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Abstract. This work deals with recognition of hand-

drawn graphical symbols in diagrams. We present

two contributions. First, we designed a new com-

posite descriptor expressing overall appearance of

symbols. We achieved rather favorable accuracy in

classification of segmented symbols on benchmark

databases, which is 98.93% for a database of flow

charts, 98.33% for a database of crisis management

icons, and 92.94% for a database of digits. Second,

we used the descriptor in the task of simultaneous

segmentation and recognition of graphical symbols.

Our method creates symbol candidates by grouping

spatially close strokes. Symbol candidates are clas-

sified by a multiclass SVM classifier learned on a

dataset with negative examples. Thus, some portion

of the candidates is filtered out. The joint segmenta-

tion and classification was tested on diagrams from

the flowchart database. We were able to find 91.85%

of symbols while generating 8.8 times more symbol

candidates than is the number of true symbols per

diagram in average.

1. Introduction

The proliferation of tablets or tablet PCs implies

the demand for algorithm allowing interface by hand-

writing or hand-drawing. The attention of researches

is recently given on graphical representation of hu-

man thoughts, e.g. diagrams. One of the most com-

mon diagram for various branches is a flowchart. It

is used to describe a general algorithm or a process.

The flowchart is composed of boxes connected by ar-

rows and text, which can be inside the boxes or can

label the arrows. See the example of flowchart in Fig-

ure 1. To recognize a flowchart fully, we have to rec-

ognize all symbols correctly, find relations between

Figure 1. Example of a flowchart from the FC database.

them, and also recognize a text.

Each diagram recognizer must perform following

six stages [4]: (1) early processing - noise reduction,

de-skewing, etc., (2) segmentation of strokes into iso-

lated symbols, (3) symbol recognition, (4) identifica-

tion of spatial relationships among symbol, (5) iden-

tification of logical relationships among symbols, (6)

semantic interpretation. This paper describes our ap-

proach to perform steps (2) and (3) of the diagram

recognition pipeline. We allow multiple candidates

for the symbols to be created. The segmentation

phase thus does not make a final decision. This is

left at the next stages performing structural analy-

sis. We follow the structural construction paradigm

proposed by Schlesinger and Hlaváč [13]. We chose

flowcharts as diagrams of our interest and we used

FC database [1] for training and verification. It con-

tains 327 diagrams drawn by 35 users and there are

4 780 symbols. The database is divided into a train-

ing dataset (200 diagrams, 2 919 symbols) and a test

dataset (127 diagrams, 1 861 symbols). The dia-

grams are stored in inkml file format, where are in-
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dividual strokes and symbols defined. We recog-

nize just graphical symbols and text must be pro-

cessed in different way. Therefore, the text is fil-

tered out from the diagrams. In practice, this can be

done using various text / non-text stroke classifiers.

The state-of-the-art methods work with a high accu-

racy [3], [17], [7], [11].

Symbols segmentation was researched by many

people. For example, Kara and Stahovich [8] pre-

sented an approach where arrows are detected first

and they are stated immediately as a ground truth.

Then the rest represents separated symbols. Peter-

son et al. [12] came with two-step stroke grouping

based on a single stroke classification followed by

clustering of strokes within the classes. Although the

results are promising, there is still much work to do

to solve the problem robustly. There exist algorithms

for graphical symbols recognition, which classify al-

ready segmented symbols. These algorithms are of-

ten based on HMM or MRF [2], [18]. Some algo-

rithms work with more complex graphs representa-

tions [9]. In some cases, it is beneficial to combine

more approaches together to achieve higher accu-

racy [14]. The results vary with respect to the dif-

ficulty of the problem, i.e. how complex the symbols

are, what is the quality of databases etc. We present

an approach, in which the segmentation and clas-

sification are performed simultaneously. The seg-

mentation is not final and we rather generate sym-

bol candidates for the next stage of the recognition

pipeline. Therefore, we call it pre-segmentation. The

approach is simultaneous in the sense that the pre-

segmentation is a result of classification of selected

groups of strokes. This is the main advantage in com-

parison with the state-of-the-art methods. They do

hard decisions in symbol segmentation step or rather

focus on recognition of already segmented symbols.

The rest of the paper is organized as follows. The

method of segmentation by classification is described

in Section 2. Our symbol descriptor is defined in

Section 3. An evaluation of experiments on the FC

database and experiments on additional databases are

given in Section 4 to show the generality of the de-

scriptor. Finally, our conclusions are presented in

Section 5.

2. Pre-segmentation by Classification

This section describes our approach how to group

strokes of a flowchart into isolated symbols and how

to classify them. The main idea is that we create sym-

bol candidates by grouping single strokes together

followed by classification of all the candidates. We

assume there is no stroke which is common to two

or more symbols. This assumption holds in most of

the cases. Our goal is to generate as few candidates

as possible and miss as few true symbols as possible

at the same time. The generated symbol candidates

are supposed to be filtered in the next stages of the

pipeline using information about relations between

them.

2.1. Strokes Grouping

First, we take all single strokes as a symbol can-

didates of size 1. Then, we create iteratively new

symbol candidates of size n by adding a single, spa-

tially close, stroke to symbol candidate of size n− 1.

It can be seen in the histogram of true symbol sizes

in the FC database (see Figure 2), that it is suffi-

cient to create symbol candidates of maximal size 5.

Two strokes (or a stroke and a group of strokes)

are spatially close if the distance between two clos-

est points is below a threshold, which is defined as

distThresh = k ·Dmed, where Dmed is a median of

lengths of diagonals of bounding boxes of all single

strokes in a diagram. The usage of the Dmed makes

the distThresh independent of the overall size of the

diagram, which differs due to the different writer’s

conventions or different resolution of used devices.

We chose the value of k to be 0.35 empirically (see

Figure 3).
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Figure 2. Histogram of Symbol Sizes.

2.2. Classification

The classification of symbol candidates is based

on a descriptor which is described in Section 3. We

use a multiclass classifier implemented as an instance
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Figure 3. Result of the experiments on the whole FC

database to obtain optimal value of the k coefficient. (a)

shows the growth of the accuracy with growing k and (b)

shows the growth of the number of symbol candidates.

The choice of optimal k is a tradeoff.

of a structured output SVM learned by BMRM algo-

rithm [16]. A logistic regression is fitted on the clas-

sifier response to obtain a posterior probability that

a symbol candidate belongs to the class. We used

Statistical Pattern Recognition Toolbox for Matlab

(STPRtool) [5] for this.

We have seven basic classes in our training data:

arrow, connection, data, decision, process, termina-

tor, and no match. Examples of objects from these

classes are shown in Figure 4. The last class repre-

sents symbol candidates with no meaning. It is very

important to prevent false positive detections. The

training data is extracted from the training diagrams

of the FC database. We find all symbol candidates

of maximal size 3 in a way described above. The la-

bels are taken from the annotated database for sym-

bol candidates which represent true symbols. The

rest of the candidates has no meaning and thus gets

the label no match. In total, we have 32 064 sym-

bols in the training dataset, where are 1 474 examples

of class arrow, 143 of connection, 337 of data, 248

of decision, 477 of process, 240 of terminator, and

29 145 no match.

Symbols of the same class may look very differ-

ently yielding different descriptors. It is the most

common for classes arrow and no match (see Fig-

ure 4). Therefore, we cluster symbols of these classes

into several clusters according to their descriptors.

We use 10 clusters for arrows, 30 clusters for the

class no match and two clusters for the rest. We de-

fine a loss function which gives higher penalty when

a symbol is classified as no match. Specific values

of the loss function are shown in Table 1. Classifica-

tion into a different cluster of the same class does not

count as an error. Thus, the table defining the loss

function is simplified.

arr. conn. data dec. proc. term. no m.

arr. 0 2 2 2 2 2 1

conn. 2 0 2 2 2 2 1

data 2 2 0 2 2 2 1

dec. 2 2 2 0 2 2 1

proc. 2 2 2 2 0 2 1

term. 2 2 2 2 2 0 1

no m. 100 100 100 100 100 100 0

Table 1. Definition of the loss function. Each column rep-

resents a true class.

We used the cross-validation with 5 folders to ob-

tain the optimal value of the regularization constant

for the training. The data was divided into five fold-

ers w.r.t. their classes and four folders was used for

training and one for testing. We chose the constant to

be 10−7 according to the cross-validation test error.

Then we used the constant and learned the classifier

on the whole train dataset. Results of the classifier on

test diagrams of the FC database are shown in Sec-

tion 4.

3. Descriptor

As we have shown in Section 1, there are many

ways how to describe a hand-drawn graphical sym-

bol. Flowcharts are composed of very simple and ge-

ometrically describable symbols such as rectangles,

circles, etc. See Figure 1. Those symbols, of course,

may change the size arbitrarily. Moreover, they can

be drawn with a different number of strokes in arbi-

trary order. Therefore, a descriptor which requires an
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Figure 4. Examples of symbols from each of the classes taken from the database.

exact order of strokes would imply unnatural require-

ments on the user. For the purpose of recognizing

graphical symbols contained in a flowchart, we pro-

posed a new descriptor. Although, it is designed for

flowcharts it can be used to describe arbitrary graph-

ical symbol.

3.1. Descriptor Components

Our descriptor is composed of three components.

The first one is the normalized histogram of dis-

tances between points. The second one is the nor-

malized histogram of angles given by three points,

and the last component is the histogram of small sub-

strokes (compositions). Each of those components

does not have power to fully describe the overall ap-

pearance of a given symbol. However, their com-

bination showed to be discriminative enough. The

dimension of the whole descriptor is 90 which is a

concatenation of its three components with dimen-

sion 32, 16, and 42, respectively.

As we mentioned before, a symbol may be com-

posed of many strokes. Therefore, we take points of

all strokes and ignore gaps between endpoints. Let us

denote the sequence of points representing a symbol

P = {p1, p2, . . . , pn}.

3.1.1 Histogram of Distances Component

The distance between each possible pair of points on

x-axis (∆x) and y-axis (∆y) is computed and these

values are assigned to corresponding histograms.

This descriptor component is composed of four his-

tograms with 8 bins each, where two histograms are

allocated for ∆x and two histograms for ∆y. The

Algorithm 1 shows how to assign ∆x to its two cor-

responding histograms. The approach is analogous

for ∆y. All histograms are finally normalized by the

number of pairs of points
(

n
2

)

.

Data: P , ∆x, lowHist , highHist

Result: Increment certain bin in either lowHist

or highHist

lowThresh = maxi,j,i 6=j,j−i=1 |pi.x− pj .x|;
highThresh = BoundingBox (P ).width;

if ∆x < lowThresh then

binSize = lowThresh/8;

bin = ∆x/binSize;

lowHist [bin] = lowHist [bin] + 1;

else

binSize = highThresh/8;

bin = ∆x/binSize;

if bin > 7 then

bin = 7;

end

highHist [bin] = highHist [bin] + 1;

end

Algorithm 1: Assignment of a ∆x value to the cer-

tain histogram.
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3.1.2 Histogram of Angles Component

The second component expresses the curvature of the

symbol. Triplets of points pi, pj , pk are taken such

that j − i > 1, k = ⌊(i+ j)/2⌋. For all these triplets

we compute the angle

α = arccos
−−→pjpk ·

−−→pkpi
‖−−→pjpk‖ · ‖

−−→pkpi‖
. (1)

Values are mapped to 16-bin histogram the standard

way. The size of the bins is π
16

. The histogram is

normalized by the number of angles
(

n−1
3

)

.

3.1.3 Histogram of Compositions Component

The last component is inspired by the work of

Tabernik et al. [15], in which the histogram of

compositions (HoC) was presented as a low-level

image descriptor. We used the similar principle

in building a low-level stroke descriptor. First,

angles between vectors given by two consecutive

points and x-axis are computed. These angles

are components of the first layer. All pairs of

consecutive components of the previous layer are

combined to create new compositions of the next

layer. The compositions carry only information

about the angles. The first two layers are visualized

in Figure 5. Empirically, we chose to quantize the

first level components to six values in the first layer

and to use two layers. Higher number of both,

components of the first layer and number of layers,

leads to the lower accuracy because the descriptor

would be too specific and less tolerant to different

styles of drawing. Therefore, this component of

the descriptor has dimension 42 since it contains

the 6-bin histogram of first layer components and

the 36-bin histogram of second layer components.

When the histograms are computed, each angle is

linearly interpolated into two neighbouring bins.

Therefore, each first layer component contributes to

two bins of the corresponding histogram and each

second layer composition contributes to four bins.

Both histograms are normalized to sum into 1.

It might be computationally expensive to compute

the descriptor since all possible pairs of points are

considered in the first two components. In the situ-

ation, in which the symbols are more complex (con-

sist of higher number of points), it is possible to skip

some pairs. We were able to use only 50% of pos-

sible pairs (leads to double speedup) without loss of

the accuracy in our experiments.

������� �������

Figure 5. Visualization of compositions in two layers.

4. Experiments

We present our results achieved with the descrip-

tor and the SVM classifier. First, the results of exper-

iments with segmentation and classification of entire

diagrams in FC database are presented. Later, we

show results of experiments with the classification

of segmented symbols from various databases, which

demonstrate the universality of our descriptor.

We also measured how fast the computation of

our descriptor is for the segmented symbols from the

FC database. The symbols consist of 76.32 points

in average and the computation time was in average

1.83 ms per symbol. The code is implemented in C#.

We ran it on a standard tablet PC Lenovo X61 (Intel

Core 2 Duo 1.6 GHz, 2 GB RAM) with 64-bit Win-

dows 7 operating system.

4.1. Recognizing Diagrams

We tested our learned classifier on the testing di-

agrams of the FC database. The goal was to find

as many true symbols as possible while keeping the

number of symbol candidates as low as possible.

The database contains 127 testing diagrams with 14.7

symbols in average. The strokes grouping algorithm

is able to find 99.7% of the symbols in average while

generating 368.9 symbol candidates in average. All

symbols candidates were classified and three possi-

bilities with the highest posterior probability were

taken for each symbol candidate forming the set of

classification results. Classification results with la-

bel no match were removed. Results with posterior

probability lower than 0.001 were removed as well.

A possible post-processing step is to set a maximal

number of classification results for each stroke and

remove excessive ones with the lowest probability.

The results can be found in the Table 2. Without re-

moving excessive classification results, we can ob-

tain accuracy 91.9% with 129.2 classification results

in average. How many symbols from each class were
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not recognized shows Table 3. The class arrow has

the highest number of unrecognised symbols. It is

because an arrow can have different shapes (different

head, direction, etc.) and thus the recognition is more

difficult. Achieved number of classification results is

acceptable for the next step of the pipeline.

max. #candidates / stroke #candidates accuracy

5 48.31 86.20%

8 66.25 88.65%

10 75.54 89.45%

12 83.30 89.89%

15 92.97 90.40%

∞ 129.17 91.85%

Table 2. Dependence of the average number of generated

symbol candidates and the accuracy on the maximal num-

ber of symbol candidates per stroke.

arrow connection data descision process terminator

72 0 14 18 24 32

Table 3. Numbers of unrecognised symbols from each

class (out of all 1 861 symbols).

0 1 2 3 4 5 6 7 8 9
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45
Diagrams with unrecognized symbols

#unrecognized symbols

re
la

ti
v
e
 r

a
te

 o
f 
d
ia

g
ra

m
s

Figure 6. Histogram of numbers of unrecognised symbols

in the diagrams.

Although the accuracy is not very high, it can

be seen in Figure 6 that there are many diagrams

(around 45%) where the accuracy 100% was reached.

Those diagrams were drawn by users with nice draw-

ing style, which is easily readable. On the other hand,

diagrams with very low accuracy are sometimes very

hardly readable even by human. In some cases we are

facing bad annotation too. Therefore, we consider

the results encouraging. Moreover, we expect that

the recognition system will be providing a tool for

a quick correction of misclassifications by the user.

While the number of misclassifications is low (one

or two) the system should be still effectively usable.

4.2. Classification of Segmented Symbols

We tested our descriptor on different databases of

hand-drawn graphical symbols to get an idea how

discriminative it is and for what kind of symbols it

can be used. The symbols were segmented. In all

cases, we used SVM classifier trained by BMRM on

training dataset of the database and tested the clas-

sifier on the test dataset. We used cross-validation

with 5 folders on each training dataset to obtain the

optimal value of the regularization constant. We used

zero-one loss function in all cases.

First, we evaluated the descriptor on the seg-

mented symbols of the FC database. There are

6 classes and there are 2 919 symbols in the train

dataset and 1 861 in the test dataset. Since the sym-

bols are already segmented, we do not have to define

the class no match. The accuracy was 98.9%.

The second database, on which we tested the de-

scriptor, was NicIcon database of handwritten icons

for crisis management by Niels et al. [10], which

consists of 15 372 symbols (9 212 in the train dataset

and 6 160 in the test dataset) of 14 classes (see Figure

7). We performed the writer independent experiment

and obtained the accuracy 98.3%. It is way better

than the result of Niels et al., which is 96.5%.

Figure 7. Symbol classes in the NicIcon database.

The last database was Unipen database of hand-

written digits [6] which contains 4 990 digits (3 489

in the train dataset and 1 501 in the test dataset).

In this experiment we obtained the accuracy 92.9%
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which is significantly lower than in previous cases.

The main reason probably is the fact that our descrip-

tor is based on histograms and digits are very simple

symbols consisting of only few points. Therefore,

the histograms in our descriptor are rather dense.

5. Conclusion

We presented a new composition descriptor for de-

scribing hand-drawn graphical symbols. We trained

the multiclass SVM classifier on various databases

of graphical symbols, where the symbols were de-

scribed with our descriptor. The result is outstand-

ing for databases of more complex symbols. We

achieved the accuracy 98.9% and 98.3% for FC

database and NicIcon database, respectively. Experi-

ments also showed that a poorer result is achieved on

symbols consisting of just few points, which is the

case of Unipen database of digits, where we achieved

the accuracy 92.9%.

We used the descriptor to recognize symbols of

flowcharts among symbol candidates, which are gen-

erated by strokes grouping. We generated the sym-

bol candidates by grouping spatially close strokes to-

gether. This led to a segmentation, which contains

a lot of candidates representing no symbol. There-

fore, we learned the multiclass SVM classifier with

negative examples. Moreover, we showed how the

clustering of descriptors from the same class leads to

better results. We were able to find 91.9% of the sym-

bols in the FC database while we generate in average

8.8 times more symbol candidates than the number

of symbols in a diagram.

In the future work, we plan to use the output of

the segmentation as an input for the next stage of the

pipeline, where relations between symbol candidates

will be found. The goal will be to keep only the sym-

bol candidates, which form a correct flowchart. Pre-

liminary results based on modelling of relations and

following optimization are promising and show that

the number of candidates is not too large. We also

plan to test the descriptor on more databases and pos-

sibly improve it to be more specialized on flowcharts,

especially on filtering of the negative examples.
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