
Learning Limited Context Restarting Automata
by Genetic Algorithms?

(Technical report)

Stanislav Basovńık and Frantǐsek Mráz

Charles University, Faculty of Mathematics and Physics
Department of Computer Science, Malostranské nám. 25

118 00 PRAHA 1, Czech Republic
sbasovnik@gmail.com, mraz@ksvi.ms.mff.cuni.cz

Abstract. We propose a genetic algorithm for learning restricted vari-
ants of restarting automata from positive and negative samples. Exper-
iments comparing the proposed genetic algorithm to algorithms RPNI
and LARS on sample languages indicate that the new algorithm is able
to infer a target language even from a small set of samples.

1 Introduction

Restarting automata [1] were introduced as a model for linguistically motivated
method of checking correctness of sentences of a natural language by stepwise
simplification of the input sentence while preserving its (non)correctness.

A restarting automaton can be represented as a finite set of meta-instructions
defining possible reductions of a current word. In a general restarting automaton,
each reduction consists in rewriting a short subword by even shorter word. The
possibility to apply a meta-instruction is controlled by the content of the whole
tape to the left and to the right from the place of rewriting. The left and right
context must belong to given regular languages which are comprised by the
meta-instruction as regular constraints.

Several variants of restarting automata were studied in numerous papers
[1]. In this paper we propose more restricted variant of restarting automata for
which the possibility to apply a meta-instruction is controlled by a fixed finite
size context around the rewritten subword – restarting automata with limited
context (lc-R-automata). We propose a special version of a genetic algorithm
to learn lc-R-automata from both positive and negative samples. Due to their
simpler definition, the learned lc-R-automata are much easier to interpret by
humans than general restarting automata.

In Section 2 we introduce lc-R-automata and their several more restricted
variants. Section 3 presents the proposed genetic algorithm for learning lc-R-
automata from positive and negative samples. Then we compare the proposed
algorithm with well-known learning algorithms – RPNI [2] and LARS [3].

? This work was partially supported by the Grant Agency of Charles University in
Prague under Grant.-No. 120709/MFF/A-INF and by the Grant Agency of the
Czech Republic under Grant-No. P103/10/0783 and P202/10/1333.

2 Definitions and Notations

Let λ denote the empty word and |w| denote the length of the word w.

Definition 1. A limited context restarting automaton (lc-R-automaton) is a
system M = (Σ,Γ, I), where Σ is an input alphabet, Γ is a working alphabet
containing Σ, and I is a finite set of meta-instructions of the following form
(` | x → y | r), where x, y ∈ Γ ∗ such that |x| > |y|, l ∈ {λ, c} · Σ∗ and
r ∈ Σ∗ · {λ, $}.

A lc-R-automaton M = (Σ,Γ, I) induces a reduction relation `M as fol-
lows: for each u, v ∈ Γ ∗, u `M v if there exist words u1, u2 ∈ Γ ∗ and a meta-
instruction (` | x → y | r) in I such that u = u1xu2, v = u1yu2, ` is a suffix of
cu1 and r is a prefix of u2$. Let `∗M denote the reflexive and transitive closure of
`M . The language accepted by lc-R-automaton M is L(M) = {w ∈ Σ∗ | w `∗ λ}.

A lc-R-automaton M accepts exactly the set of input words which can be
reduced to λ. Obviously, λ is in L(M), for each lc-R-automaton M .

Example 1. Let M = ({a, b}, {a, b}, I), where I = {(a | abb → λ | b), (c | abb →
λ | $)}, be a lc-R-automaton. Then aaabbbbbb ` c

M aabbbb ` c
M abb ` c

M λ and the
word a3b6 belongs to L(M). It is easy to see that L(M) = {anb2n | n ≥ 0}.

We consider several even more restricted variants of lc-R-automata. We say,
that R is of type (in the following x, y ∈ Γ ∗, u ∈ {λ, c} · Γ ∗, v ∈ Γ ∗ · {λ, $}):
R0 if I is arbitrary finite set of rules without any restriction.
R1 if I contains only rules of the following form (u|x → λ|v) or (u|x → a|v),

where a ∈ Γ .
R2 if I contains only rules of the following form ({λ, c}|x→ λ|{λ, $}) or

({λ, c}|x→ a|{λ, $}), where a ∈ Γ .
R3 if I contains only rules of the following form ({λ, c}|x→ λ|$) or ({λ, c}|x→

a|$), where a ∈ Γ .

Basovńık in [4] studied the power of lc-R-automata. lc-R-automata of typeR0

recognize exactly the class of growing context-sensitive languages. lc-R-automata
of typeR2 recognize exactly the class of context-free languages and lc-R-automata
of type R3 recognize exactly the class of regular languages.

The problem of inferring a lc-R-automaton for a target language L ⊆ Σ∗

consists in learning its set of rewriting meta-instructions. In this work, lc-R-
automata are inferred from input set of positive and negative samples 〈S+, S−〉,
where S+ ⊆ L, S− ⊆ Σ∗ r L, using genetic algorithm [5]. Every individual in a
population is a set of rewriting rules. Its fitness is

F = 100

(
1− 1

2

(
|E+| − b

3

|S+|
+
|E−|
|S−|

))
,

where E+ is a set of rejected positive samples, E− is a set of accepted negative
samples and b is a bonus for partially reduced rejected positive samples:

b =
∑
s∈E+

|s| − |s′|
|s|

,

where s′ is the shortest word, that can be created from s using rewriting rules
of the evaluated individual.

The genetic algorithm uses three operators:

1. Selection: a tournament selection with elitism – 3 fittest individuals are
copied into the new generation without any change; in a tournament two
individuals are randomly selected and with probability 0.75 the individual
with higher fitness is used for constructing the new generation.

2. Crossover: a random shuffle of rules of two individuals – if some individual
is left without rules, a random rule is added to it.

3. Mutation: one of the following changes in an individual is made:

– with probability 0.1 a randomly chosen rule is deleted,
– with probability 0.35 a random rule is added,
– with probability 0.55 a randomly chosen rule is edited:

• with probability 0.1 a random symbol is deleted,
• with probability 0.45 a new symbol is randomly inserted,
• with probability 0.45 a randomly chosen symbol is rewritten.

An initial population contains individuals with single rule. All the rules used
in an initial population are of the form (c, w, $), where w is one of the positive
training samples of minimal length.

3 Results

We have compared learning of lc-R-automata using GAs with two well-known
methods for grammatical inference – regular positive and negative inference
(RPNI; [2]) for inferring regular languages and learning algorithm for rewrit-
ing systems (LARS; [3]) for inferring languages represented by string rewriting
systems, because restarting automata can be interpreted as a regulated string
rewriting systems, too. The algorithms were compared on two sets of languages:
15 regular languages used by Dupont in [6] and the following 7 context-free lan-
guages: {anbn | n ≥ 0}, {ancbn | n ≥ 0},

{
anb2n | n ≥ 0

}
,
{
wwR | w ∈ {a, b}∗

}
,{

w | w = wR, w ∈ {a, b}∗
}

, the Dyck language of matching parentheses (and),
and another Dyck language of matching parentheses of two types (,), [,].

After thorough experiments, we fixed parameters of the genetic algorithm:
population size 200, epoch count 400, mutation rate 0.2, crossover rate 0.6,
no auxiliary symbols we allowed (working alphabet coincided with the input
alphabet). For each tested language L, we generated two sets S+, S− of positive
and negative samples of size N = |S+| = |S−|.

Positive samples were generated by breadth-first search of derivations ac-
cording to a fixed grammar for L, where each generated word was inserted into
S+ with a probability i

10·N + 0.5, until we obtained N positive samples. While
negative samples were generated randomly.

For each tested language there were generated 100 sets of positive and neg-
ative samples. Each set was randomly split into (i) training samples containing

Table 1. Mean values of the fitness function on test sets achieved by the tested algo-
rithms together with their standard deviations.

regular languages context-free languages

tn = 100 tn = 10 tn = 10

RPNI 99.6 ± 1.2 84.9 ± 18.4 75.3 ± 18.6

LARS 97.3 ± 9.1 80.8 ± 19.8 72.3 ± 20.6

lc-R 98.2 ± 4.5 91.8 ± 10.6 92.6 ± 12.3

tn positive and tn negative samples and (ii) testing samples containing tt posi-
tive and tt negative samples for the learned language (N = tn + tt). In all our
experiments tt = 50.

Learning of restarting automata was performed for all restrictive types (from
R0 to R3) and the best result was used. In the first experiment we compared all
three methods on large training sets of samples (tn = 100) of regular languages.
The best method was RPNI, but the learning restarting automata had similar
result and for some languages it was even better than RPNI algorithm. Dur-
ing the second and the third experiment the learning methods were tested on a
small training sets of samples (tn = 10) from the regular languages and from the
context-free languages, respectively. The learning of restarting automata was sig-
nificantly the best method in these experiments. We can say, that the developed
learning method is well-generalizing, particularly for non-regular languages.

Beside nondeterministic lc-R-automata we have proposed their deterministic
version in which the meta-instructions are applied in fixed order and on the left-
most position only. Such automata performed similarly as the nondeterministic
lc-R-automata but in a fraction of computation time. Relating the lc-R-automata
with ‘forced determinism’ to the Chomsky hierarchy is still ongoing.

References

1. Otto, F.: Restarting automata. In Ésik, Z., Mart́ın-Vide, C., Mitrana, V., eds.:
Recent Advances in Formal Languages and Applications. Vol. 25 of Studies in Com-
putational Intelligence. Springer, Berlin (2006) 269–303

2. Oncina, J., Garćıa, P.: Inferring regular languages in polynomial update time. In
de la Blanca, N.P., Sanfeliu, A., Vidal, E., eds.: Pattern Recognition and Image
Analysis. Vol. 1 of Series in Machine Perception and Artificial Intelligence. World
Scientific, Singapore (1992) 49–61

3. Eyraud, R., de la Higuera, C., Janodet, J.C.: Representing languages by learnable
rewriting systems. In Paliouras, G., Sakakibara, Y., eds.: ICGI 2004. Vol. 3264 of
LNAI. Springer, Berlin (2004) 139–150

4. Basovńık, S.: Learning restricted restarting automata using genetic algorithm. Mas-
ter thesis, Charles University, Faculty of Mathematics and Physics, Prague (2010)

5. Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learn-
ing. Addison-Wesley, Reading, Mass. (1989)

6. Dupont, P.: Regular grammatical inference from positive and negative samples by
genetic search: The GIG method. In: ICGI ’94. Vol. 862 of LNAI. Springer, Berlin
(1994) 236–245

