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Clearing Restarting Automata

• Represent a new restricted model of 
restarting automata.

• Can be learned very efficiently from positive 
examples and the extended model enables to 
learn effectively a large class of languages.

• In the thesis we relate the class of languages 
recognized by these automata to Chomsky 
hierarchy and study their formal properties.



Diploma Thesis Outline

• Chapter 1 gives a short introduction to the 
theory of automata and formal languages.

• Chapter 2 gives an overview of several 
selected models related to our model.

• Chapter 3 introduces our model of clearing 
restarting automata.

• Chapter 4 describes two extended models of 
clearing restarting automata.

• Conclusion gives some open problems.



Selected Models

• Contextual Grammars by Solomon Marcus:
▫ Are based on adjoining (inserting) pairs of strings/contexts into a 

word according to a selection procedure.
• Pure grammars by Mauer et al.:

▫ Are similar to Chomsky grammars, but they do not use auxiliary 
symbols – nonterminals.

• Church-Rosser string rewriting systems:
▫ Recognize words which can be reduced to an auxiliary symbol Y. 

Each maximal sequence of reductions ends with the same 
irreducible string.

• Associative language descriptions by Cherubini et al.:
▫ Work on so-called stencil trees which are similar to derivation 

trees but without nonterminals. The inner nodes are marked by 
an auxiliary symbol Δ.



Selected Models

• Restarting Automata by Jančar et al., 1995:

▫ Introduced in order to model the so-called 
analysis by reduction - a technique used in 
linguistics to analyze sentences of natural 
languages that have free word order.



Formal Definition

• Let k be a positive integer.

• k-clearing restarting automaton

(k-cl-RA-automaton) is a couple M = (Σ, I) :

▫ Σ is a finite nonempty alphabet, ¢, $ ∉ Σ.

▫ I is a finite set of instructions (x, z, y), z ∊ Σ+,

 x ∊ LCk = Σk ∪ ¢.Σ≤k-1 (left context)

 y ∊ RCk = Σk ∪ Σ≤k-1.$ (right context)

▫ The special symbols: ¢ and $ are called sentinels.



Formal Definition

• A word w = uzv can be rewritten to uv :
( uzv ⊢M uv ) if and only if there exist an
instruction i = (x, z, y) ∊ I  such that:
▫ x is a suffix of ¢.u
▫ y is a prefix of v.$

• A word w is accepted if and only if w ⊢*
M λ

where ⊢*
M is reflexive and transitive closure of 

the reduction relation ⊢M .
• The k-cl-RA-automaton M recognizes the 

language L(M) = {w ∊ Σ* | M accepts w}.



Formal Definition

• By cl-RA we denote the class of all clearing 
restarting automata.

• ℒ(k-cl-RA) denotes the class of all languages
accepted by k-cl-RA-automata.

• Similarly ℒ(cl-RA) denotes the class of all 
languages accepted by cl-RA-automata.

• ℒ(cl-RA) = ⋃k≥1ℒ(k-cl-RA).
• Note: For every cl-RA M: λ ⊢*

M λ hence λ ∊ L(M).
If we say that cl-RA M recognizes a language L, 
we always mean that L(M) = L ∪ {λ}.



Motivation

• This model was originally inspired by the 
Associative Language Descriptions model:

▫ By Alessandra Cherubini, Stefano Crespi-Reghizzi, 
Matteo Pradella, Pierluigi San Pietro.

• The simplicity of cl-RA model implies that the 
investigation of its properties is not so difficult
and also the learning of languages is easy.

• Another important advantage of this model is 
that the instructions are human readable.



Example

• The language L = {anbn | n ≥ 0+
is recognized by the 1-cl-RA-automaton

M = ({a, b}, I), where the instructions I are:

▫ R1 = (a, ab, b) ,

▫ R2 = (¢, ab, $) .

• For instance:

▫ aaaabbbb ⊢R1 aaabbb ⊢R1 aabb ⊢R1 ab ⊢R2 λ .

• Now we see that the word aaaabbbb is accepted.



Question to the Audience

• What if we used only the instruction:

▫ R = (λ, ab, λ) .



Question to the Audience

• What if we used only the instruction:

▫ R = (λ, ab, λ) .

• Answer: we would get a Dyck language of 
correct parentheses generated by the following 
context-free grammar:

▫ S → λ | SS | aSb .



Set Notation

• However, in the definition of cl-RA-automata 
we allowed only contexts with positive length.

• Therefore we introduce the following notation:

▫ Let X ⊆ LCk , Y ⊆ RCk , Z ⊆ Σ+. Then:

(X, Z, Y) = { (x, z, y) | x ∊ X , z ∊ Z , y ∊ Y }.

• Now we can represent R = (λ, ab, λ) as the set:

▫ ( {¢, a, b}, ab, {a, b, $} )
▫ Instead of {w} we use only w.



Infinite Hierarchy

• This idea can be easily generalized: 

▫ By increasing the length of contexts we can only 
increase the power of cl-RA-automata.

• Moreover: 

▫ ℒ(k-cl-RA) ⊂ ℒ((k+1)-cl-RA), for all k ≥ 1.

▫ Proof. The following language:

{ (ckack)n(ckbck)n | n ≥ 0 +

belongs to the ℒ((k+1)-cl-RA) - ℒ(k-cl-RA). ∎



Simple Observations

• Error preserving property: 

Let M = (Σ, I) be a cl-RA-automaton and u ⊢*
M v. 

If u ∉ L(M) then v ∉ L(M).

▫ Proof. v ⊢*
M λ ⇒  u ⊢*

M v ⊢*
M λ. ∎

• Lemma: For each finite language L  there exists 
a 1-cl-RA-automaton M such that L(M) = L ∪ *λ}.

▫ Proof. For L = {w1, …, wn} consider:

I = {(¢, w1, $), …, (¢, wn, $)}. ∎



Regular Languages

• Theorem: 

All regular languages can be recognized by 
clearing restarting automata using only
instructions with left contexts starting with ¢ .

• Theorem: 

If M = (Σ, I) is a k-cl-RA-automaton such that for 
each (x, z, y) ∊ I:  ¢ is a prefix of x or $ is a suffix 
of y then L(M) is a regular language.



Context-Free Languages

• Theorem:

Over one-letter alphabet, clearing restarting 
automata recognize exactly all context-free 
languages containing the empty word.

• Theorem:

Over general alphabet, the family of 
languages recognized by 1-cl-RA-automata is 
strictly included in the family of context-free 
languages containing the empty word.



Non-Context-Free Languages

• Theorem:

2-cl-RA-automata can recognize some non-
context-free languages.

• In the following we give a technique which 
was used to prove that 4-cl-RA-automaton can
recognize a non-context-free language.

• How?

Let the cl-RA-automaton learn the language!



Learning Meta-Algorithm

• Let ui ⊢M vi , i = 1 … n be a list of reductions.

• A meta-algorithm for machine learning of 
unknown clearing restarting automaton:

Step 1: k := 1.

Step 2: For each reduction ui ⊢M vi choose 
(nondeterministically) a factorization of ui , 
such that ui = xi zi yi and vi = xi yi .



Learning Meta-Algorithm

Step 3: Construct a k-cl-RA M = (Σ, I), where: 

I = { ( Suffk(¢.xi), zi , Prefk(yi.$) ) | i = 1 … n +.

Step 4: Test the automaton M using any 
available information.

Step 5: If the automaton passed all the tests, 
return M. Otherwise try another factorization of 
the known reductions and continue by Step 3. If 
all possible factorizations have been tried, then 
increase k and continue by Step 2.



Learning Non-CFL

• Idea: We try to create a k-cl-RA-automaton M
such that L(M) ∩ {(ab)n | n>0} = {(ab)2m | m≥0+.

• If L(M) is a CFL then also the intersection with a 
regular language is a CFL. However, in our case 
the intersection is not a CFL.

• Next we give a sample computation showing 
how to recognize words (ab)2m

by means of 
clearing restarting automata.



Sample Computation

• Consider:
¢ abababababababab $ ⊢M ¢ abababababababb $ ⊢M

¢ abababababbabb $ ⊢M ¢ abababbabbabb $ ⊢M

¢ abbabbabbabb $ ⊢M ¢ abbabbabbab $ ⊢M

¢ abbabbabab $ ⊢M ¢ abbababab $ ⊢M

¢ abababab $ ⊢M ¢ abababb $ ⊢M

¢ abbabb $ ⊢M ¢ abbab $ ⊢M

¢ abab $ ⊢M ¢ abb $ ⊢M ¢ ab $ ⊢M ¢ λ $ accept .

• From this sample computation we can collect
15 reductions with unambiguous factorizations.



Inferring the Automaton

• The only variable we have to choose is k - the 
length of the context of the instructions.

• Let us try:

• For k = 1 we get the following instructions:
(b, a, b), (a, b, b), (¢, ab, $).

But then the automaton would accept the word 
ababab which does not belong to L:
ababab ⊢M ababb ⊢M abbb ⊢M abb ⊢M ab ⊢M λ.



Inferring the Automaton

• For k = 2 we get the following instructions:
(ab, a, {b$, ba+), (*¢a, ba}, b, {b$, ba+), (¢, ab, $).

But then the automaton would accept the word 
ababab which does not belong to L:
ababab ⊢M ababb ⊢M abab ⊢M abb ⊢M ab ⊢M λ.

• For k = 3 we get the following instructions:
(*¢ab, bab}, a, {b$, bab+), (*¢a, bba}, b, {b$, bab+), (¢, ab, $).

And again we get:
ababab ⊢M ababb ⊢M abab ⊢M abb ⊢M ab ⊢M λ.



Inferring the Automaton

• Finally, for k = 4 we get the required 4-cl-RA-
automaton M.

• For this 4-cl-RA-automaton M it can be shown, 
that: L(M) ∩ {(ab)n | n>0} = {(ab)2m | m≥0+.

¢ab
abab

a
b$

babb
¢a

abba
b

b$
bab$
baba

¢ ab $



Problem with cl-RA-automata

• Theorem: 

The language L1 = {ancbn | n ≥ 0+ ∪ *λ}
is not recognized by any cl-RA-automaton.

• Similarly:

Let L2 = {anbn | n≥0+ and L3 = {anb2n | n≥0+
be two sample languages. Both L2 and L3

are recognized by 1-cl-RA-automata.

• But languages L2 ∪ L3 and L2 . L3

are not recognized by any cl-RA-automaton.



(Non-)closure Properties

• Theorem:

The class ℒ(cl-RA)  is not closed under:

▫ Union

▫ Intersection

▫ Intersection with regular language

▫ Set difference

▫ Concatenation

▫ Morphism



Extended Models

• Δ- clearing restarting automata

▫ Can leave a mark – a symbol Δ – at the place of 
deleting besides rewriting into the empty word.

▫ Can recognize Greibach’s hardest context-free 
language.

• Δ*- clearing restarting automata

▫ Can rewrite a subword w into Δk where k ≤ |w| .
▫ Can recognize all context-free languages.



Example

• The language L1 = {ancbn | n ≥ 0+ ∪ *λ}
is recognized by the 1-Δcl-RA-automaton 

M = ({a, b, c}, I), where the instructions I are:

▫ Rc1 = (a, c → Δ, b), Rc2 = (¢, c → λ, $)
▫ RΔ1 = (a, aΔb → Δ, b), RΔ2 = (¢, aΔb → λ, $)

• For instance:

▫ aaacbbb ⊢Rc1 aaΔbb ⊢RΔ1 aΔb ⊢RΔ2 λ .

• Now we see that the word aaacbbb is accepted.



Greibach’s Hardest CFL

• As we have seen, not all CFLs are recognized 
by original clearing restarting automata.

• We can still characterize CFL using Δ- clearing 
restarting automata, inverse homomorphism 
and Greibach’s hardest context-free language H.

▫ Any context-free language L  can be parsed in 
whatever time or space it takes to recognize H.

▫ Any context-free language L can be obtained 
from H by an inverse homomorphism.



Greibach’s Hardest CFL Definition

• Let Σ = {a1, a2, a1, a2, #, c}, d ∉ Σ.

• Let D2 be Semi-Dyck language on {a1, a2, a1, a2}. 
generated by the context-free grammar: 

S → λ | SS | a1Sa1 | a2Sa2 .

• Then Greibach’s hardest CFL H = {λ} ∪
* ∏i=1..n xicyiczid | n ≥ 1, y1y2…yn ∊ #D2 , xi , zi ∊ Σ* },
▫ y1 ∊ # . {a1, a2, a1, a2}* ,
▫ yi ∊ {a1, a2, a1, a2}* for all i > 1.



Greibach’s Hardest CFL and Δcl-RA

• Theorem: 

Greibach’s Hardest CFL H
is not recognized by any cl-RA-automaton.

is recognized by a 1-Δcl-RA-automaton.

▫ Idea. Suppose that we have w ∊ H:

w = ¢ x1cy1cz1d x2cy2cz2d… xncyncznd $
▫ In the first phase we start with deleting letters 

(from Σ = {a1, a2, a1, a2, #, c} ) from the right side of
¢ and from the left and right sides of the letters d.



Greibach’s Hardest CFL and Δcl-RA

▫ As soon as we think that we have the word:

¢ cy1cd cy2cd… cyncd $ 
we introduce the Δ symbols:

¢ Δy1Δy2Δ… ΔynΔ $
▫ In the second phase we check if y1y2…yn ∊ #D2 .

• However, there is no such thing as a first phase
or a second phase. 

• We have only instructions.



Greibach’s Hardest CFL and Δcl-RA

• Nevertheless, the following holds: Suppose

Σ = {a1, a2, a1, a2, #, c}, d ∉ Σ, Γ = Σ ∪ *d, Δ}.

• Theorem:

L(M) = H.

First phase instructions: Second phase instructions:

(1) (¢, Σ → λ, Σ)
(2) (Σ, Σ → λ, d)
(3) (d, Σ → λ, Σ)
(4) (¢, c → Δ, Σ ∪ {Δ})
(5) (Σ ∪ {Δ}, cdc → Δ, Σ ∪ {Δ})
(6) (Σ ∪ {Δ}, cd → Δ, $)

(7) (Γ, a1a1 → λ, Γ – {#})
(8) (Γ, a2a2 → λ, Γ – {#})
(9) (Γ, a1Δa1 → Δ, Γ – {#})
(10) (Γ, a2Δa2 → Δ, Γ – {#})
(11) (Σ – {c}, Δ → λ, Δ)
(12) (¢, Δ#Δ → λ, $)



CFL and Δ*cl-RA-automata

• Δ*cl-RA-automata differ from Δcl-RA-automata 
in the ability to leave more than one symbol Δ.

• The only constraint is that they can replace a 
subword z by at most |z| symbols Δ.

• Theorem:

For each context-free language L there exists a 

1-Δ*cl-RA-automaton M recognizing L ∪ *λ}.

▫ Idea. We code nonterminals by sequences of 
symbols Δ.



Open Problems

• What is the difference between 

ℒ(Δcl-RA) and ℒ(Δ*cl-RA) ?

• Can Δcl-RA-automata recognize

all context-free languages ?

• What is the relation between ℒ(Δcl-RA) and:

▫ One counter languages,

▫ Simple context-sensitive languages,

▫ Growing context-sensitive languages,

▫ etc.



Conclusion

• The main goal of the thesis was

successfully achieved.

• The results of the thesis were presented in:

▫ ABCD workshop, Prague, March 2009

▫ NCMA workshop, Wroclaw, August 2009

▫ An extended version of the paper from the NCMA 
workshop was accepted for publication in 
Fundamenta Informaticae.



Thank You

http://www.petercerno.wz.cz/ra.html


