CLEARING RESTARTING AUTOMATA AND GRAMMATICAL INFERENCE

Peter Černo

Department of Computer Science Charles University in Prague, Faculty of Mathematics and Physics

Table of Contents

- Part I: Introduction,
- Part II: Learning Schema,
- Part III: Active Learning Example,
- Part IV: Hardness Results,
- Part V: Concluding Remarks.

Part I: Introduction

Restarting Automata:

- Model for the linguistic technique of *analysis by reduction*.
- Many different types have been defined and studied intensively.

• Analysis by Reduction:

- Method for checking [non-]correctness of a sentence.
- Iterative application of simplifications.
- Until the input cannot be simplified anymore.

<u>Restricted Models</u>:

- *Clearing*, Δ -Clearing and Δ *-Clearing Restarting Automata,
- Subword-Clearing Restarting Automata.
- Our method is similar to the *delimited string-rewriting systems* [Eyraud et al. (2007)].

Context Rewriting Systems

- Let k be a nonnegative integer.
- <u>k Context Rewriting System</u> (k-CRS)
- Is a triple $M = (\Sigma, \Gamma, I)$:
 - Σ ... input alphabet, ϕ , $\$ \notin \Sigma$,
 - Γ ... working alphabet, $\Gamma \supseteq \Sigma$,
 - I ... finite set of *instructions* $(x, z \rightarrow t, y)$:
 - $x \in \Gamma^k \cup \{ \phi \}. \Gamma^{\leq k-1}$ (left context)
 - $y \in \Gamma^k \cup \Gamma^{\leq k-1}$.{\$} (right context)
 - $z \in \Gamma^+, z \neq t \in \Gamma^*$.
 - *¢* and *\$* ... *sentinels*.
 - The width of instruction $i = (x, z \rightarrow t, y)$ is |i| = |xzty|.
 - In case k = 0 we use $x = y = \lambda$.

Rewriting

- $\underline{uzv} \vdash_M \underline{utv}$ iff $\exists (x, z \rightarrow t, y) \in I$:
- x is a suffix of *c.u* and y is a prefix of v.\$.

- $L(M) = \{ w \in \Sigma^* / w \vdash_M^* \lambda \}.$
- $L_C(M) = \{ w \in \Gamma^* / w \vdash_M^* \lambda \}.$

Empty Word

- <u>Note</u>: For every k-CRS M: $\lambda \vdash_{M}^{*} \lambda$, hence $\lambda \in L(M)$.
- Whenever we say that a *k*-*CRSM* recognizes a language L, we always mean that $L(M) = L \cup \{\lambda\}$.
- We simply *ignore the empty word* in this setting.

Clearing Restarting Automata

- <u>k Clearing Restarting Automaton</u> (k-cl-RA)
 - Is a k-CRS $M = (\Sigma, \Sigma, I)$ such that:
 - For each $(x, z \rightarrow t, y) \in I: z \in \Sigma^+, t = \lambda$.
- <u>k Subword-Clearing Rest. Automaton</u> (k-scl-RA)
 - Is a k-CRS $M = (\Sigma, \Sigma, I)$ such that:
 - For each $(x, z \rightarrow t, y) \in I$:
 - $z \in \Gamma^+$, t is a **proper subword** of z.

Example 1

- $L_1 = \{a^n b^n / n > 0\} \cup \{\lambda\}$:
- $1-cl-RA M = (\{a, b\}, I),$
- Instructions I are:
 - $R1 = (a, \underline{ab} \rightarrow \lambda, b)$,
 - $R2 = (\mathfrak{C}, \underline{ab} \to \lambda, \mathfrak{S})$.

Example 2

• $L_2 = \{a^n c b^n / n > 0\} \cup \{\lambda\}$:

¢

- 1-scl-RA M = ({a, b, c}, I),
- Instructions I are:
 - $R1 = (a, \underline{acb} \rightarrow c, b)$,
 - $R2 = (\mathfrak{C}, \underline{acb} \rightarrow \lambda, \mathfrak{S})$.

• Note:

- The language L_2 cannot
- be recognized by any cl-RA.

Clearing Restarting Automata

Clearing Restarting Automata:

- Accept all regular and even some non-context-free languages.
- They do **not** accept **all context-free** languages $(\{a^n cb^n | n > 0\})$.
- Subword-Clearing Restarting Automata:
 - Are strictly more powerful than Clearing Restarting Automata.
 - They do **not** accept **all context-free** languages $(\{w w^R | w \in \Sigma^*\})$.
- Upper bound:
 - Subword-Clearing Restarting Automata only accept languages that are growing context-sensitive [Dahlhaus, Warmuth].

Hierarchy of Language Classes

Part II: Learning Schema

- <u>Goal</u>: *Identify* any *hidden target* automaton *in the limit* from *positive* and *negative* samples.
- Input:
 - Set of *positive samples S*⁺,
 - Set of negative samples S,
 - We assume that $S^+ \cap S^- = \mathcal{O}$, and $\lambda \in S^+$.
- Output:
 - Automaton M such that: $L(M) \subseteq S^+$ and $L(M) \cap S^- = \Diamond$.
 - The term *automaton* = *Clearing* or *Subword-Clearing* Restarting Automaton, or any other *similar model*.

Learning Schema – Restrictions

Without further restrictions:

- The task becomes trivial even for Clearing Rest. Aut..
- Just consider: $I = \{ (\ell, w, \$) | w \in S^+, w \neq \lambda \}$.
- Apparently: $L(M) = S^+$, where $M = (\Sigma, \Sigma, I)$.
- Therefore, we impose:
 - An upper limit l ≥ 1 on the width of instructions,
 - A specific *length of contexts* $k \ge 0$.
- Note:
 - We can *effectively enumerate all automata* satisfying these *restrictions*, thus the identification in the limit can be easily deduced from the classical result of *Gold*...
 - *Nevertheless*, we propose an *algorithm*, which, under certain conditions, works in a polynomial time.

Learning Schema – Algorithm

Input:

- Positive samples S^+ , negative samples S^- , $S^+ \cap S^- = Q$, $\lambda \in S^+$.
- Upper limit l≥1 on the width of instructions,
- A specific *length of contexts* $k \ge 0$.

Output:

• Automaton M such that: $L(M) \subseteq S^+$ and $L(M) \cap S^- = Q$, or **Fail**.

1
$$\Phi \leftarrow \text{Assumptions}(S^+, l, k);$$

2 while $\exists w_- \in S^-, w_+ \in S^+, \phi \in \Phi : w_- \vdash^{(\phi)} w_+ \text{ do}$
3 $\mid \Phi \leftarrow \Phi \setminus \{\phi\};$
4 end
5 $\Phi \leftarrow \text{Simplify}(\Phi);$
6 if Consistent (Φ, S^+, S^-) then
7 $\mid \text{ return Automaton with the set of instructions } \Phi;$
8 end
9 Fail;

Learning Schema – Step 1/4

• <u>Step 1</u>:

- $\Phi \leftarrow \mathsf{Assumptions}(S^+, l, k);$
- We obtain some set of *instruction candidates*.
- Note: We use only the positive samples to obtain the instructions.
- Let us assume, for a moment, that this set Φ already contains all instructions of the hidden target automaton.
- Later we will show how to define the function *Assumptions* in such a way that the above assumption can be always satisfied.

Learning Schema – Step 2/4

<u>Step 2</u>:

while $\exists w_{-} \in S^{-}, w_{+} \in S^{+}, \phi \in \Phi : w_{-} \vdash^{(\phi)} w_{+} \text{ do}$ $\mid \Phi \leftarrow \Phi \setminus \{\phi\};$ end

- We gradually *remove all instructions* that allow a single-step reduction *from a negative sample to a positive sample*.
- Such instructions violate the so-called error-preserving property.
- It is easy to see, that such instructions cannot be in our hidden target automaton.
- Note: Here we use also the negative samples.

Learning Schema – Step 3/4

• <u>Step 3</u>:

 $\Phi \leftarrow \mathsf{Simplify}(\Phi);$

- We remove the redundant instructions.
- This step is *optional* and *can be omitted* it does not affect the properties or the correctness of the *Learning Schema*.

• Possible implementation:

Input: The set of instructions Φ . Output: The simplified set of instructions Ψ . 1 $\Psi \leftarrow \emptyset$; 2 foreach $\phi = (x, z \rightarrow t, y) \in \Phi$ in some fixed order do 3 $\mid if z \not\vdash_{\Psi}^{*} t in the context (x, y)$ then 4 $\mid \Psi \leftarrow \Psi \cup \{(x, z \rightarrow t, y)\};$ 5 $\mid end$ 6 end 7 return Ψ ;

Learning Schema – Step 4/4

<u>Step 4</u>:

if Consistent (Φ, S^+, S^-) then | return Automaton with the set of instructions Φ ; end Fail;

- We *check the consistency* of the remaining set of instructions with the given input set of positive and negative samples.
- Concerning the identification in the limit, we can *omit the consistency check* – it does not affect the correctness of the *Learning Schema*. In the limit, we always get a correct solution.

Learning Schema – Complexity

- Time complexity of the *Algorithm* depends on:
 - Time complexity of the *function Assumptions*,
 - Time complexity of the *simplification*,
 - Time complexity of the *consistency check*.
- There are *correct* implementations of the function Assumptions that run in a polynomial time.
- If the function Assumptions runs in a polynomial time (Step 1) then also the size of the set *Φ* is polynomial and then also the cycle (Step 2) runs in a polynomial time.
- It is an open problem, whether the *simplification* and the *consistency check* can be done in a polynomial time.
 Fortunately, we can omit these steps.

Learning Schema – Assumptions

- We call the *function Assumptions* correct, if it is possible to obtain instructions of any hidden target automaton in the limit by using this function.
- To be more **precise**:
 - For every *k-cl-RA M* (or *k-scl-RA M*) with the maximal width of instructions bounded from above by *l≥1* there exists a finite set S₀⁺ ⊆ L(M) such that for every S⁺ ⊇ S₀⁺ the Assumptions(S⁺, *l*, *k*) contains all instructions of some automaton N equivalent to M.

- Assumptions_{weak}(S^+ , l, k) := all instructions $(x, z \rightarrow t, y)$:
 - The length of contexts is k:
 - $x \in \Sigma^k \cup \{ \emptyset \}$. $\Sigma^{\leq k-1}$ (left context)
 - $y \in \Sigma^k$ $\cup \Sigma^{\leq k-1}$. {\$} (right context)
 - Our model is a Subword-Clearing Rest. Aut.:
 - $z \in \Sigma^4$, t is a **proper subword** of z.
 - The width is bounded by *l*:
 - $|xzty| \leq l$.
 - There are two words $w_1, w_2 \in S^+$ such that:
 - *xzy* is a *subword* of *¢ w₁ \$*,
 - *xty* is a **subword** of ϕw_2 \$.
- This function is correct and runs in a polynomial time.

Part III: Active Learning Example

• Our goal:

- Infer a model of *scl-RA* recognizing the language of *simplified arithmetical expressions* over the alphabet $\Sigma = \{a, +, (,)\}$.
- **Correct** arithmetical expressions:
 - *a + (a + a)*,
 - *(a + a)* ,
 - *((a))* , etc.
- Incorrect arithmetical expressions:
 - *a* + ,
 - •*)a*,
 - *(a + a* , etc.
- We fix *maximal width I* to *6*, *length of context k* to *1*.

• Initial set of *positive* (S_1^+) and *negative* (S_1^-) samples.

Table 1: The Initial Set of Positive and Negative Samples.

Positive Samples S_1^+			Negative Samples S_1^-					
$a \\ a + a \\ a + a + a$	$(a) \\ ((a)) \\ (a+a)$	((a+a)) $a+(a+a)$ $(a+a)+a$	+ ()	a+a(a)	++ +(+)	(+ ((())+)())	+a (a))a

- Assumptions_{weak}(S₁⁺, l, k) gives us 64 instructions.
- After *filtering* bad instructions and after *simplification* we get a consistent automaton M₁ with 21 instructions:

Table 2: The Instructions of the Resulting Automaton M_1 After Simplification.

[(, (, a]	[¢, (, (]	[+, (, a]	[),),\$]	[a,),)]	[a,), +]	[c, a, \$]
$[\diamondsuit, ((,a]$	$[\diamond, (a \to a, +]$	[a,)),\$]	[), +a, \$]	[a, +a, \$]	[a, +a,)]	[a, +a, +]
$[+,a) \to a,\$]$	[(, a+, a]	[c, a+, (]	[c, a+, a]	[+, a+, a]	[c, (a), \$]	$[\diamondsuit, (a) \to a, \$]$

• All expressions recognized by M_1 up to length 5:

Table 3: The Set of Expressions Recognized by M_1 .

λ	$\mathbf{a} + \mathbf{a}$	$\mathbf{a} + (\mathbf{a})$	a)))	(a+a)	((((a
a	((a)	(((a	a)) + a	$\mathbf{a} + \mathbf{a} + \mathbf{a}$	a))))
(\mathbf{a})	(a))	$((\mathbf{a}))$	a+a))	a + a)	a) + (a
((a	$(\mathbf{a}) + \mathbf{a}$	((a + a	a + (a	(((a)	(a + (a
a))	$(\mathbf{a} + \mathbf{a})$	a + ((a	a) + a	(a)))	a) + a)

- There are both *correct* and *incorrect* arithmetical expressions. Note that (a) + a was never seen before.
- Next step: Add all *incorrect* arithmetical expressions to the set of *negative samples*. (We get: $S_2^+ = S_1^+$ and S_2^-).

- We get a consistent automaton M_2 with 16 instructions.
- **Up to length 5**, the automaton M_2 recognizes **only correct** arithmetical expressions.
- However, it recognizes also some incorrect arithmetical expressions beyond this length, e.g.:
 - *((a + a)* ,
 - *(a + a))*,
 - *a* + (a + a ,
 - *a* + a) + a .
- Add also these *incorrect* arithmetical expressions to the set of *negative samples*. (We get: $S_3^+ = S_2^+$ and S_3^-).

 Now we get a consistent automaton M₃ with 12 instructions recognizing only correct expressions.

Table 4: The Instructions of the Resulting Automaton M_3 After Simplification.

$$\begin{array}{ll} [\diamondsuit, a, \$] & [), +a, \$] & [a, +a, \$] & [a, +a,)] \\ [a, +a, +] & [(, a+, a] & [\diamondsuit, a+, (] & [\diamondsuit, a+, a] \\ [+, a+, a] & [(, (a) \rightarrow a,)] & [\diamondsuit, (a), \$] & [\diamondsuit, (a) \rightarrow a, \$] \end{array}$$

- The automaton is *not complete* yet.
- It does not recognize e.g. a + (a + (a)).
- This time we would need to extend the *positive* samples.

Part III: Hardness Results

- In general, the *task of finding* a *consistent Clearing* Rest. Aut. with the given set of positive and negative samples is *NP-hard*, provided that we impose an *upper bound on the width of instructions*.
- This resembles a *famous result of Gold* who showed that the question of whether there is a *finite automaton with at most n states* consistent with a given list of input/output pairs is *NP-complete*.
- Indeed, for every *n-state finite automaton*, there is an equivalent *Clearing Restarting Automaton* that has the *width of instructions bounded from above by O(n)*.

Hardness Results

- Let $l \ge 2$ be a *fixed integer*. Consider the following task:
- Input:
 - Set of positive samples S⁺
 - Set of *negative samples S*,
 - We assume that $S^+ \cap S^- = \mathcal{O}$, and $\lambda \in S^+$.
- Output:
 - O-cl-RAM such that:
 - 1. The *width of instructions* of *M* is at most *I*.
 - 2. $L(M) \subseteq S^+$ and $L(M) \cap S^- = Q$.
- <u>Theorem</u>:
 - This task is **NP**-complete.

Hardness Results – Generalization

- Let $k \ge 1$ and $l \ge 4k + 4$ be *fixed integers*. Consider:
- Input:
 - Set of positive samples S⁺
 - Set of *negative samples S*,
 - We assume that $S^+ \cap S^- = \mathcal{O}$, and $\lambda \in S^+$.
- Output:
 - *k-cl-RA M* such that:
 - 1. The *width of instructions* of *M* is at most *I*.
 - 2. $L(M) \subseteq S^+$ and $L(M) \cap S^- = Q$.
- <u>Theorem</u>:
 - This task is **NP**-complete for k = 1 and **NP**-hard for k > 1.

Part V: Concluding Remarks

- We have shown that it is possible to *infer* any *hidden target Clearing* (*Subword-Clearing*) Rest. Aut. *in the limit* from *positive* and *negative* samples.
- However, the *task of finding* a *consistent Clearing* Rest. Aut. with the given set of *positive* and *negative* samples is *NP-hard*, provided that we impose an *upper bound on the width of instructions*.
- If we do not impose any upper bound on the maximal width of instructions, then the task is trivially decidable in a polynomial time for any $k \ge 0$.

Open Problems

- Do similar hardness results hold also for other (more powerful) models like Subword-Clearing Rest. Aut.?
- What is the *time complexity* of the *membership* and *equivalence* queries for these models?

References

- M. Beaudry, M. Holzer, G. Niemann, and F. Otto. Mcnaughton families of languages.
 - Theoretical Computer Science, 290(3):1581-1628, 2003.
- Ronald V Book and Friedrich Otto. String-rewriting systems.
 - Springer-Verlag, New York, NY, USA, 1993.
- Peter Černo. Clearing restarting automata and grammatical inference.
 - Technical Report 1/2012, Charles University, Faculty of Mathematics and Physics, Prague, 2012. URL http://popelka.ms.mff.cuni.cz/cerno/files/cerno_clra_and_gi.pdf.
- Peter Černo and František Mráz. Clearing restarting automata.
 - Fundamenta Informaticae, 104(1):17-54, 2010.
- C. de la Higuera. Grammatical Inference: Learning Automata and Grammars.
 - Cambridge University Press, New York, NY, USA, 2010.
- R. Eyraud, C. de la Higuera, and J.-C. Janodet. Lars: A learning algorithm for rewriting systems.
 - Machine Learning, 66:7-31, 2007.
- E. Mark Gold. Complexity of automaton identification from given data.
 - Information and Control, 37, 1978.
- John E. Hopcroft and J. D. Ullman. Formal Languages and their Relation to Automata.
 - · Addison-Wesley, Reading, 1969.
- S. Lange, T. Zeugmann, and S. Zilles. Learning indexed families of recursive languages from positive data: A survey.
 - Theor. Comput. Sci., 397(1-3):194-232, May 2008.
- R. McNaughton. Algebraic decision procedures for local testability.
 - Theory of Computing Systems, 8:60-76, 1974.
- F. Otto. Restarting automata.
 - In Zoltán Ésik, Carlos Martín-Vide, and Victor Mitrana, editors, Recent Advances in Formal Languages and Applications, volume 25 of Studies in Computational Intelligence, pages 269-303. Springer, Berlin, 2006.
- Y. Zalcstein. Locally testable languages.
 - J. Comput. Syst. Sci, 6(2):151-167, 1972.

Thank You!

- The technical report is available on: http://popelka.ms.mff.cuni.cz/cerno/files/cerno_clra_and_gi.pdf
- This presentation is available on: http://popelka.ms.mff.cuni.cz/cerno/files/cerno_clra_and_gi_presentation.pdf
- An *implementation* of the algorithms can be found on: http://code.google.com/p/clearing-restarting-automata/