

Diploma Thesis

Clearing Restarting Automata

Peter Černo RNDr. František Mráz, CSc.

Clearing Restarting Automata

- Represent a new restricted model of restarting automata.
- **Can** be **learned very efficiently** from positive examples and the extended model enables to learn effectively a **large class of languages**.
- In the thesis we relate the class of languages recognized by these automata to Chomsky hierarchy and study their formal properties.

Diploma Thesis Outline

- **Chapter 1** gives a short **introduction** to the theory of automata and formal languages.
- Chapter 2 gives an overview of several selected models related to our model.
- Chapter 3 introduces our model of clearing restarting automata.
- **Chapter 4** describes two **extended models** of clearing restarting automata.
- Conclusion gives some open problems.

Selected Models

• **Contextual Grammars** by Solomon Marcus:

 Are based on adjoining (inserting) pairs of strings/contexts into a word according to a selection procedure.

• **Pure grammars** by Mauer et al.:

 Are similar to Chomsky grammars, but they do not use auxiliary symbols – nonterminals.

Church-Rosser string rewriting systems:

 Recognize words which can be reduced to an auxiliary symbol Y. Each maximal sequence of reductions ends with the same irreducible string.

• Associative language descriptions by Cherubini et al.:

 Work on so-called stencil trees which are similar to derivation trees but without nonterminals. The inner nodes are marked by an auxiliary symbol *∆*.

Selected Models

• **Restarting Automata** by Jančar et al., 1995:

 Introduced in order to model the so-called analysis by reduction - a technique used in linguistics to analyze sentences of natural languages that have free word order.

Formal Definition

- Let *k* be a *positive integer*.
- *k*-clearing restarting automaton (*k*-cl-RA-automaton) is a couple $M = (\Sigma, I)$:
 - Σ is a finite nonempty *alphabet*, ϕ , $\phi \notin \Sigma$.
 - □ *I* is a finite set of *instructions* (*x*, *z*, *y*), $z \in \Sigma^+$,
 - $\mathbf{x} \in LC_k = \Sigma^k \cup \mathcal{C}.\Sigma^{\leq k-1}$ (left context)
 - $y \in RC_k = \Sigma^k \cup \Sigma^{\leq k-1}.$ (right context)

• The special symbols: ¢ and \$ are called sentinels.

Formal Definition

- A word w = uzv can be *rewritten* to uv: ($uzv \vdash_M uv$) if and only if there exist an instruction $i = (x, z, y) \in I$ such that:
 - x is a suffix of ¢.u
 - y is a prefix of v.\$
- A word *w* is *accepted* if and only if $w \vdash_M^* \lambda$ where \vdash_M^* is reflexive and transitive closure of the reduction relation \vdash_M .
- The *k*-*cl*-*RA*-automaton *M* recognizes the language $L(M) = \{w \in \Sigma^* | M \text{ accepts } w\}$.

Formal Definition

- By *cl-RA* we denote the class of all clearing restarting automata.
- *L*(*k*-*cl*-*RA*) denotes the class of all languages accepted by *k*-*cl*-*RA*-automata.
- Similarly *L(cl-RA)* denotes the class of all languages accepted by *cl-RA*-automata.
- $\mathcal{L}(cl-RA) = U_{k \ge 1} \mathcal{L}(k-cl-RA).$
- **Note**: For every *cl-RA* $M: \lambda \vdash_{M}^{*} \lambda$ hence $\lambda \in L(M)$. If we say that *cl-RA* M *recognizes a language* L, we always mean that $L(M) = L \cup \{\lambda\}$.

Motivation

- This model was originally inspired by the *Associative Language Descriptions* model:
 - By Alessandra Cherubini, Stefano Crespi-Reghizzi, Matteo Pradella, Pierluigi San Pietro.
- The simplicity of *cl-RA* model implies that the investigation of its properties is not so difficult and also the learning of languages is easy.
- Another important advantage of this model is that the instructions are human readable.

Example

- The language L = {aⁿbⁿ / n ≥ 0}
 is recognized by the 1-cl-RA-automaton
 - $M = (\{a, b\}, I)$, where the instructions I are:
 - $\square R1 = (a, \underline{ab}, b),$
 - $R2 = (c, \underline{ab}, \$)$.
- For instance:
 - □ $aaaabbbb \vdash^{R_1} aaabbb \vdash^{R_1} aabb \vdash^{R_1} ab \vdash^{R_2} \lambda$.
- Now we see that the word *aaaabbbb* is accepted.

Question to the Audience

- What if we used only the instruction:
 - $R = (\lambda, \underline{ab}, \lambda)$.

Question to the Audience

- What if we used only the instruction:
 - $R = (\lambda, \underline{ab}, \lambda)$.
- **Answer**: we would get a **Dyck language** of **correct parentheses** generated by the following context-free grammar:

• $S \rightarrow \lambda / SS / aSb$.

Set Notation

- **However**, in the definition of *cl-RA*-automata we allowed only contexts with positive length.
- **Therefore** we introduce the following notation:
 - Let $X \subseteq LC_k$, $Y \subseteq RC_k$, $Z \subseteq \Sigma^+$. Then: $(X, Z, Y) = \{ (x, z, y) | x \in X, z \in Z, y \in Y \}.$
- **Now** we can represent $R = (\lambda, \underline{ab}, \lambda)$ as the set:
 - ({¢, a, b}, <u>ab</u>, {a, b, \$})
 - Instead of {w} we use only w.

Infinite Hierarchy

- This idea can be easily **generalized**:
 - By increasing the length of contexts we can only increase the power of *cl-RA*-automata.

• Moreover:

• $\mathcal{L}(k\text{-}cl\text{-}RA) \subset \mathcal{L}((k+1)\text{-}cl\text{-}RA)$, for all $k \ge 1$.

Proof. The following language: { (c^kac^k)ⁿ (c^kbc^k)ⁿ / n ≥ 0 } belongs to the L((k+1)-cl-RA) - L(k-cl-RA).

Simple Observations

• Error preserving property:

Let $M = (\Sigma, I)$ be a *cl-RA*-automaton and $u \vdash_M^* v$. If $u \notin L(M)$ then $v \notin L(M)$.

- **Proof.** $v \vdash_M^* \lambda \Rightarrow u \vdash_M^* v \vdash_M^* \lambda$.
- Lemma: For each finite language *L* there exists a *1-cl-RA*-automaton *M* such that *L(M) = L U {λ}*.
 Proof. For *L = {w₁, ..., w_n}* consider:

 $I = \{ (\ell, W_1, \$), ..., (\ell, W_n, \$) \}. \blacksquare$

Regular Languages

• Theorem:

All regular languages can be recognized by clearing restarting automata using **only** instructions with left contexts starting with *¢*.

• Theorem:

If $M = (\Sigma, I)$ is a *k*-*cl*-*RA*-automaton such that for each $(x, z, y) \in I$: ϕ is a prefix of *x* or *\$* is a suffix of *y* then L(M) is a regular language.

Context-Free Languages

• Theorem:

Over **one-letter alphabet**, clearing restarting automata recognize **exactly** all **context-free languages** containing the empty word.

• Theorem:

Over **general alphabet**, the family of languages recognized by *1-cl-RA*-automata is **strictly included** in the family of **context-free** languages containing the empty word.

Non-Context-Free Languages

• Theorem:

2-cl-RA-automata **can** recognize some **non**-context-free languages.

- In the following we give a technique which was used to prove that *4-cl-RA*-automaton can recognize a non-context-free language.
- How?

Let the *cl-RA*-automaton **learn the language**!

Learning Meta-Algorithm

- Let $u_i \vdash_M v_i$, $i = 1 \dots n$ be a list of reductions.
- A **meta-algorithm** for machine learning of unknown clearing restarting automaton:

Step 1: k := 1.

Step 2: For each reduction $u_i \vdash_M v_i$ choose (nondeterministically) a **factorization** of u_i , such that $u_i = x_i z_i y_i$ and $v_i = x_i y_i$.

Learning Meta-Algorithm

Step 3: **Construct** a *k-cl-RA* $M = (\Sigma, I)$, where: $I = \{ (Suff_k(\emptyset, x_i), z_i, Pref_k(y_i, \emptyset)) | i = 1 ... n \}.$ **Step 4**: **Test** the automaton *M* using any available information.

Step 5: If the automaton **passed** all the tests, return *M*. Otherwise try another factorization of the known reductions and continue by **Step 3**. If all possible factorizations have been tried, then increase *k* and continue by **Step 2**.

Learning Non-CFL

- **Idea**: We try to create a *k*-*cl*-*RA*-automaton *M* such that $L(M) \cap \{(ab)^n \mid n > 0\} = \{(ab)^{2^m} \mid m \ge 0\}$.
- If *L(M)* is a **CFL** then also the intersection with a regular language is a **CFL**. However, in our case the intersection is **not** a **CFL**.
- Next we give a sample computation showing how to recognize words (ab)^{2^m} by means of clearing restarting automata.

Sample Computation

• Consider:

• From this sample computation **we can collect** 15 reductions with unambiguous factorizations.

Inferring the Automaton

- The only variable we have to choose is *k* the length of the context of the instructions.
- Let us try:
- For k = 1 we get the following instructions: (b, a, b), (a, b, b), (¢, ab, \$).
 But then the automaton would accept the word ababab which does not belong to L: ababab ⊢_M ababb ⊢_M abbb ⊢_M abbb ⊢_M ab ⊢_M λ.

Inferring the Automaton

- For k = 2 we get the following instructions: (*ab*, <u>a</u>, {*b*\$, *ba*}), ({¢a, *ba*}, <u>b</u>, {*b*\$, *ba*}), (¢, <u>ab</u>, \$). But then the automaton would accept the word *ababab* which **does not** belong to *L*: *abab<u>ab</u> \vdash_M ab\underline{a}\underline{b} \vdash_M a\underline{b}\underline{a} \vdash_M a\underline{b} \vdash_M a\underline{b} \vdash_M \lambda.*
- For k = 3 we get the following instructions: ({¢ab, bab}, <u>a</u>, {b\$, bab}), ({¢a, bba}, <u>b</u>, {b\$, bab}), (¢, <u>ab</u>, \$). And again we get: $ab\underline{a}bab \vdash_{M} ab\underline{a}bb \vdash_{M} ab\underline{a}b \vdash_{M} \underline{a}b \vdash_{M} \underline{a}b \vdash_{M} \lambda.$

Inferring the Automaton

• Finally, for *k* = 4 we get the required *4-cl-RA*-automaton *M*.

• For this 4-cl-RA-automaton M it can be shown, that: $L(M) \cap \{(ab)^n \mid n > 0\} = \{(ab)^{2^m} \mid m \ge 0\}$.

Problem with *cl-RA*-automata

• Theorem:

The language $L_1 = \{a^n c b^n \mid n \ge 0\} \cup \{\lambda\}$

is **not recognized** by any *cl-RA*-automaton.

• Similarly:

Let $L_2 = \{a^n b^n | n \ge 0\}$ and $L_3 = \{a^n b^{2n} | n \ge 0\}$ be two sample languages. Both L_2 and L_3 **are recognized** by *1-cl-RA*-automata.

But languages L₂ U L₃ and L₂. L₃
 are not recognized by any *cl-RA*-automaton.

(Non-)closure Properties

• Theorem:

- The class *L(cl-RA)* is **not closed** under:
- Union
- Intersection
- Intersection with regular language
- Set difference
- Concatenation
- Morphism

Extended Models

- *d*-clearing restarting automata
 - Can leave a mark a symbol ∠ at the place of deleting besides rewriting into the empty word.
 - Can recognize Greibach's hardest context-free language.
- *Δ**-clearing restarting automata
 - **Can** rewrite a subword *w* into Δ^k where $k \leq |w|$.
 - **Can** recognize **all** context-free languages.

Example

- The language $L_1 = \{a^n c b^n \mid n \ge 0\} \cup \{\lambda\}$ is recognized by the *1-dcl-RA*-automaton
 - $M = (\{a, b, c\}, I)$, where the instructions I are:
 - $Rc1 = (a, \underline{c} \rightarrow \Delta, b),$ $Rc2 = (\mathfrak{q}, \underline{c} \to \lambda, \$)$
 - $R\Delta 1 = (a, \underline{a\Delta b} \to \Delta, b), \qquad R\Delta 2 = (c, \underline{a\Delta b} \to \lambda, s)$

- For instance:
 - $aaacbbb \vdash^{Rc1} aa\Delta bb \vdash^{R\Delta 1} a\Delta b \vdash^{R\Delta 2} \lambda$.
- Now we see that the word *aaacbbb* is accepted.

Greibach's Hardest CFL

- As we have seen, not all CFLs are recognized by original clearing restarting automata.
- We can still characterize CFL using ⊿- clearing restarting automata, inverse homomorphism and Greibach's hardest context-free language *H*.
 - Any context-free language *L* can be parsed in whatever time or space it takes to recognize *H*.
 - Any context-free language *L* can be obtained from *H* by an inverse homomorphism.

Greibach's Hardest CFL Definition

- Let $\Sigma = \{a_1, a_2, \underline{a}_1, \underline{a}_2, \#, c\}, d \notin \Sigma$.
- Let D_2 be *Semi-Dyck language* on $\{a_1, a_2, \underline{a_1}, \underline{a_2}\}$. generated by the context-free grammar: $S \rightarrow \lambda / SS / a_1S\underline{a_1} / a_2S\underline{a_2}$.
- Then Greibach's hardest CFL H = {λ} U

 { Π_{i=1..n} x_icy_icz_id / n ≥ 1, y₁y₂...y_n ∈ #D₂, x_i, z_i ∈ Σ* },

 y₁ ∈ #. {a₁, a₂, <u>a₁, a₂}*,

 y_i ∈ {a₁, a₂, <u>a₁, a₂}* for all i > 1.</u>
 </u>

Greibach's Hardest CFL and *Acl-RA*

• Theorem:

- Greibach's Hardest CFL H
- is **not recognized** by any *cl-RA*-automaton.
- is **recognized** by a *1-∆cl-RA*-automaton.
- **Idea**. Suppose that we have $w \in H$:

 $w = \mathbf{\mathcal{C}} x_1 c y_1 c z_1 d x_2 c y_2 c z_2 d \dots x_n c y_n c z_n d \mathbf{\mathcal{S}}$

In the *first phase* we start with deleting letters
 (from Σ = {a₁, a₂, <u>a₁, a₂, #, c</u>}) from the right side of
 ¢ and from the left and right sides of the letters *d*.

Greibach's Hardest CFL and *Acl-RA*

 As soon as we think that we have the word:
 *¢ cy*₁*cd cy*₂*cd*... *cy*_n*cd \$* we **introduce the** *∆* **symbols**:

- In the **second phase** we check if $y_1y_2...y_n \in \#D_2$.
- **However**, there is no such thing as a *first phase* or a *second phase*.
- We have only instructions.

Greibach's Hardest CFL and *Acl-RA*

• Nevertheless, the following holds: Suppose $\Sigma = \{a_1, a_2, \underline{a}_1, \underline{a}_2, \#, c\}, d \notin \Sigma, \Gamma = \Sigma \cup \{d, \Delta\}.$

First phase instructions:	Second phase instructions:
(1) $(\mathfrak{c}, \Sigma \to \lambda, \Sigma)$	(7) (Γ, $a_1 \underline{a}_1 \rightarrow \lambda$, Γ – {#})
(2) $(\Sigma, \Sigma \rightarrow \lambda, d)$	(8) $(\Gamma, a_2\underline{a}_2 \rightarrow \lambda, \Gamma - \{\#\})$
(3) (d, $\Sigma \rightarrow \lambda, \Sigma$)	(9) $(\Gamma, a_1 \Delta \underline{a}_1 \rightarrow \Delta, \Gamma - \{\#\})$
(4) (¢, c $\rightarrow \Delta$, $\Sigma \cup \{\Delta\}$)	(10) $(\Gamma, a_2 \Delta \underline{a}_2 \rightarrow \Delta, \Gamma - \{\#\})$
(5) $(\Sigma \cup \{\Delta\}, \operatorname{cdc} \rightarrow \Delta, \Sigma \cup \{\Delta\})$	(11) $(\Sigma - \{c\}, \Delta \rightarrow \lambda, \Delta)$
(6) $(\Sigma \cup \{\Delta\}, \operatorname{cd} \to \Delta, \$)$	(12) (¢, $\Delta \# \Delta \rightarrow \lambda$, \$)

• Theorem:

L(M) = H.

CFL and *∆*cl-RA*-automata

- *∆*cl-RA*-automata differ from *∆cl-RA*-automata in the ability to leave **more than one** symbol *∆*.
- The **only constraint** is that they can replace a subword *z* by at most /*z*/ symbols ⊿.
- Theorem:
 - For **each** context-free language *L* there exists a
 - 1- Δ^* cl-RA-automaton M recognizing L U { λ }.
 - Idea. We code nonterminals by sequences of symbols ⊿.

Open Problems

- What is the difference between $\mathcal{L}(\Delta cl-RA)$ and $\mathcal{L}(\Delta^*cl-RA)$?
- Can *∆cl-RA*-automata recognize all context-free languages ?
- What is the relation between $\mathcal{L}(\Delta cl-RA)$ and:
 - One counter languages,
 - Simple context-sensitive languages,
 - Growing context-sensitive languages,
 - etc.

Conclusion

- The **main goal** of the thesis was **successfully achieved**.
- The results of the thesis were presented in:
 ABCD workshop, Prague, March 2009
 NCMA workshop, Wroclaw, August 2009
 An extended version of the paper from the NCMA workshop was accepted for publication in

Fundamenta Informaticae.

Thank You

http://www.petercerno.wz.cz/ra.html