidable verification.

• In addition, we assume no auxiliary symbols: Γ = Σ.

Part III

Learning Algorithm

Part III: Learning Algorithm

• Consider a class ℳ of restricted CRS.

• Goal: Learning ℒ(ℳ) from informant.

• Identify any hidden target CRS from ℳ in the limit from positive

and negative samples.

• Input:

• Set of positive samples S+,

• Set of negative samples S-,

• We assume that S+∩ S- = ⍉, and λ ∊ S+.

• Output:

• CRS M from ℳ such that: L(M) ⊆ S+ and L(M) ∩ S- = ⍉.

Part III: Learning Restrictions

• Without restrictions:

• Trivial even for Clearing Restarting Automata.

• Consider: I = { (¢, w → λ, $) | w ∊ S+ , w ≠ λ }.

• Apparently: L(M) = S+, where M = (Σ, Σ, I).

• Therefore, we impose:

• An upper limit l ≥ 1 on the width of instructions.

Part III: Learning Algorithm

Look at Positive Samples and

Infer Instruction Candidates

Look also at Negative Samples and

Remove Bad Instructions

Simplify and Check Consistency

Part III: Learning Algorithm Inferℳ

• Input:

• Positive samples S+, negative samples S-, S+∩ S- = ⍉, λ ∊ S+.

• Maximal width of instructions l ≥ 1 ,

• Specific length of contexts k ≥ 0.

Part III: Learning Algorithm – Step 1/5

• Input:

• Positive samples S+, negative samples S-, S+∩ S- = ⍉, λ ∊ S+.

• Maximal width of instructions l ≥ 1 ,

• Specific length of contexts k ≥ 0.

Part III: Learning Algorithm – Step 1/5

• Step 1:

• First, we obtain some set of instruction candidates.

• Let us assume, for a moment, that this set 𝛷 already contains all

instructions of the hidden target CRS.

Part III: Learning Algorithm – Step 2/5

• Input:

• Positive samples S+, negative samples S-, S+∩ S- = ⍉, λ ∊ S+.

• Maximal width of instructions l ≥ 1 ,

• Specific length of contexts k ≥ 0.

Part III: Learning Algorithm – Step 2/5

• Step 2:

• We gradually remove all instructions that allow a single-step

reduction from a negative sample to a positive sample.

• Such instructions violate the so-called error-preserving property.

Part III: Learning Algorithm – Step 3/5

• Input:

• Positive samples S+, negative samples S-, S+∩ S- = ⍉, λ ∊ S+.

• Maximal width of instructions l ≥ 1 ,

• Specific length of contexts k ≥ 0.

Part III: Learning Algorithm – Step 3/5

• Step 3:

• If the target class ℳ consists of lambda-confluent CRS :

• We gradually remove all instructions that allow a single-step

reduction from a positive sample to a negative sample.

• Such instructions violate the so-called correctness-preserving

property.

Part III: Learning Algorithm – Step 4/5

• Input:

• Positive samples S+, negative samples S-, S+∩ S- = ⍉, λ ∊ S+.

• Maximal width of instructions l ≥ 1 ,

• Specific length of contexts k ≥ 0.

Part III: Learning Algorithm – Step 4/5

• Step 4:

• We remove the redundant instructions.

• This step is optional and can be omitted – it does not affect the

properties or the correctness of the Learning Algorithm.

Part III: Learning Algorithm – Step 5/5

• Input:

• Positive samples S+, negative samples S-, S+∩ S- = ⍉, λ ∊ S+.

• Maximal width of instructions l ≥ 1 ,

• Specific length of contexts k ≥ 0.

Part III: Learning Algorithm – Step 5/5

• Step 5:

• We check the consistency of the remaining set of instructions

with the given input set of positive and negative samples.

Part III: Complexity

• Time complexity of the Algorithm depends on:

• Time complexity of the function Assumptions,

• Time complexity of the simplification,

• Time complexity of the consistency check.

• There are correct implementations of the function

Assumptions that run in polynomial time.

• The simplification and the consistency check can be

done in polynomial time when using lambda-confluent

CRS. Otherwise, it is an open problem.

Part III: Assumptions

• We call the function Assumptions correct, if it is possible

to obtain all instructions of any hidden target CRS in the

limit by using this function.

• To be more precise:

• For every minimal (k, l)-CRS M there exists a finite set S0
+ ⊆ L(M)

such that for every S+ ⊇ S0
+ the Assumptions(S+, l, k) contains all

instructions of M.

Part III: Example – Assumptionsweak

• Assumptionsweak(S+, l, k) := all instructions (x, z → t, y) :

• The length of contexts is k :

• x ∊ Σ k ∪ {¢}. Σ ≤ k - 1 (left context)

• y ∊ Σ k ∪ Σ ≤ k - 1.{$} (right context)

• The width is bounded by l :
• |xzty| ≤ l.

• The rule z → t satisfies all rule restrictions.

• There are two words w1 , w2 ∊ S+ such that:

• xzy is a subword of ¢ w1 $,

• xty is a subword of ¢ w2 $.

• This function is correct and runs in a polynomial time.

Part III: Example – Assumptionsweak

Part III: Example – Assumptionsweak

Part III: Example – Assumptionsweak

Part III: Example – Assumptionsweak

Part III: Example – Assumptionsweak

Part IV

Results

Part IV: Results

• ℳ – class of restricted (k, l)-CRS,

• M – a model from ℳ,

• Then there exist:

• Finite sets S0
+, S0

- of positive, negative samples:

• For every S+ ⊇ S0
+, S- ⊇ S0

- consistent with M :

• Inferℳ(S+, S-, k, l) = N : L(N) = L(M).

• Positive side:

• The class ℒ(ℳ) is learnable in the limit from informant.

• Negative side:

• size(S0
+, S0

-) can be exponentially large w.r.t. size(M).

• We do not know k, l.

• If l is specified, ℒ(ℳ) is finite!

Part IV: Unconstrained Learning

• Input:

• Positive samples S+, negative samples S-, S+∩ S- = ⍉, λ ∊ S+.

• Specific length of contexts k ≥ 0.

Part IV: Results

• ℳ – class of restricted k-CRS,

• M – a model from ℳ,

• Then there exist:

• Finite sets S0
+, S0

- of positive, negative samples:

• For every S+ ⊇ S0
+, S- ⊇ S0

- consistent with M :

• UnconstrainedInferℳ(S+, S-, k) = N : L(N) = L(M).

• N has minimal width!

• Positive side:

• The infinite class ℒ(ℳ) is learnable in the limit from informant.

• Negative side:

• size(S0
+, S0

-) can be exponentially large w.r.t. size(M).

• We do not know k.

Part V

Concluding Remarks

Part V: Concluding Remarks

• Remarks:

• We have shown that ℒ(ℳ) is learnable in the limit from

informant for any class ℳ of restricted k-CRS.

• UnconstrainedInferℳ(S+, S-, k) always returns a model consistent

with the given input S+, S-. In the worst case it returns:

I = { (¢, w → λ, $) | w ∊ S+ , w ≠ λ } .

• This is not true for Inferℳ(S+, S-, k, l) , (it can Fail). In some cases,

finding a consistent model with maximal width l is NP-hard.

• If ℳ is a class of lambda-confluent k-CRS, then

UnconstrainedInfer runs in polynomial time w.r.t. size(S+, S-) .

• But in most cases, it is not possible to verify lambda-

confluence. It is often not even recursively enumerable.

• If ℳ is a class of ordinary k-CRS, the time complexity of

UnconstrainedInfer is an open problem.

Selected References
• M. Beaudry, M. Holzer, G. Niemann, and F. Otto. Mcnaughton families of languages.

• Theoretical Computer Science, 290(3):1581-1628, 2003.

• Ronald V Book and Friedrich Otto. String-rewriting systems.
• Springer-Verlag, New York, NY, USA, 1993.

• Peter Černo. Clearing restarting automata and grammatical inference.
• In: J. HEINZ, C. DE LA HIGUERA, T. OATES (eds.), Proceedings of the Eleventh International Conference on

Grammatical Inference. JMLR Workshop and Conference Proceedings 21, 2012, 54-68.

• Peter Černo and František Mráz. Clearing restarting automata.
• Fundamenta Informaticae, 104(1):17-54, 2010.

• C. de la Higuera. Grammatical Inference: Learning Automata and Grammars.
• Cambridge University Press, New York, NY, USA, 2010.

• R. Eyraud, C. de la Higuera, and J.-C. Janodet. Lars: A learning algorithm for rewriting systems.
• Machine Learning, 66:7-31, 2007.

• E. Mark Gold. Complexity of automaton identification from given data.
• Information and Control, 37, 1978.

• John E. Hopcroft and J. D. Ullman. Formal Languages and their Relation to Automata.
• Addison-Wesley, Reading, 1969.

• S. Lange, T. Zeugmann, and S. Zilles. Learning indexed families of recursive languages from positive
data: A survey.

• Theor. Comput. Sci., 397(1-3):194-232, May 2008.

• R. McNaughton. Algebraic decision procedures for local testability.
• Theory of Computing Systems, 8:60-76, 1974.

• F. Otto. Restarting automata.
• In Zoltán Ésik, Carlos Martín-Vide, and Victor Mitrana, editors, Recent Advances in Formal Languages and Applications,

volume 25 of Studies in Computational Intelligence, pages 269-303. Springer, Berlin, 2006.

• F. OTTO, F. MRAZ, Lambda-Conuence is Undecidable for Clearing Restarting Automata.
• In: CIAA 2013, Proceedings. LNCS 7982, Berlin, 2013, 256-267.

Thank You!

• This presentation is available on:
http://popelka.ms.mff.cuni.cz/cerno/files/cerno_gi_of_crs.pdf

• An implementation of the algorithms can be found on:
http://code.google.com/p/clearing-restarting-automata/

