Di ploma Thesis

Clearing Restarting Automata

Peter Cerno

RNDr. FrantiSek Mraz, CSc.

Clearing Restarting Automata

- Represent a new restricted model of
restarting automata.

- Can be learned very efficiently from positive
examples and the extended model enables to
learn effectively a large class of languages.

- In the thesis we relate the class of languages

recognized by these automata to Chomsky
hierarchy and study their formal properties.

Diploma Thesis Outline

- Chapter 1 gives a short introduction to the
theory of automata and formal languages.

- Chapter 2 gives an overview of several
selected models related to our model.

- Chapter 3 introduces our model of clearing
restarting automata.

- Chapter 4 describes two extended models of
clearing restarting automata.

- Conclusion gives some open problems.

Selected Models

- Contextual Grammars by Solomon Marcus:

= Are based on adjoining (inserting) pairs of strings/contexts into a
word according to a selection procedure.

- Pure grammars by Mauer et al.:

= Are similar to Chomsky grammars, but they do not use auxiliary
symbols — nonterminals.

- Church-Rosser string rewriting systems:

= Recognize words which can be reduced to an auxiliary symbol Y.
Each maximal sequence of reductions ends with the same
irreducible string.

- Associative language descriptions by Cherubini et al.:

= Work on so-called stencil trees which are similar to derivation
trees but without nonterminals. The inner nodes are marked by
an auxiliary symbol 4.

Selected Models

- Restarting Automata by Jancar et al., 1995:

= Introduced in order to model the so-called
analysis by reduction - a technique used in
linguistics to analyze sentences of natural
languages that have free word order.

I I flexible tape

read/write window

Formal Definition

- Let kbe a positive integer.
 k~clearing restarting automaton
(k-cl-RA-automaton) is a couple M = (2]) :
= X is a finite nonempty alphabet, ¢ $ & 2.
= [is a finite set of instructions (x, z, y), z € 27,
* xeLC, =3k U ¢I5K1 (left context)
* yERC, =3FUI=K1§ (right context)
s The special symbols: ¢ and § are called sentinels.

Formal Definition

« Aword w = uzv can be rewritten to uv:

(uzv ~,,uv) if and only if there exist an
instruction 7 = (x, z y) € I such that:

= x 1S a suffix of ¢.u

= y is a prefix of v.§

- Aword w is accepted if and only if w ~7;, 1
where ~7,, is reflexive and transitive closure of
the reduction relation ~,,.

» The k-c/-RA-automaton M recognizes the
language L(M) = {fw € X* | M accepts w}.

Formal Definition

« By c/-RA we denote the class of all clearing
restarting automata.

» L(k-cl-RA) denotes the class of all languages
accepted by k-c/-RA-automata.

 Similarly £(c/-RA) denotes the class of all
languages accepted by c/-RA-automata.

o L(cl-RA) = U, L(k-cl-RA).

- Note: For every c/-RA M: A ", A hence A € L(M).
If we say that ¢/-RA M recognizes a language L,
we always mean that L(M) =L U {1}.

Motivation

» This model was originally inspired by the
Associative Language Descriptions model:
= By Alessandra Cherubini, Stefano Crespi-Reghizzi,
Matteo Pradella, Pierluigi San Pietro.
» The simplicity of ¢/-R4 model implies that the
investigation of its properties is not so difficult
and also the learning of languages is easy.

- Another important advantage of this model is
that the instructions are human readable.

Example

 The language L = {a"b" | n = 0}
is recognized by the 7-c/-RA-automaton
M = ({a, b}, 1), where the instructions / are:
° R1=(3,ab b),
° R2=(¢,ab $).
- For instance:
s gaaabbbb 7 aaabbb F*! aabb X1 ab % 1.
- Now we see that the word aaaabbbb is accepted.

Question to the Audience

- What if we used only the instruction:
c R=(Lab 1).

Question to the Audience

- What if we used only the instruction:
c R=(Lab 1).

- Answer: we would get a Dyck language of
correct parentheses generated by the following
context-free grammar:
> S—>1/SS/aSh.

Set Notation

- However, in the definition of ¢/-RA4-automata
we allowed only contexts with positive length.
- Therefore we introduce the following notation:
s Let XS LC,, YERC,, Z < 2" Then:
X2Y)={(xzy)/xeX,zeZ, yeY L
- Now we can represent X = (/, ab, 1) as the set:
* ({¢, a, b} ab {a b $})

= Instead of fw} we use only w.

Infinite Hierarchy

- This idea can be easily generalized:
= By increasing the length of contexts we can only
increase the power of c/-R4-automata.
- Moreover:
s L(k-cl-RA) c L((k+1)-cl-RA), for all k> 1.
= Proof. The following language:
{ (ckack)y (b) [n >0)
belongs to the £((k+1)-cl-RA) - L(k-cI-RA). =

Simple Observations

- Error preserving property:
Let M = (2, 1) be a c/-RA-automaton and u ~7, v.
If u&L(M) then v&L(M).
s Proof. vy A =2 urF, v, 1=

- Lemma: For each finite language £ there exists
a 1-c/-RA-automaton M such that L(M) =L U {11

= Proof. For L ={w, .., w] consider:

1={(6 Wy $), .. (W, $)).m

Regular Languages

« Theorem:

All regular languages can be recognized by

clearing restarting automata using only

instructions with left contexts starting with ¢.
- Theorem:

If M= (2 1) is a k-c/-RA-automaton such that for

each (x, z y) € I: ¢ is a prefix of x or $ is a suffix
of y then L(M) is a regular language.

Context-Free Languages

- Theorem:
Over one-letter alphabet, clearing restarting
automata recognize exactly all context-free
languages containing the empty word.

- Theorem:
Over general alphabet, the family of
languages recognized by 7-c/-RA-automata is
strictly included in the family of context-free
languages containing the empty word.

Non-Context-Free Languages

« Theorem:

2-cl-RA-automata can recognize some non-
context-free languages.

- In the following we give a technique which
was used to prove that 4-c/-RA-automaton can
recognize a non-context-free language.

- How?
Let the c/-R4-automaton learn the language!

Learning Meta-Algorithm

- Letu ~,, v.,i=1..n bealist of reductions.
- A meta-algorithm for machine learning of
unknown clearing restarting automaton:
Step1: k:=1
Step 2: For each reduction u; ~,, v; choose

1

(nondeterministically) a factorization of «,,
suchthat v, =x.zy. and v, =x,y.

Learning Meta-Algorithm

Step 3: Construct a k-c/-RA M = (2, 1), where:
[={(Suft (¢x) z;, Pref(y.$))/i=1..n}
Step 4: Test the automaton M using any
available information.

Step 5: If the automaton passed all the tests,
return /. Otherwise try another factorization of
the known reductions and continue by Step 3. If
all possible factorizations have been tried, then
increase k& and continue by Step 2.

Learning Non-CFL

- Idea: We try to create a k-c/-RA-automaton M
such that Z(M) n {(ab)" | n>0} = {(ab)*" | m=0).

 If L(M)1is a CFL then also the intersection with a
regular language is a CFL. However, in our case
the intersection is not a CFL.

- Next we give a sample computation showing
how to recognize words (ab)?” by means of
clearing restarting automata.

Sample Computation

- Consider:
¢ abababababababab $ I-,, ¢ abababababababb $ -,
¢ abababababbabb $ -, ¢ abababbabbabb $ -,
¢ abbabbabbabb $ 1,, ¢ abbabbabbab $ -,
¢ abbabbabab $ -, ¢ abbababab $ -,
¢ abababab $ I-,, ¢ abababb $ -,
¢ abbabb $,, ¢ abbab $ -,
¢abab $ i-,,¢abb $ -, ¢ab $ -, ¢ A% accept.

- From this sample computation we can collect
15 reductions with unambiguous factorizations.

Inferring the Automaton

» The only variable we have to choose is & - the
length of the context of the instructions.

* Let us try:

- For k=1 we get the following instructions:
(b,a b), (abb) (¢ab$)
But then the automaton would accept the word

abababwhich does not belong to L:
ababab t,,ababb ,,abbb F,,abb F,,ab -, A

Inferring the Automaton

» For k=2 we get the following instructions:
(ab, a {b3, ba}), ({¢a, ba}, b {b$, ba}), (¢ ab, $).
But then the automaton would accept the word
abababwhich does not belong to L:
ababab r,,ababb F,,abab t-,,abb ,,ab -, 1.

- For k=3 we get the following instructions:
({¢ab, bab}, a {b$, bab}), ({¢a, bbaj}, b, {b$, bab}), (¢ ab, $).
And again we get:
ababab r-,,ababb F,,abab t,,abb t,,ab -, 1.

Inferring the Automaton

- Finally, for k£ =4 we get the required 4-c/-RA-
automaton M.

¢ab) b$ ¢a b b2§$
abab = babb abba =
baba

 For this 4-c/-RA-automaton M it can be shown,
that: Z(M) n {(ab)" | n>0} = {(ab)*" | m=0).

Problem with c¢/-RA-automata

- Theorem:
The language L, = {a"ch” [n = 0} U {1}
is not recognized by any c/-RA-automaton.
- Similarly:
Let L, ={a"bh" [n=0} and L, = {a"b*" | n=0]
be two sample languages. Both /., and Z,
are recognized by 7-c/-RA-automata.
- But languages L, UL, and L,. L,
are not recognized by any c¢/-R4-automaton.

(Non-)closure Properties

« Theorem:

The class £(c/-RA) is not closed under:
= Union

= Intersection

» Intersection with regular language

= Set difference

= Concatenation

= Morphism

Extended Models

» 4-clearing restarting automata

= Can leave a mark — a symbol 4 — at the place of
deleting besides rewriting into the empty word.

= Can recognize Greibach’s hardest context-free
language.
- 4* clearing restarting automata
= Can rewrite a subword w into 4% where k£ < /w/.
= Can recognize all context-free languages.

Example

- The language L, = {fa’ch” | n = 0} U {1}

is recognized by the 7-4c/-RA-automaton

M = ({a, b, ¢}, I), where the instructions / are:

s Rcl =(a,c—4,b), Rc2=(¢,c— A %)

o RA1 = (a,adb — 4, b), RAZ = (¢ adb — 4, $)
- For instance:

s gaacbbb 71 aadbb Ff41 adb 744 1.
- Now we see that the word aaacbbbis accepted.

Greibach’s Hardest CFL

- As we have seen, not all CFLs are recognized
by original clearing restarting automata.

- We can still characterize CFL using 4- clearing
restarting automata, inverse homomorphism
and Greibach’s hardest context-free language H.

= Any context-free language L can be parsed in
whatever time or space it takes to recognize H.

= Any context-free language L can be obtained
from A by an inverse homomorphism.

Greibach’s Hardest CFL Definition

eletl={fa,a,a,a,#c}d&.r

 Let D, be Semi-Dyck language on {a, a, a, a,}.
generated by the context-free grammar:
S—>A/855/a,Sa, [asa,.

» Then Greibach’s hardest CFL. H = {1} U
{[]i=1.nXyiczd [n =1, y1Vs..y, € #Dy, X;, 2, € 27],

- yJE#'{a]/ aZ/Q];QZ}*,
o y,€fa,a,a,a,)*foralli> 1.

Greibach’s Hardest CFL and 4c/-RA

- Theorem:
Greibach’s Hardest CFL H
is not recognized by any c/-RA-automaton.
is recognized by a 7-4c/-RA-automaton.
= Idea. Suppose that we have w e A
w=¢x,cy,cz,d X,cy,czZ,d... X, cy,czZ.d $
= In the first phase we start with deleting letters

(from X' ={a, a, a, a, # c}) from the right side of
¢ and from the left and right sides of the letters d.

Greibach’s Hardest CFL and A4dc/-RA

= As soon as we think that we have the word:

¢cy,cd cy,cd.. cy,cd $
we introduce the 4 symbols:

¢ Ay, Ay,A... Ay, A $
s In the second phase we checkif y,y,...y. € #D,.

- However, there is no such thing as a first phase
or a second phase.

- We have only instructions.

Greibach’s Hardest CFL and 4c/-RA

- Nevertheless, the following holds: Suppose
2:{31, aZIQZIQZI #‘/ C}; dEZ', F:ZU{d A}-

First phase instructions: Second phase instructions:

1) @215 (7) (aa,~>AT-{#)
@) (%22 d) ®) (T aa,~AT-{#)
3) (dZ~2) (9) (T ada;— AT -{#)
(4) (6,c— A, ZU{A}) (10) (T, a,Aa, - A, T - {#})
(5) (ZU {A}, cdc > A, T U {A)) (11) (2 - {c}, A > A, A)

(6) (ZU{A}, cd— A, $) (12) (¢, A#A > A, $)

« Theorem:
L(M) =H.

CFL and 4*c/-RA-automata

» A*cl-RA-automata differ from Ac/-RA-automata
in the ability to leave more than one symbol 4.

- The only constraint is that they can replace a
subword z by at most /z/ symbols 4.

- Theorem:
For each context-free language L there exists a
1-A4%cl-RA-automaton M recognizing L U {A).
» Idea. We code nonterminals by sequences of
symbols 4.

Open Problems

» What is the difference between
L(Acl-RA) and L(A*cl-RA) ?
» Can 4c/-RA-automata recognize
all context-free languages ?
- What is the relation between £(4c/-RA) and:
= One counter languages,
= Simple context-sensitive languages,
= Growing context-sensitive languages,
o efc.

Conclusion

- The main goal of the thesis was
successfully achieved.

 The results of the thesis were presented in:
= ABCD workshop, Prague, March 2009
= NCMA workshop, Wroclaw, August 2009

= An extended version of the paper from the NCMA
workshop was accepted for publication in
Fundamenta Informaticae.

Thank You

http://www.petercerno.wz.cz/ra.html

