GRAMMATICAL INFERENCE OF LAMBDA-CONFLUENT CONTEXT REWRITING SYSTEMS

Peter Černo

Department of Computer Science

Charles University in Prague, Faculty of Mathematics and Physics

Table of Contents

- Part I: Motivation,
- Part II: Definitions,
- Part III: Learning Algorithm,
- Part IV: Results,
- Part V: Concluding Remarks.

Let's say that we have the following sentence:

Andrej, Monika and Peter like kitesurfing.

- We would like to verify the syntactical correctness of this sentence.
- One way to do this is to use Analysis by Reduction.

Analysis by Reduction – Step-wise simplifications.

Andrej, Monika and Peter like kitesurfing.

But how can we learn these reductions?

 Let's say that we are lucky and have the following two sentences in our database:

Andrej, Monika and Peter like kitesurfing.

Andrej and Peter like kitesurfing.

 From these two samples we can, for instance, infer the following instruction:

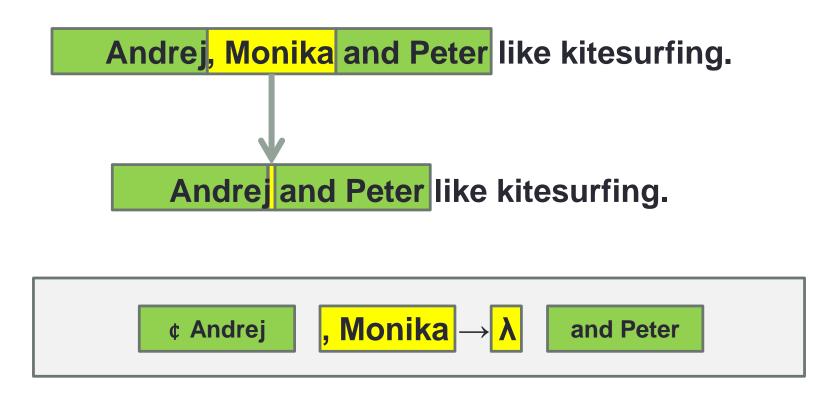
Instruction:

- But is the instruction (,Monika $\rightarrow \lambda$) correct?

- But is the instruction (,Monika $\rightarrow \lambda$) correct?
- Probably not:

Peter goes with Andrej, Monika stays at home, and ... Peter goes with Andrej stays at home, and ...

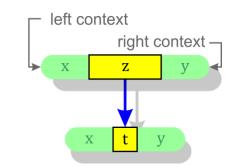
• What we need to do is to <u>capture a context</u> in which the instruction (,Monika $\rightarrow \lambda$) is applicable:



Part II Definitions

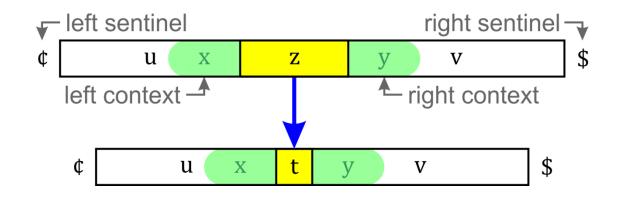
Part II: Definitions

- <u>Context Rewriting System</u> (CRS)
- Is a triple *M* = (Σ, Γ, Ι) :
 - Σ ... input alphabet,
 - Γ ... working alphabet, $\Gamma \supseteq \Sigma$,
 - *¢* and *\$* ... *sentinels, ¢, \$ ∉ Γ*,
 - I ... finite set of *instructions* $(x, z \rightarrow t, y)$:
 - $x \in \{\lambda, \psi\}.\Gamma^*$ (left context)
 - $y \in \Gamma^*.\{\lambda, \$\}$ (right context)
 - $z \in \Gamma^+, z \neq t \in \Gamma^*$.
 - The width of instruction $\varphi = (x, z \rightarrow t, y)$ is $|\varphi| = |xzty|$.



Part II: Definitions – Rewriting

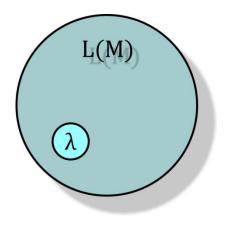
- $\underline{uzv} \vdash_M \underline{utv}$ iff $\exists (x, z \rightarrow t, y) \in I$:
- x is a suffix of *c.u* and y is a prefix of v.\$.



$$L(M) = \{ w \in \Sigma^* / w \vdash_M^* \lambda \}.$$

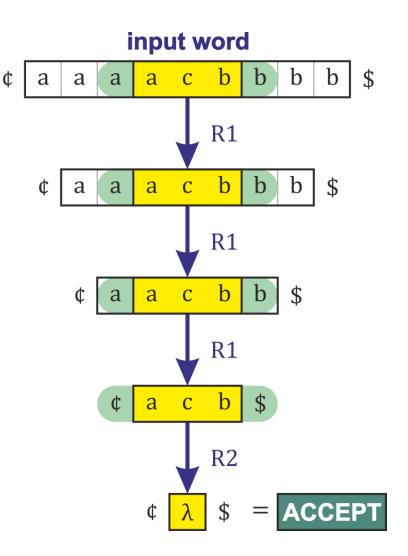
Part II: Definitions – Empty Word

- <u>Note</u>: For every *CRS M:* $\lambda \vdash_{M}^{*} \lambda$, hence $\lambda \in L(M)$.
- Whenever we say that a *CRS M* recognizes a language L, we always mean that $L(M) = L \cup \{\lambda\}$.
- We simply *ignore the empty word* in this setting.



Part II: Definitions – Example

- $L = \{a^n c b^n / n > 0\} \cup \{\lambda\}$:
- $CRSM = (\{a, b, c\}, I)$,
- Instructions I are:
 - $R1 = (a, \underline{acb} \rightarrow c, b)$,
 - $R2 = (\mathbf{acb} \rightarrow \lambda, \mathbf{acb})$.



Part II: Definitions – Restrictions

- Context Rewriting Systems are too powerful.
- We consider the following restrictions:
- 1. Length of contexts = constant k.
 - All *instructions* $\varphi = (x, z \rightarrow t, y)$ satisfy:
 - $x \in LC_k := \Gamma^k \cup \{ \phi \} \cdot \Gamma^{\leq k-1}$ (left context)
 - $y \in RC_k := \Gamma^k \cup \Gamma^{\leq k-1} \{ \}$ (right context)
 - In case k = 0 we use $LC_k = RC_k = \{\lambda\}$.
 - We use the **notation**: *k-CRS*.
- 2. Width of instructions \leq constant *I*.
 - All *instructions* $\varphi = (x, z \rightarrow t, y)$ satisfy:
 - $|\varphi| = |xzty| \le l$.
 - We use the notation: (k, l)-CRS.

Part II: Definitions – Restrictions

- Context Rewriting Systems are too powerful.
- We consider the following **restrictions**:

3. Restrict **instruction-rules** $z \rightarrow t$.

- There are too many possibilities:
- All *instructions* $\varphi = (x, z \rightarrow t, y)$ satisfy:
- a) $t = \lambda$, (Clearing Restarting Automata)
- b) *t* is a **subword** of *z*, (Subword-Clearing Restarting Automata)
- C) $/t/ \le 1$.

4. Lambda-confluence.

- We restrict the whole model to be lambda-confluent.
- Fast membership queries, undecidable verification.
- In addition, we assume **no auxiliary symbols**: $\Gamma = \Sigma$.

Part III Learning Algorithm

Part III: Learning Algorithm

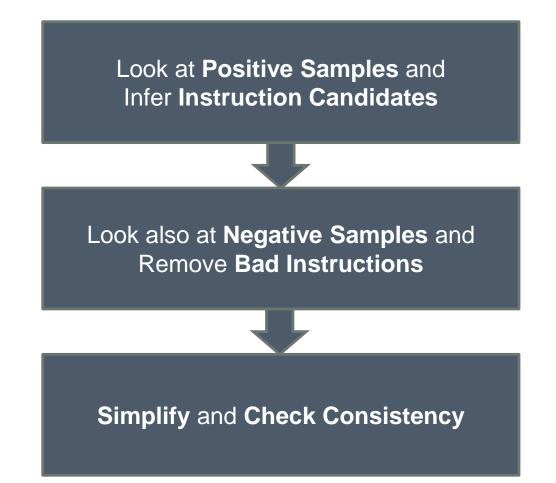
- Consider a class *M* of restricted *CRS*.
- <u>Goal</u>: Learning *L(M)* from informant.
 - *Identify* any *hidden target CRS* from \mathcal{M} *in the limit* from *positive* and *negative* samples.
- Input:
 - Set of positive samples S⁺
 - Set of *negative samples S*,
 - We assume that $S^+ \cap S^- = \mathcal{O}$, and $\lambda \in S^+$.
- Output:
 - *CRS M* from \mathcal{M} such that: $L(\mathcal{M}) \subseteq S^+$ and $L(\mathcal{M}) \cap S^- = \mathcal{O}$.

Part III: Learning Restrictions

Without restrictions:

- Trivial even for Clearing Restarting Automata.
- Consider: $I = \{ (c, w \rightarrow \lambda, s) | w \in S^+, w \neq \lambda \}.$
- Apparently: $L(M) = S^+$, where $M = (\Sigma, \Sigma, I)$.
- Therefore, we impose:
 - An upper limit l ≥ 1 on the width of instructions.

Part III: Learning Algorithm



Part III: Learning Algorithm $Infer_{\mathcal{M}}$

Input:

- Positive samples S^+ , negative samples S^- , $S^+ \cap S^- = Q$, $\lambda \in S^+$.
- Maximal width of instructions $l \ge 1$,
- Specific *length of contexts* $k \ge 0$.

Part III: Learning Algorithm – Step 1/5

Input:

- Positive samples S^+ , negative samples S^- , $S^+ \cap S^- = Q$, $\lambda \in S^+$.
- Maximal width of instructions $l \ge 1$,
- Specific *length of contexts* $k \ge 0$.

1 $\Phi \leftarrow \mathsf{Assumptions}(S^+, k, l);$ 2 while $\exists w_- \in S^-, w_+ \in S^+, \phi \in \Phi : w_- \vdash^{(\phi)} w_+$ do $\Phi \leftarrow \Phi \setminus \{\phi\};$ 3 4 if \mathcal{M} is a class of λ -confluent models then while $\exists w_+ \in S^+, w_- \in S^-, \phi \in \Phi : w_+ \vdash^{(\phi)} w_- \operatorname{do}$ 5 $\Phi \leftarrow \Phi \setminus \{\phi\};$ 6 $\tau \Phi \leftarrow \mathsf{Simplify}(\Phi);$ s if Consistent (Φ, S^+, S^-) then **return** Model M with the set of instructions Φ ; 9 10 Fail;

Part III: Learning Algorithm – Step 1/5

• <u>Step 1</u>:

- 1 $\Phi \leftarrow \mathsf{Assumptions}(S^+, k, l);$
- First, we obtain some set of *instruction candidates*.
- Let us assume, for a moment, that this set Φ already contains all instructions of the hidden target CRS.

Part III: Learning Algorithm – Step 2/5

Input:

- Positive samples S^+ , negative samples S^- , $S^+ \cap S^- = Q$, $\lambda \in S^+$.
- Maximal width of instructions $l \ge 1$,
- Specific *length of contexts* $k \ge 0$.

1
$$\Phi \leftarrow \text{Assumptions}(S^+, k, l);$$

2 while $\exists w_- \in S^-, w_+ \in S^+, \phi \in \Phi : w_- \vdash^{(\phi)} w_+ \text{ do}$
3 $\lfloor \Phi \leftarrow \Phi \setminus \{\phi\};$
4 if \mathcal{M} is a class of λ -confluent models then
5 $\Vert \text{ while } \exists w_+ \in S^+, w_- \in S^-, \phi \in \Phi : w_+ \vdash^{(\phi)} w_- \text{ do}$
6 $\lfloor \Phi \leftarrow \Phi \setminus \{\phi\};$
7 $\Phi \leftarrow \text{Simplify}(\Phi);$
8 if Consistent (Φ, S^+, S^-) then
9 $\lfloor \text{ return } Model M \text{ with the set of instructions } \Phi;$
10 Fail;

Part III: Learning Algorithm – Step 2/5

• <u>Step 2</u>:

2 while
$$\exists w_{-} \in S^{-}, w_{+} \in S^{+}, \phi \in \Phi : w_{-} \vdash^{(\phi)} w_{+} \text{ do}$$

3 $\lfloor \Phi \leftarrow \Phi \setminus \{\phi\};$

- We gradually *remove all instructions* that allow a single-step reduction *from a negative sample to a positive sample*.
- Such instructions violate the so-called error-preserving property.

Part III: Learning Algorithm – Step 3/5

do

Input:

- Positive samples S^+ , negative samples S^- , $S^+ \cap S^- = Q$, $\lambda \in S^+$.
- Maximal width of instructions $l \ge 1$,
- Specific *length of contexts* $k \ge 0$.

1
$$\Phi \leftarrow \text{Assumptions}(S^+, k, l);$$

2 while $\exists w_- \in S^-, w_+ \in S^+, \phi \in \Phi : w_- \vdash^{(\phi)} w_+$

4 if \mathcal{M} is a class of λ -confluent models then 5 while $\exists w_+ \in S^+, w_- \in S^-, \phi \in \Phi : w_+ \vdash^{(\phi)} w_-$ do 6 $\left\lfloor \Phi \leftarrow \Phi \setminus \{\phi\}; \right\rfloor$

$$\tau \Phi \leftarrow \mathsf{Simplify}(\Phi);$$

- s if $Consistent(\Phi, S^+, S^-)$ then
- 9 **return** Model M with the set of instructions Φ ;

10 Fail;

Part III: Learning Algorithm – Step 3/5

• <u>Step 3</u>:

4 if
$$\mathcal{M}$$
 is a class of λ -confluent models then
5 while $\exists w_+ \in S^+, w_- \in S^-, \phi \in \Phi : w_+ \vdash^{(\phi)} w_-$ do
6 $\left\lfloor \Phi \leftarrow \Phi \setminus \{\phi\}; \right\rfloor$

- If the target class \mathcal{M} consists of lambda-confluent CRS:
- We gradually *remove all instructions* that allow a single-step reduction *from a positive sample to a negative sample*.
- Such instructions violate the so-called correctness-preserving property.

Part III: Learning Algorithm – Step 4/5

Input:

- Positive samples S^+ , negative samples S^- , $S^+ \cap S^- = Q$, $\lambda \in S^+$.
- Maximal width of instructions $l \ge 1$,
- Specific *length of contexts* $k \ge 0$.

1
$$\Phi \leftarrow \text{Assumptions}(S^+, k, l);$$

2 while $\exists w_- \in S^-, w_+ \in S^+, \phi \in \Phi : w_- \vdash^{(\phi)} w_+ \text{ do}$
3 $\lfloor \Phi \leftarrow \Phi \setminus \{\phi\};$
4 if \mathcal{M} is a class of λ -confluent models then
5 $\lfloor \text{ while } \exists w_+ \in S^+, w_- \in S^-, \phi \in \Phi : w_+ \vdash^{(\phi)} w_- \text{ do}$
6 $\lfloor \Phi \leftarrow \Phi \setminus \{\phi\};$
7 $\Phi \leftarrow \text{Simplify}(\Phi);$
8 if Consistent (Φ, S^+, S^-) then
9 $\lfloor \text{ return Model M with the set of instructions } \Phi;$
10 Fail;

Part III: Learning Algorithm – Step 4/5

<u>Step 4</u>:

$\tau \Phi \leftarrow \mathsf{Simplify}(\Phi);$

- We remove the redundant instructions.
- This step is *optional* and *can be omitted* it does not affect the properties or the correctness of the *Learning Algorithm*.

Part III: Learning Algorithm – Step 5/5

Input:

- Positive samples S^+ , negative samples S^- , $S^+ \cap S^- = Q$, $\lambda \in S^+$.
- Maximal width of instructions $l \ge 1$,
- Specific *length of contexts* $k \ge 0$.

1
$$\Phi \leftarrow \text{Assumptions}(S^+, k, l);$$

2 while $\exists w_- \in S^-, w_+ \in S^+, \phi \in \Phi : w_- \vdash^{(\phi)} w_+ \text{ do}$
3 $\lfloor \Phi \leftarrow \Phi \setminus \{\phi\};$
4 if \mathcal{M} is a class of λ -confluent models then
5 $\lfloor \text{ while } \exists w_+ \in S^+, w_- \in S^-, \phi \in \Phi : w_+ \vdash^{(\phi)} w_- \text{ do}$
6 $\lfloor \Phi \leftarrow \Phi \setminus \{\phi\};$
7 $\Phi \leftarrow \text{Simplify}(\Phi);$
8 if Consistent (Φ, S^+, S^-) then
9 $\lfloor \text{ return } Model \ M \text{ with the set of instructions } \Phi;$
10 Fail;

Part III: Learning Algorithm – Step 5/5

<u>Step 5</u>:

- 7 $\Phi \leftarrow \text{Simplify}(\Phi);$ 8 **if** Consistent (Φ, S^+, S^-) then 9 \lfloor return Model M with the set of instructions $\Phi;$ 10 Fail;
- We check the consistency of the remaining set of instructions with the given input set of positive and negative samples.

Part III: Complexity

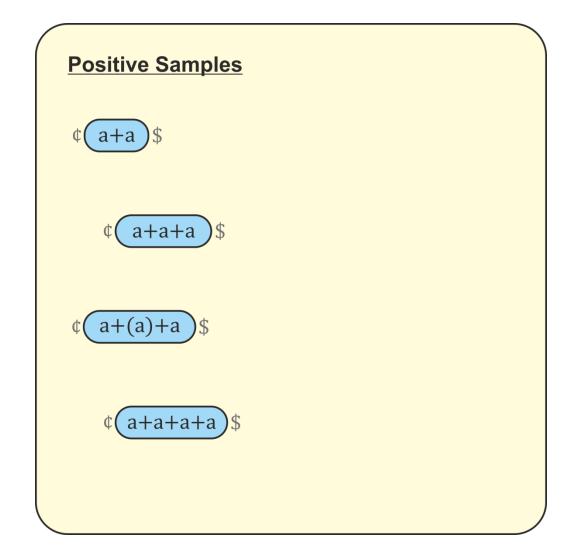
- Time complexity of the *Algorithm* depends on:
 - Time complexity of the *function Assumptions*,
 - Time complexity of the *simplification*,
 - Time complexity of the *consistency check*.
- There are *correct* implementations of the function *Assumptions* that run in polynomial time.
- The *simplification* and the *consistency check* can be done in polynomial time when using lambda-confluent *CRS*. Otherwise, it is an open problem.

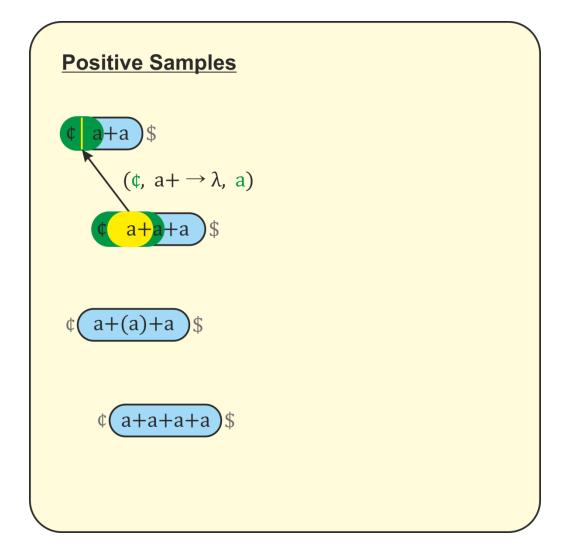
Part III: Assumptions

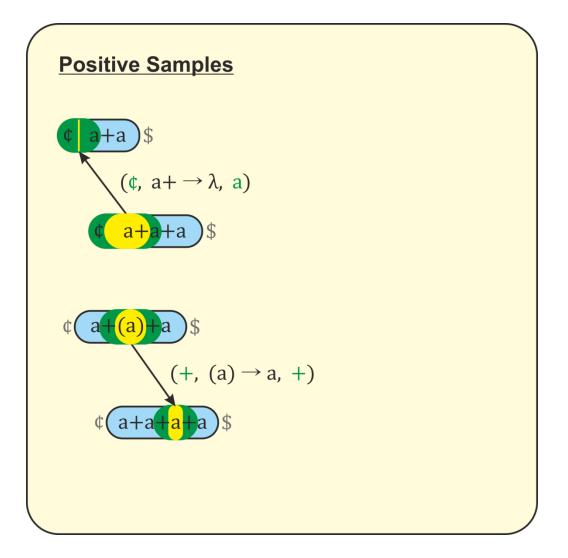
- We call the *function Assumptions* correct, if it is possible to obtain all instructions of any hidden target *CRS* in the limit by using this function.
- To be more **precise**:
 - For every minimal (k, l)-CRS M there exists a finite set $S_0^+ \subseteq L(M)$ such that for every $S^+ \supseteq S_0^+$ the Assumptions(S^+ , l, k) contains **all** instructions of M.

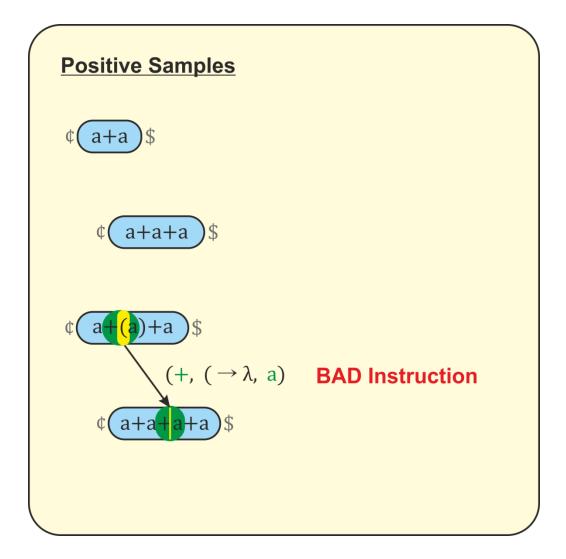
Part III: Example – Assumptions_{weak}

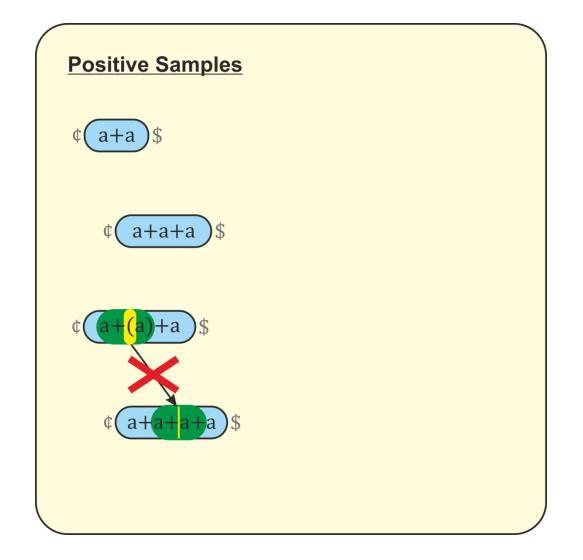
- Assumptions_{weak}(S^+ , l, k) := all instructions $(x, z \rightarrow t, y)$:
 - The length of contexts is k:
 - $x \in \Sigma^k \cup \{ \emptyset \}$. $\Sigma^{\leq k-1}$ (left context)
 - $y \in \Sigma^k \cup \Sigma^{\leq k-1}$. {\$} (right context)
 - The width is bounded by *l*:
 - $|xzty| \leq l$.
 - The rule $z \rightarrow t$ satisfies all rule restrictions.
 - There are two words $w_1, w_2 \in S^+$ such that:
 - *xzy* is a *subword* of *¢ w*₁*\$*,
 - *xty* is a *subword* of *¢w*₂*\$*.
- This function is correct and runs in a polynomial time.











Part IV Results

Part IV: Results

- *M*-class of restricted (k, l)-CRS,
- M-a model from \mathcal{M} ,
- Then there exist:
 - Finite sets S_0^+ , S_0^- of **positive**, **negative** samples:
 - For every $S^+ \supseteq S_0^+$, $S^- \supseteq S_0^-$ consistent with M:
 - $Infer_{\mathcal{M}}(S^+, S, k, l) = N : L(N) = L(M).$
- Positive side:
 - The class $\mathcal{L}(\mathcal{M})$ is learnable in the limit from informant.
- Negative side:
 - $size(S_0^+, S_0^-)$ can be exponentially large w.r.t. size(M).
 - We do not know *k, l*.
 - If I is specified, *L(M)* is finite!

Part IV: Unconstrained Learning

Input:

- Positive samples S^+ , negative samples S, $S^+ \cap S^- = Q$, $\lambda \in S^+$.
- Specific *length of contexts* $k \ge 0$.

1 for
$$l = 1...\infty$$
 do
2 $M \leftarrow \operatorname{Infer}_{\mathcal{M}}(S^+, S^-, k, l);$
3 if $M \neq \operatorname{Fail}$ then
4 $\operatorname{return} M;$

Part IV: Results

- \mathcal{M} class of restricted *k-CRS*,
- M-a model from \mathcal{M} ,
- Then there exist:
 - Finite sets S_0^+ , S_0^- of **positive**, **negative** samples:
 - For every $S^+ \supseteq S_0^+$, $S^- \supseteq S_0^-$ consistent with M:
 - UnconstrainedInfer_{\mathcal{M}} $(S^+, S, k) = N : L(N) = L(M)$.
 - N has minimal width!
- Positive side:
 - The *infinite* class $\mathcal{L}(\mathcal{M})$ is **learnable in the limit** from **informant**.
- Negative side:
 - $size(S_0^+, S_0^-)$ can be exponentially large w.r.t. size(M).
 - We do not know k.

Part V Concluding Remarks

Part V: Concluding Remarks

• Remarks:

- We have shown that *L(M)* is learnable in the limit from informant for any class *M* of restricted *k-CRS*.
- UnconstrainedInfer_M(S⁺, S, k) always returns a model consistent with the given input S⁺, S. In the worst case it returns:

 $I = \{ (\emptyset, W \to \lambda, \$) \mid W \in S^+, W \neq \lambda \}.$

- This is not true for *Infer_M(S⁺, S⁻, k, I*), (it can *Fail*). In some cases, finding a consistent model with maximal width *I* is *NP-hard*.
- If *M* is a class of *lambda-confluent k-CRS*, then
 UnconstrainedInfer runs in polynomial time w.r.t. *size(S⁺*, *S⁻*).
- But in most cases, it is not possible to verify lambdaconfluence. It is often not even recursively enumerable.
- If *M* is a class of *ordinary k-CRS*, the time complexity of *UnconstrainedInfer* is an open problem.

Selected References

- M. Beaudry, M. Holzer, G. Niemann, and F. Otto. Mcnaughton families of languages.
 - Theoretical Computer Science, 290(3):1581-1628, 2003.
- Ronald V Book and Friedrich Otto. String-rewriting systems.
 - Springer-Verlag, New York, NY, USA, 1993.
- Peter Černo. Clearing restarting automata and grammatical inference.
 - In: J. HEINZ, C. DE LA HIGUERA, T. OATES (eds.), Proceedings of the Eleventh International Conference on Grammatical Inference. JMLR Workshop and Conference Proceedings 21, 2012, 54-68.
- Peter Černo and František Mráz. Clearing restarting automata.
 - Fundamenta Informaticae, 104(1):17-54, 2010.
- C. de la Higuera. Grammatical Inference: Learning Automata and Grammars.
 - Cambridge University Press, New York, NY, USA, 2010.
- R. Eyraud, C. de la Higuera, and J.-C. Janodet. Lars: A learning algorithm for rewriting systems.
 - Machine Learning, 66:7-31, 2007.
- E. Mark Gold. Complexity of automaton identification from given data.
 - Information and Control, 37, 1978.
- John E. Hopcroft and J. D. Ullman. Formal Languages and their Relation to Automata.
 - · Addison-Wesley, Reading, 1969.
- S. Lange, T. Zeugmann, and S. Zilles. Learning indexed families of recursive languages from positive data: A survey.
 - Theor. Comput. Sci., 397(1-3):194-232, May 2008.
- R. McNaughton. Algebraic decision procedures for local testability.
 - Theory of Computing Systems, 8:60-76, 1974.
- F. Otto. Restarting automata.
 - In Zoltán Ésik, Carlos Martín-Vide, and Victor Mitrana, editors, Recent Advances in Formal Languages and Applications, volume 25 of Studies in Computational Intelligence, pages 269-303. Springer, Berlin, 2006.
- F. OTTO, F. MRAZ, Lambda-Conuence is Undecidable for Clearing Restarting Automata.
 - In: CIAA 2013, Proceedings. LNCS 7982, Berlin, 2013, 256-267.

Thank You!

- This presentation is available on: http://popelka.ms.mff.cuni.cz/cerno/files/cerno_gi_of_crs.pdf
- An *implementation* of the algorithms can be found on: http://code.google.com/p/clearing-restarting-automata/