
CLEARING RESTARTING

AUTOMATA AND

GRAMMATICAL INFERENCE

Peter Černo
Department of Computer Science

Charles University in Prague, Faculty of Mathematics and Physics

Table of Contents

• Part I: Introduction,

• Part II: Learning Schema,

• Part III: Active Learning Example,

• Part IV: Hardness Results,

• Part V: Concluding Remarks.

Part I: Introduction

• Restarting Automata:

• Model for the linguistic technique of analysis by reduction.

• Many different types have been defined and studied intensively.

• Analysis by Reduction:

• Method for checking [non-]correctness of a sentence.

• Iterative application of simplifications.

• Until the input cannot be simplified anymore.

• Restricted Models:

• Clearing, Δ-Clearing and Δ*-Clearing Restarting Automata,

• Subword-Clearing Restarting Automata.

• Our method is similar to the delimited string-rewriting systems

[Eyraud et al. (2007)].

Context Rewriting Systems

• Let k be a nonnegative integer.

• k – Context Rewriting System (k-CRS)

• Is a triple M = (Σ, Γ, I) :

• Σ … input alphabet, ¢, $ ∉ Σ,

• Γ … working alphabet, Γ ⊇ Σ,

• I … finite set of instructions (x, z → t, y) :

• x ∊ Γ k ∪ {¢}.Γ ≤ k - 1 (left context)

• y ∊ Γ k ∪ Γ ≤ k - 1.{$} (right context)

• z ∊ Γ+, z ≠ t ∊ Γ*.

• ¢ and $ … sentinels.

• The width of instruction i = (x, z → t, y) is |i| = |xzty| .

• In case k = 0 we use x = y = λ .

Rewriting

• uzv ⊢M utv iff ∃ (x, z → t, y) ∊ I :

• x is a suffix of ¢.u and y is a prefix of v.$.

• L(M) = {w ∊ Σ* | w ⊢*
M λ}.

• LC (M) = {w ∊ Γ* | w ⊢*
M λ}.

Empty Word

• Note: For every k-CRS M: λ ⊢*
M λ, hence λ ∊ L(M).

• Whenever we say that a k-CRS M recognizes a

language L, we always mean that L(M) = L ∪ {λ}.

• We simply ignore the empty word in this setting.

Clearing Restarting Automata

• k – Clearing Restarting Automaton (k-cl-RA)
• Is a k-CRS M = (Σ, Σ, I) such that:

• For each (x, z → t, y) ∊ I : z ∊ Σ+, t = λ.

• k – Subword-Clearing Rest. Automaton (k-scl-RA)
• Is a k-CRS M = (Σ, Σ, I) such that:

• For each (x, z → t, y) ∊ I :

• z ∊ Γ+, t is a proper subword of z.

Example 1

• L1 = {anbn | n > 0} ∪ {λ} :

• 1-cl-RA M = ({a, b}, I) ,

• Instructions I are:
• R1 = (a, ab → λ, b) ,

• R2 = (¢, ab → λ, $) .

Example 2

• L2 = {ancbn | n > 0} ∪ {λ} :

• 1-scl-RA M = ({a, b, c}, I) ,

• Instructions I are:
• R1 = (a, acb → c, b) ,

• R2 = (¢, acb → λ, $) .

• Note:

• The language L2 cannot

• be recognized by any cl-RA.

Clearing Restarting Automata

• Clearing Restarting Automata:

• Accept all regular and even some non-context-free languages.

• They do not accept all context-free languages ({ancbn | n > 0}).

• Subword-Clearing Restarting Automata:

• Are strictly more powerful than Clearing Restarting Automata.

• They do not accept all context-free languages ({w wR | w ∊ Σ*}).

• Upper bound:

• Subword-Clearing Restarting Automata only accept languages

that are growing context-sensitive [Dahlhaus, Warmuth].

Hierarchy of Language Classes

Part II: Learning Schema

• Goal: Identify any hidden target automaton in the limit

from positive and negative samples.

• Input:

• Set of positive samples S+,

• Set of negative samples S-,

• We assume that S+∩ S- = ⍉, and λ ∊ S+.

• Output:

• Automaton M such that: L(M) ⊆ S+ and L(M) ∩ S- = ⍉.

• The term automaton = Clearing or Subword-Clearing Restarting

Automaton, or any other similar model.

Learning Schema – Restrictions

• Without further restrictions:

• The task becomes trivial even for Clearing Rest. Aut..

• Just consider: I = { (¢, w, $) | w ∊ S+ , w ≠ λ }.

• Apparently: L(M) = S+, where M = (Σ, Σ, I).

• Therefore, we impose:

• An upper limit l ≥ 1 on the width of instructions,

• A specific length of contexts k ≥ 0.

• Note:

• We can effectively enumerate all automata satisfying these

restrictions, thus the identification in the limit can be easily

deduced from the classical result of Gold …

• Nevertheless, we propose an algorithm, which, under certain

conditions, works in a polynomial time.

Learning Schema – Algorithm

• Input:
• Positive samples S+, negative samples S-, S+∩ S- = ⍉, λ ∊ S+.

• Upper limit l ≥ 1 on the width of instructions,

• A specific length of contexts k ≥ 0.

• Output:
• Automaton M such that: L(M) ⊆ S+ and L(M) ∩ S- = ⍉, or Fail.

Learning Schema – Step 1/4

• Step 1:

• We obtain some set of instruction candidates.

• Note: We use only the positive samples to obtain the instructions.

• Let us assume, for a moment, that this set 𝛷 already contains all

instructions of the hidden target automaton.

• Later we will show how to define the function Assumptions in such

a way that the above assumption can be always satisfied.

Learning Schema – Step 2/4

• Step 2:

• We gradually remove all instructions that allow a single-step

reduction from a negative sample to a positive sample.

• Such instructions violate the so-called error-preserving property.

• It is easy to see, that such instructions cannot be in our hidden

target automaton.

• Note: Here we use also the negative samples.

Learning Schema – Step 3/4

• Step 3:

• We remove the redundant instructions.

• This step is optional and can be omitted – it does not affect the

properties or the correctness of the Learning Schema.

• Possible implementation:

Learning Schema – Step 4/4

• Step 4:

• We check the consistency of the remaining set of instructions

with the given input set of positive and negative samples.

• Concerning the identification in the limit, we can omit the

consistency check – it does not affect the correctness of the

Learning Schema. In the limit, we always get a correct solution.

Learning Schema – Complexity

• Time complexity of the Algorithm depends on:

• Time complexity of the function Assumptions,

• Time complexity of the simplification,

• Time complexity of the consistency check.

• There are correct implementations of the function

Assumptions that run in a polynomial time.

• If the function Assumptions runs in a polynomial time

(Step 1) then also the size of the set 𝛷 is polynomial and

then also the cycle (Step 2) runs in a polynomial time.

• It is an open problem, whether the simplification and the

consistency check can be done in a polynomial time.

Fortunately, we can omit these steps.

Learning Schema – Assumptions

• We call the function Assumptions correct, if it is possible

to obtain instructions of any hidden target automaton in

the limit by using this function.

• To be more precise:

• For every k-cl-RA M (or k-scl-RA M) with the maximal width of

instructions bounded from above by l ≥ 1 there exists a finite set

S0
+ ⊆ L(M) such that for every S+ ⊇ S0

+ the Assumptions(S+, l, k)

contains all instructions of some automaton N equivalent to M.

Example – Assumptionsweak

• Assumptionsweak(S+, l, k) := all instructions (x, z → t, y) :

• The length of contexts is k :

• x ∊ Σ k ∪ {¢}. Σ ≤ k - 1 (left context)

• y ∊ Σ k ∪ Σ ≤ k - 1.{$} (right context)

• Our model is a Subword-Clearing Rest. Aut.:

• z ∊ Σ+, t is a proper subword of z.

• The width is bounded by l :
• |xzty| ≤ l.

• There are two words w1 , w2 ∊ S+ such that:

• xzy is a subword of ¢ w1 $,

• xty is a subword of ¢ w2 $.

• This function is correct and runs in a polynomial time.

Example – Assumptionsweak

Example – Assumptionsweak

Example – Assumptionsweak

Example – Assumptionsweak

Example – Assumptionsweak

Part III: Active Learning Example

• Our goal:

• Infer a model of scl-RA recognizing the language of simplified

arithmetical expressions over the alphabet Σ = {a, +, (,)}.

• Correct arithmetical expressions:

• a + (a + a) ,

• (a + a) ,

• ((a)) , etc.

• Incorrect arithmetical expressions:

• a + ,

•) a ,

• (a + a , etc.

• We fix maximal width l to 6, length of context k to 1.

Active Learning Example

• Initial set of positive (S1
+) and negative (S1

-) samples.

Active Learning Example

• Assumptionsweak(S1
+, l, k) gives us 64 instructions.

• After filtering bad instructions and after simplification

we get a consistent automaton M1 with 21 instructions:

Active Learning Example

• All expressions recognized by M1 up to length 5 :

• There are both correct and incorrect arithmetical

expressions. Note that (a) + a was never seen before.

• Next step: Add all incorrect arithmetical expressions to

the set of negative samples. (We get: S2
+ = S1

+ and S2
-).

Active Learning Example

• We get a consistent automaton M2 with 16 instructions.

• Up to length 5, the automaton M2 recognizes only

correct arithmetical expressions.

• However, it recognizes also some incorrect arithmetical

expressions beyond this length, e.g.:

• ((a + a) ,

• (a + a)) ,

• a + (a + a ,

• a + a) + a .

• Add also these incorrect arithmetical expressions to the

set of negative samples. (We get: S3
+ = S2

+ and S3
-).

Active Learning Example

• Now we get a consistent automaton M3 with 12

instructions recognizing only correct expressions.

• The automaton is not complete yet.

• It does not recognize e.g. a + (a + (a)).

• This time we would need to extend the positive samples.

Part III: Hardness Results

• In general, the task of finding a consistent Clearing

Rest. Aut. with the given set of positive and negative

samples is NP-hard, provided that we impose an upper

bound on the width of instructions.

• This resembles a famous result of Gold who showed

that the question of whether there is a finite automaton

with at most n states consistent with a given list of

input/output pairs is NP-complete.

• Indeed, for every n-state finite automaton, there is an

equivalent Clearing Restarting Automaton that has the

width of instructions bounded from above by O(n).

Hardness Results

• Let l ≥ 2 be a fixed integer. Consider the following task:

• Input:

• Set of positive samples S+,

• Set of negative samples S-,

• We assume that S+∩ S- = ⍉, and λ ∊ S+.

• Output:

• 0-cl-RA M such that:

1. The width of instructions of M is at most l.

2. L(M) ⊆ S+ and L(M) ∩ S- = ⍉.

• Theorem:

• This task is NP-complete.

Hardness Results – Generalization

• Let k ≥ 1 and l ≥ 4k + 4 be fixed integers. Consider:

• Input:

• Set of positive samples S+,

• Set of negative samples S-,

• We assume that S+∩ S- = ⍉, and λ ∊ S+.

• Output:

• k-cl-RA M such that:

1. The width of instructions of M is at most l.

2. L(M) ⊆ S+ and L(M) ∩ S- = ⍉.

• Theorem:

• This task is NP-complete for k = 1 and NP-hard for k > 1.

Part V: Concluding Remarks

• We have shown that it is possible to infer any hidden

target Clearing (Subword-Clearing) Rest. Aut. in the

limit from positive and negative samples.

• However, the task of finding a consistent Clearing

Rest. Aut. with the given set of positive and negative

samples is NP-hard, provided that we impose an upper

bound on the width of instructions.

• If we do not impose any upper bound on the maximal

width of instructions, then the task is trivially decidable

in a polynomial time for any k ≥ 0.

Open Problems

• Do similar hardness results hold also for other (more

powerful) models like Subword-Clearing Rest. Aut.?

• What is the time complexity of the membership and

equivalence queries for these models?

References
• M. Beaudry, M. Holzer, G. Niemann, and F. Otto. Mcnaughton families of languages.

• Theoretical Computer Science, 290(3):1581-1628, 2003.

• Ronald V Book and Friedrich Otto. String-rewriting systems.
• Springer-Verlag, New York, NY, USA, 1993.

• Peter Černo. Clearing restarting automata and grammatical inference.
• Technical Report 1/2012, Charles University, Faculty of Mathematics and Physics, Prague, 2012. URL

http://popelka.ms.mff.cuni.cz/cerno/files/cerno_clra_and_gi.pdf.

• Peter Černo and František Mráz. Clearing restarting automata.
• Fundamenta Informaticae, 104(1):17-54, 2010.

• C. de la Higuera. Grammatical Inference: Learning Automata and Grammars.
• Cambridge University Press, New York, NY, USA, 2010.

• R. Eyraud, C. de la Higuera, and J.-C. Janodet. Lars: A learning algorithm for rewriting systems.
• Machine Learning, 66:7-31, 2007.

• E. Mark Gold. Complexity of automaton identification from given data.
• Information and Control, 37, 1978.

• John E. Hopcroft and J. D. Ullman. Formal Languages and their Relation to Automata.
• Addison-Wesley, Reading, 1969.

• S. Lange, T. Zeugmann, and S. Zilles. Learning indexed families of recursive languages from positive
data: A survey.

• Theor. Comput. Sci., 397(1-3):194-232, May 2008.

• R. McNaughton. Algebraic decision procedures for local testability.
• Theory of Computing Systems, 8:60-76, 1974.

• F. Otto. Restarting automata.
• In Zoltán Ésik, Carlos Martín-Vide, and Victor Mitrana, editors, Recent Advances in Formal Languages and Applications,

volume 25 of Studies in Computational Intelligence, pages 269-303. Springer, Berlin, 2006.

• Y. Zalcstein. Locally testable languages.
• J. Comput. Syst. Sci, 6(2):151-167, 1972.

Thank You!

• The technical report is available on:
http://popelka.ms.mff.cuni.cz/cerno/files/cerno_clra_and_gi.pdf

• This presentation is available on:
http://popelka.ms.mff.cuni.cz/cerno/files/cerno_clra_and_gi_presentation.pdf

• An implementation of the algorithms can be found on:
http://code.google.com/p/clearing-restarting-automata/

