

Clearing Restarting Automata

Peter Černo
RNDr. František Mráz, CSc.

Clearing Restarting Automata

- Represent a new restricted model of restarting automata.
- Can be learned very efficiently from positive examples and the extended model enables to learn effectively a large class of languages.
- In the thesis we relate the class of languages recognized by these automata to Chomsky hierarchy and study their formal properties.

Diploma Thesis Outline

- Chapter 1 gives a short introduction to the theory of automata and formal languages.
- Chapter 2 gives an overview of several selected models related to our model.
- Chapter 3 introduces our model of clearing restarting automata.
- Chapter 4 describes two extended models of clearing restarting automata.
- Conclusion gives some open problems.

Selected Models

- Contextual Grammars by Solomon Marcus:
- Are based on adjoining (inserting) pairs of strings/contexts into a word according to a selection procedure.
- Pure grammars by Mauer et al.:
- Are similar to Chomsky grammars, but they do not use auxiliary symbols - nonterminals.
- Church-Rosser string rewriting systems:
- Recognize words which can be reduced to an auxiliary symbol Y. Each maximal sequence of reductions ends with the same irreducible string.
- Associative language descriptions by Cherubini et al.:
- Work on so-called stencil trees which are similar to derivation trees but without nonterminals. The inner nodes are marked by an auxiliary symbol Δ.

Selected Models

- Restarting Automata by Jančar et al., 1995:
- Introduced in order to model the so-called analysis by reduction - a technique used in linguistics to analyze sentences of natural languages that have free word order.

Formal Definition

- Let k be a positive integer.
- k-clearing restarting automaton (k-cl-RA-automaton) is a couple $M=(\Sigma, I)$:
- Σ is a finite nonempty alphabet, $\phi, \$ \notin \Sigma$.
- I is a finite set of instructions $(x, z, y), z \in \Sigma^{+}$,

$$
\cdot x \in L C_{k}=\Sigma^{k} \cup q . \Sigma^{\leq k-1} \quad \text { (left context) }
$$

- $y \in R C_{k}=\Sigma^{k} \cup \Sigma^{\leq k-1} . \$$
(right context)
- The special symbols: ϕ and $\$$ are called sentinels.

Formal Definition

- A word $w=u z v$ can be rewritten to $u v$: $\left(u \underline{Z V} \vdash_{M} u v\right)$ if and only if there exist an instruction $i=(x, z, y) \in I$ such that:
- x is a suffix of $\phi . u$
- y is a prefix of $v . \$$
- A word w is accepted if and only if $w \vdash^{*}{ }_{M} \lambda$ where $\vdash^{*}{ }_{M}$ is reflexive and transitive closure of the reduction relation \vdash_{M}.
- The k-cl-RA-automaton M recognizes the language $L(M)=\left\{w \in \Sigma^{*} / M\right.$ accepts $\left.w\right\}$.

Formal Definition

- By cl-RA we denote the class of all clearing restarting automata.
- $\mathcal{L}(k-c l-R A)$ denotes the class of all languages accepted by $k-c l-R A$-automata.
- Similarly $\mathcal{L}(c l-R A)$ denotes the class of all languages accepted by $c l-R A$-automata.
- $\mathcal{L}(c l-R A)=U_{k \geq 1} \mathcal{L}(k-c l-R A)$.
- Note: For every $c l-R A M: \lambda \vdash^{*}{ }_{M} \lambda$ hence $\lambda \in L(M)$. If we say that $c l-R A M$ recognizes a language L, we always mean that $L(M)=L \cup\{\lambda\}$.

Motivation

- This model was originally inspired by the Associative Language Descriptions model:
- By Alessandra Cherubini, Stefano Crespi-Reghizzi, Matteo Pradella, Pierluigi San Pietro.
- The simplicity of $c l-R A$ model implies that the investigation of its properties is not so difficult and also the learning of languages is easy.
- Another important advantage of this model is that the instructions are human readable.

Example

- The language $L=\left\{a^{n} b^{n} / n \geq 0\right\}$ is recognized by the $1-c l-R A$-automaton $M=(\{a, b\}, I)$, where the instructions I are:
- $R 1=(a, \underline{a b}, b)$,
- $R 2=(\phi, \underline{a b}, \$)$.
- For instance:
- aaaabbbbb $\vdash^{R 1}$ aaabbbb $\vdash^{R 1}$ aabb $\vdash^{R 1}$ abb $\vdash^{R 2} \lambda$.
- Now we see that the word $a a a a b b b b$ is accepted.

Question to the Audience

- What if we used only the instruction:
- $R=(\lambda, \underline{a b}, \lambda)$.

Question to the Audience

- What if we used only the instruction:
- $R=(\lambda, \underline{a b}, \lambda)$.
- Answer: we would get a Dyck language of correct parentheses generated by the following context-free grammar:
- $S \rightarrow \lambda / S S / a S b$.

Set Notation

- However, in the definition of $c l-R A$-automata we allowed only contexts with positive length.
- Therefore we introduce the following notation:
- Let $X \subseteq L C_{k}, Y \subseteq R C_{k}, Z \subseteq \Sigma^{+}$. Then:

$$
(X, Z, Y)=\{(x, Z, y) / x \in X, z \in Z, y \in Y\} .
$$

- Now we can represent $R=(\lambda, \underline{a b}, \lambda)$ as the set:
- $(\{\phi, a, b\}, \underline{a b},\{a, b, \$\})$
- Instead of $\{w\}$ we use only w.

Infinite Hierarchy

- This idea can be easily generalized:
- By increasing the length of contexts we can only increase the power of $c l-R A$-automata.
- Moreover:
- $\mathcal{L}(k-c l-R A) \subset \mathcal{L}((k+1)-c l-R A)$, for all $k \geq 1$.
- Proof. The following language:
$\left\{\left(c^{k} a c^{k}\right)^{n}\left(c^{k} b c^{k}\right)^{n} / n \geq 0\right\}$
belongs to the $\mathcal{L}((k+1)-c l-R A)-\mathcal{L}(k-c l-R A)$. \square

Simple Observations

- Error preserving property:

Let $M=(\Sigma, I)$ be a $c l-R A$-automaton and $u \vdash^{*}{ }_{M} V$. If $u \notin L(M)$ then $v \notin L(M)$.

- Proof. $V \vdash^{*}{ }_{M} \lambda \Rightarrow u \vdash \vdash_{M} V \vdash^{*}{ }_{M} \lambda$. $■$
- Lemma: For each finite language L there exists a 1 -cl-RA-automaton M such that $L(M)=L \cup\{\lambda\}$.
- Proof. For $L=\left\{w_{1}, \ldots, W_{n}\right\}$ consider:
$I=\left\{\left(\phi, w_{1}, \$\right), \ldots,\left(\phi, w_{n}, \phi\right)\right\}$.

Regular Languages

- Theorem:

All regular languages can be recognized by clearing restarting automata using only instructions with left contexts starting with ϕ.

- Theorem:

If $M=(\Sigma, I)$ is a $k-C l-R A$-automaton such that for each $(x, z, y) \in I: \notin$ is a prefix of x or $\$$ is a suffix of y then $L(M)$ is a regular language.

Context-Free Languages

- Theorem:

Over one-letter alphabet, clearing restarting automata recognize exactly all context-free languages containing the empty word.

- Theorem:

Over general alphabet, the family of languages recognized by $1-c l-R A$-automata is strictly included in the family of context-free languages containing the empty word.

Non-Context-Free Languages

- Theorem:

2-cl-RA-automata can recognize some non-context-free languages.

- In the following we give a technique which was used to prove that $4-c l-R A$-automaton can recognize a non-context-free language.
- How?

Let the $c l-R A$-automaton learn the language!

Learning Meta-Algorithm

- Let $u_{i} \vdash_{M} V_{i}, i=1 \ldots n$ be a list of reductions.
- A meta-algorithm for machine learning of unknown clearing restarting automaton:
Step 1: $k:=1$.
Step 2: For each reduction $u_{i} \vdash_{M} V_{i}$ choose (nondeterministically) a factorization of u_{i}, such that $u_{i}=x_{i} z_{i} y_{i}$ and $\mathrm{v}_{i}=x_{i} y_{i}$.

Learning Meta-Algorithm

Step 3: Construct a $k-c l-R A M=(\Sigma, I)$, where:
$I=\left\{\left(\operatorname{Suff}_{k}\left(\phi . x_{i}\right), z_{i}, \operatorname{Pref}_{k}\left(y_{i^{\prime}} \phi\right)\right) / i=1 \ldots n\right\}$.
Step 4: Test the automaton M using any available information.
Step 5: If the automaton passed all the tests, return M. Otherwise try another factorization of the known reductions and continue by Step 3. If all possible factorizations have been tried, then increase k and continue by Step 2.

Learning Non-CFL

- Idea: We try to create a $k-c l-R A$-automaton M such that $L(M) \cap\left\{(a b)^{n} / n>0\right\}=\left\{(a b)^{2^{m}} / m \geq 0\right\}$.
- If $L(M)$ is a CFL then also the intersection with a regular language is a CFL. However, in our case the intersection is not a CFL.
- Next we give a sample computation showing how to recognize words $(a b)^{2^{m}}$ by means of clearing restarting automata.

Sample Computation

- Consider:
\& abababababababab $\$ \vdash_{M}$ d ababababababbabb \$ \vdash_{M}
q abababababbabb $\$ \vdash_{M}$ q abababbabbabb $\$ \vdash_{M}$
q abbabbabbabbb \$ \vdash_{M} d abbabbabbbab \$ \vdash_{M}
q abbabbabab $\$ \vdash_{M} q$ abbababab $\$ \vdash_{M}$
\& abababab $\$ \vdash_{M}$ q abababb $\$ \vdash_{M}$
q abbabbb $\$ \vdash_{M}$ dabbab $\$ \vdash_{M}$
$\phi a b \underline{a} \boldsymbol{b} \$ \vdash_{M} \phi a \underline{b} b \$ \vdash_{M} \phi \underline{a} \underline{b} \$ \vdash_{M} \phi \lambda \$$ accept.
- From this sample computation we can collect 15 reductions with unambiguous factorizations.

Inferring the Automaton

- The only variable we have to choose is k - the length of the context of the instructions.
- Let us try:
- For $k=1$ we get the following instructions: $(b, \underline{a}, b),(a, \underline{b}, b),(\phi, \underline{a b}, \$)$.
But then the automaton would accept the word ababab which does not belong to L :
$a b a b \underline{a} b \vdash_{M} a b \underline{a} b b \vdash_{M} a \underline{b} b b \vdash_{M} a \underline{b} b \vdash_{M} \underline{a b} \vdash_{M} \lambda$.

Inferring the Automaton

- For $k=2$ we get the following instructions:
($a b, \underline{a},\{b \$, b a\}),(\{4 a, b a\}, \underline{b},\{b \$, b a\}),(\phi, a b, \$)$.
But then the automaton would accept the word ababab which does not belong to L : $a b a b \underline{a} b \vdash_{M} a b a \underline{b} b \vdash_{M} a b \underline{a} b \vdash_{M} a \underline{b} b \vdash_{M} \underline{a b} \vdash_{M} \lambda$.
- For $k=3$ we get the following instructions: (\{ $\{a b, b a b\}, \underline{a},\{b \$, b a b\}),(\{\phi a, b b a\}, \underline{b},\{b \$, b a b\}),(\phi, \underline{a b}, \$)$. And again we get: $a b \underline{a} b a b \vdash_{M} a b a \underline{b} b \vdash_{M} a b \underline{a} b \vdash_{M} a \underline{b} b \vdash_{M} \underline{a} b \vdash_{M} \lambda$.

Inferring the Automaton

- Finally, for $k=4$ we get the required $4-c l-R A-$ automaton M.

b\$ bab\$ baba

- For this 4-cl-RA-automaton M it can be shown, that: $L(M) \cap\left\{(a b)^{n} / n>0\right\}=\left\{(a b)^{2^{m}} / m \geq 0\right\}$.

Problem with $c l-R A$-automata

- Theorem: The language $L_{1}=\left\{a^{n} c b^{n} / n \geq 0\right\} \cup\{\lambda\}$ is not recognized by any $c l-R A$-automaton.
- Similarly:

Let $L_{2}=\left\{a^{n} b^{n} / n \geq 0\right\}$ and $L_{3}=\left\{a^{n} b^{2 n} / n \geq 0\right\}$
be two sample languages. Both L_{2} and L_{3} are recognized by $1-c l-R A$-automata.

- But languages $L_{2} \cup L_{3}$ and $L_{2} \cdot L_{3}$ are not recognized by any $c l-R A$-automaton.

(Non-)closure Properties

- Theorem: The class $\mathcal{L}(c l-R A)$ is not closed under:
- Union
- Intersection
- Intersection with regular language
- Set difference
- Concatenation
- Morphism

Extended Models

- Δ-clearing restarting automata
- Can leave a mark - a symbol Δ - at the place of deleting besides rewriting into the empty word.
- Can recognize Greibach's hardest context-free language.
- Δ^{*} - clearing restarting automata
- Can rewrite a subword w into Δ^{k} where $k \leq / w /$.
- Can recognize all context-free languages.

Example

- The language $L_{1}=\left\{a^{n} c b^{n} / n \geq 0\right\} \cup\{\lambda\}$ is recognized by the $1-\Delta c l-R A$-automaton $M=(\{a, b, c\}, I)$, where the instructions I are:
- $R c 1=(a, \underline{c} \rightarrow \Delta, b)$,
$R c 2=(\phi, \underline{c} \rightarrow \lambda, \$)$
- $R \Delta 1=(a, \underline{a \Delta b} \rightarrow \Delta, b), \quad R \Delta 2=(\phi, \underline{a \Delta b} \rightarrow \lambda, \$)$
- For instance:
- aaacbbbb $\vdash^{R c 1}$ aatbbb $\vdash^{R \Delta 1}$ a $\Delta b \vdash^{R \Delta 2} \lambda$.
- Now we see that the word aaacbbb is accepted.

Greibach's Hardest CFL

- As we have seen, not all CFLs are recognized by original clearing restarting automata.
- We can still characterize CFL using Δ - clearing restarting automata, inverse homomorphism and Greibach's hardest context-free language H.
- Any context-free language L can be parsed in whatever time or space it takes to recognize H.
- Any context-free language L can be obtained from H by an inverse homomorphism.

Greibach's Hardest CFL Definition

- Let $\Sigma=\left\{a_{1}, a_{2}, \underline{a}_{1}, \underline{a}_{2}, \#, c\right\}, d \notin \Sigma$.
- Let D_{2} be Semi-Dyck language on $\left\{a_{1}, a_{2}, \underline{a}_{1}, \underline{a}_{2}\right\}$. generated by the context-free grammar: $S \rightarrow \lambda / S S / a_{1} S \underline{a}_{1} / a_{2} \underline{S a}_{2}$.
- Then Greibach's hardest CFL $H=\{\lambda\} \cup$
$\left\{\prod_{i=1 . . n} x_{i} c y_{i} c z_{i} d / n \geq 1, y_{1} y_{2} \ldots y_{n} \in \# D_{2}, x_{i}, z_{i} \in \Sigma^{*}\right\}$,
${ }^{-} y_{1} \in \#,\left\{a_{1}, a_{2}, \underline{a}_{1}, \underline{a}_{2}\right\}^{*}$,
- $y_{i} \in\left\{a_{1}, a_{2}, \underline{a}_{1}, \underline{a}_{2}\right\}^{*}$ for all $i>1$.

Greibach's Hardest CFL and $\Delta c l-R A$

- Theorem:

Greibach's Hardest CFL H is not recognized by any $c l-R A$-automaton. is recognized by a $1-\Delta c l-R A$-automaton.

- Idea. Suppose that we have $w \in H$:

$$
w=\phi x_{1} c y_{1} c z_{1} d x_{2} c y_{2} c z_{2} d \ldots x_{n} c y_{n} c z_{n} d \$
$$

- In the first phase we start with deleting letters (from $\Sigma=\left\{a_{1}, a_{2}, \underline{a}_{1}, \underline{a}_{2}, \#, c\right\}$) from the right side of ϕ and from the left and right sides of the letters d.

Greibach's Hardest CFL and $\Delta c l-R A$

- As soon as we think that we have the word: $\phi c y_{1} c d \quad c y_{2} c d . . . c y_{n} c d \$$ we introduce the Δ symbols: $\phi \Delta y_{1} \Delta y_{2} \Delta \ldots \Delta y_{n} \Delta \$$
- In the second phase we check if $y_{1} y_{2} \cdots y_{n} \in \# D_{2}$.
- However, there is no such thing as a first phase or a second phase.
- We have only instructions.

Greibach's Hardest CFL and $\Delta c l-R A$

- Nevertheless, the following holds: Suppose $\Sigma=\left\{a_{1}, a_{2}, \underline{a}_{1}, \underline{a}_{2}, \#, c\right\}, d \notin \Sigma, \Gamma=\Sigma \cup\{d, \Delta\}$.

First phase instructions:	Second phase instructions:
(1) $(\downarrow, \Sigma \rightarrow \lambda, \Sigma)$	(7) $\left(\Gamma, \mathrm{a}_{1} \underline{a}_{1} \rightarrow \lambda, \Gamma-\{\#\}\right)$
(2) $(, \Sigma \rightarrow \lambda, d)$	(8) $\left(\Gamma, \mathrm{a}_{2} \underline{a}_{2} \rightarrow \lambda, \Gamma-\{\#\}\right)$
(3) $(\mathrm{d}, \Sigma \rightarrow \lambda, \Sigma)$	(9) $\left(\Gamma, \mathrm{a}_{1} \Delta \mathrm{a}_{1} \rightarrow \Delta, \Gamma-\{\#\}\right)$
(4) $(\mathrm{c}, \mathrm{c} \rightarrow \Delta, \Sigma \cup\{\Delta\})$	(10) $\left(\Gamma, \mathrm{a}_{2} \Delta \mathrm{a}_{2} \rightarrow \Delta, \Gamma-\{\#\}\right)$
(5) $(\Sigma \cup\{\Delta\}, c d c \rightarrow \Delta, \Sigma \cup\{\Delta\})$	(11) $(\Sigma-\{c\}, \Delta \rightarrow \lambda, \Delta)$
(6) $(\Sigma \cup\{\Delta\}, c d \rightarrow \Delta, \$)$	(12) $(\mathrm{d}, \Delta \# \Delta \rightarrow \lambda, \$)$

- Theorem:
$L(M)=H$.

CFL and $\Delta^{*} C l-R A$-automata

- $\Delta^{*} C l-R A$-automata differ from $\Delta c l-R A$-automata in the ability to leave more than one symbol Δ.
- The only constraint is that they can replace a subword z by at most $/ z /$ symbols Δ.
- Theorem:

For each context-free language L there exists a $1-\Delta^{*} c l-R A$-automaton M recognizing $L \cup\{\lambda\}$.

- Idea. We code nonterminals by sequences of symbols Δ.

Open Problems

- What is the difference between $\mathcal{L}(\Delta C l-R A)$ and $\mathcal{L}\left(\Delta^{*} c l-R A\right)$?
- Can $\triangle c l-R A$-automata recognize all context-free languages ?
- What is the relation between $\mathcal{L}(\Delta c l-R A)$ and:
- One counter languages,
- Simple context-sensitive languages,
- Growing context-sensitive languages,
${ }^{-}$etc.

Conclusion

- The main goal of the thesis was successfully achieved.
- The results of the thesis were presented in:
- ABCD workshop, Prague, March 2009
- NCMA workshop, Wroclaw, August 2009
- An extended version of the paper from the NCMA workshop was accepted for publication in Fundamenta Informaticae.

Thank You

http://www.petercerno.wz.cz/ra.html

