
De�nition & Motivation
Solving SAT

Graphs and SAT
Summary

An Introduction to SAT Solving

Tomá² Balyo

December 2, 2010

Tomá² Balyo An Introduction to SAT Solving



De�nition & Motivation
Solving SAT

Graphs and SAT
Summary

Outline

1 De�nition & Motivation
What is SAT?
Why do we need to solve SAT?

2 Solving SAT
DPLL
Parallelization

3 Graphs and SAT
Graph Representations of SAT Instances
Connected Components of SAT Formulas

Tomá² Balyo An Introduction to SAT Solving



De�nition & Motivation
Solving SAT

Graphs and SAT
Summary

What is SAT?
Why do we need to solve SAT?

Outline

1 De�nition & Motivation
What is SAT?
Why do we need to solve SAT?

2 Solving SAT
DPLL
Parallelization

3 Graphs and SAT
Graph Representations of SAT Instances
Connected Components of SAT Formulas

Tomá² Balyo An Introduction to SAT Solving



De�nition & Motivation
Solving SAT

Graphs and SAT
Summary

What is SAT?
Why do we need to solve SAT?

Some De�nitions

A Boolean variable x has 2 possible values: True and False.

A literal is a Boolean variable (x) or its negation (¬x).
A clause is a disjunction of literals ((x1∨ x5∨¬x6)).
A CNF formula is a conjunction of clauses
((x1∨ x5∨¬x6)∧ (x2∨¬x5∨ x2)∧ (x4∨¬x6)).

Tomá² Balyo An Introduction to SAT Solving



De�nition & Motivation
Solving SAT

Graphs and SAT
Summary

What is SAT?
Why do we need to solve SAT?

Some De�nitions 2

A truth assignment assigns a value (True or False) to each
Boolean variable.

A positive literal is Satis�ed i� its variable has the value True.
A negative literal is Satis�ed i� its variable has the value False.
A clause is Satis�ed i� at least one of its literals is Satis�ed .
A CNF formula is Satis�ed i� all ot its clauses are Satis�ed .

A CNF formula is called satis�able if there is such a truth
assignment to its variables, that the formula is Satis�ed .

The Boolean satis�ability problem (SAT) is the problem of
determining whether a given CNF formula is satis�able or not.

Tomá² Balyo An Introduction to SAT Solving



De�nition & Motivation
Solving SAT

Graphs and SAT
Summary

What is SAT?
Why do we need to solve SAT?

Some Properties

SAT in NP-complete

No deterministic algorithm solving SAT faster than 2#variables

(in the worst case) has been found yet.

But many SAT instances (with millions of variables) can be
solved very quickly using the current state-of-the-art SAT
solvers.

Tomá² Balyo An Introduction to SAT Solving



De�nition & Motivation
Solving SAT

Graphs and SAT
Summary

What is SAT?
Why do we need to solve SAT?

Outline

1 De�nition & Motivation
What is SAT?
Why do we need to solve SAT?

2 Solving SAT
DPLL
Parallelization

3 Graphs and SAT
Graph Representations of SAT Instances
Connected Components of SAT Formulas

Tomá² Balyo An Introduction to SAT Solving



De�nition & Motivation
Solving SAT

Graphs and SAT
Summary

What is SAT?
Why do we need to solve SAT?

Applications

Hardware and software veri�cation

is it possible? (halting problem) - bounded model checking
(BMC)
is not testing simpler and more e�cient? - The FDIV Bug
(1994)

4195835

3145727
= 1.333820 (Correct) 4195835

3145727
= 1.333739 (FDIV result)

A.I. problems are translated to SAT

planning (SATPLAN)
automated reasoning

Haplotyping in Bioinformatics (identi�cation of haplotypes)

Tomá² Balyo An Introduction to SAT Solving



De�nition & Motivation
Solving SAT

Graphs and SAT
Summary

DPLL
Parallelization

Outline

1 De�nition & Motivation
What is SAT?
Why do we need to solve SAT?

2 Solving SAT
DPLL
Parallelization

3 Graphs and SAT
Graph Representations of SAT Instances
Connected Components of SAT Formulas

Tomá² Balyo An Introduction to SAT Solving



De�nition & Motivation
Solving SAT

Graphs and SAT
Summary

DPLL
Parallelization

Davis Putnam Logemann Loveland

A complete deterministic algorithm for SAT solving

Introduced in 1962, intesively used and improved since 1990

Basically it is a depth �rst search of the tree of partial truth
assignments with 3 improvements:

early termination
unit propagation
pure literal elimination

Requires exponential time in the worst case. Very fast for
many �real-life� applications.

Tomá² Balyo An Introduction to SAT Solving



De�nition & Motivation
Solving SAT

Graphs and SAT
Summary

DPLL
Parallelization

DPLL Pseudocode

function DPLL-SAT(F): Boolean

clauses = clausesOf(F)

vars = variablesOf(F)

e = /0 //partial truth assignment

return DPLL(clauses,vars,e)

function DPLL(clauses,vars,e): Boolean

if ∀c ∈ clauses,e∗(c) = true then return true

if ∃c ∈ clauses,e∗(c) = false then return false

e = e∪unitPropagation(clauses,e)
e = e∪pureLiteralElimination(clauses,e)
x ∈ vars ∧ x /∈ e //x is an unassigned variable

return DPLL(clauses,vars,e ∪–e(x) = true˝) or

DPLL(clauses,vars,e ∪–e(x) = false˝)

Tomá² Balyo An Introduction to SAT Solving



De�nition & Motivation
Solving SAT

Graphs and SAT
Summary

DPLL
Parallelization

Modern improvements of DPLL

Con�ict driven clause learning - new clauses are added to the
formula while solving

Non-chronological backtracking - backtracking more levels at
once

E�ective implementation of unit propagation - 2 watched
literals scheme

Restarts - the search is halted and we start from the beginning
(the learned clauses are kept)

Clever decision heuristics

Tomá² Balyo An Introduction to SAT Solving



De�nition & Motivation
Solving SAT

Graphs and SAT
Summary

DPLL
Parallelization

Restarts

Typically we restart after a given number of con�icts, that
number rises exponentially

the n− th restart is performed k.αn−1 steps after the previous
restart. (k ∼ 100, α ∼ 1.5)
this is called RGR strategy (randomization and geometric
restarts)

Problem sensitive restart heuristics exist

observing parameters like length of learned clauses, search
depth, backtrack level gives hints about search progress speed
computing the moving average of these parameter in an
iterative manner
examplarily for con�ict level, we prefer low values and high
variance
according to experiments: worse than RGR on satis�able
formulas, but better for unsatis�able

Tomá² Balyo An Introduction to SAT Solving



De�nition & Motivation
Solving SAT

Graphs and SAT
Summary

DPLL
Parallelization

Con�ict Driven Clause Learning DPLL

Tomá² Balyo An Introduction to SAT Solving



De�nition & Motivation
Solving SAT

Graphs and SAT
Summary

DPLL
Parallelization

Outline

1 De�nition & Motivation
What is SAT?
Why do we need to solve SAT?

2 Solving SAT
DPLL
Parallelization

3 Graphs and SAT
Graph Representations of SAT Instances
Connected Components of SAT Formulas

Tomá² Balyo An Introduction to SAT Solving



De�nition & Motivation
Solving SAT

Graphs and SAT
Summary

DPLL
Parallelization

Parallelization of SAT solving

This area is not as advanced yet as it should be

A simple approach is to start the same solver on the same
formula multiple times with di�erent parameters

Another approach is dynamic search space splitting with
distributed learning

runs of the clause learning DPLL search di�erent parts of the
partial assignment tree, but share the learned clauses

Tomá² Balyo An Introduction to SAT Solving



De�nition & Motivation
Solving SAT

Graphs and SAT
Summary

DPLL
Parallelization

Distributed Dynamic Learning (DDL)

The guiding path is the path in the search tree from the
current node to the root

each entry has a �ag indicating if we are in the �rst (B) or the
second branch (N)
each entry with �ag B is a potential candidate for search space
division (the best candidate is the one closest to the root)

Search space splitting happens on demand at (almost) any
node of the search tree

any thread can split itself using its guiding path
threads are split when a processor (core) becomes idle

If any thread solves the whole formula, every thread is stopped
and we are �nished
If a thread discovers, that its part of the search tree does not
contain any solutions, this thread and all its descendants are
terminated

Tomá² Balyo An Introduction to SAT Solving



De�nition & Motivation
Solving SAT

Graphs and SAT
Summary

DPLL
Parallelization

DDL - Learned Clause Sharing

Each thread has an agent to collect learned clauses

The agent visits all the threads and collects newly learned
clauses if they satisfy the following conditions:

the clause is not too long (a constant parameter of the
program)
the clause is not subsumed by the thread which sent the agent

The agents run in parallel also

According to experiments, this kind of parallelization can result
in superlinear speedup

Tomá² Balyo An Introduction to SAT Solving



De�nition & Motivation
Solving SAT

Graphs and SAT
Summary

Graph Representations of SAT Instances
Connected Components of SAT Formulas

Outline

1 De�nition & Motivation
What is SAT?
Why do we need to solve SAT?

2 Solving SAT
DPLL
Parallelization

3 Graphs and SAT
Graph Representations of SAT Instances
Connected Components of SAT Formulas

Tomá² Balyo An Introduction to SAT Solving



De�nition & Motivation
Solving SAT

Graphs and SAT
Summary

Graph Representations of SAT Instances
Connected Components of SAT Formulas

Graph De�nitions

A hypergraph H = (V ,E ) represents a formula where V is the
set of literals and each clause is represented by a hyperedge in
E .

A factor graph F = (V ,E ) is a bipartite graph, where the
variables and clauses are the vertices and there is an edge
between the clause and the variable if the clause contains that
variable. It can be oriented

A variable interaction graph I = (V ,E ) represents a formula
with variables V and there is an edge between 2 variables if
their literals appear together in a clause

A resolution graph R = (C ,E ) is an undirected graph, where
the clauses are the vertices and there is an edge between 2
clauses if they can be resolved

Tomá² Balyo An Introduction to SAT Solving



De�nition & Motivation
Solving SAT

Graphs and SAT
Summary

Graph Representations of SAT Instances
Connected Components of SAT Formulas

Graph Examples

(x ∨ y ∨¬z)∧ (¬x ∨ y)∧ (u∨ y ∨ z)
Tomá² Balyo An Introduction to SAT Solving



De�nition & Motivation
Solving SAT

Graphs and SAT
Summary

Graph Representations of SAT Instances
Connected Components of SAT Formulas

Usage of Graph Representations

Visualization of SAT instances can help us to understand why
are some instances hard to solve a others not

it has been observed, that interaction graphs of hard
unsatis�able formulas have fractal-like patterns

We can visualize formulas also during the search to understand
how DPLL works

this can help us to develop better decision heuristics

We are particularly interested in the connected components of
interaction graphs

Tomá² Balyo An Introduction to SAT Solving



De�nition & Motivation
Solving SAT

Graphs and SAT
Summary

Graph Representations of SAT Instances
Connected Components of SAT Formulas

Outline

1 De�nition & Motivation
What is SAT?
Why do we need to solve SAT?

2 Solving SAT
DPLL
Parallelization

3 Graphs and SAT
Graph Representations of SAT Instances
Connected Components of SAT Formulas

Tomá² Balyo An Introduction to SAT Solving



De�nition & Motivation
Solving SAT

Graphs and SAT
Summary

Graph Representations of SAT Instances
Connected Components of SAT Formulas

Connected Components

We would like to detect connected components of the
interaction graph of a formula and solve the components
separately

exponential speedup (2100→ 250+250 = 251⇒ 249times faster)

The input formula has almost allways only one component

but it is quickly being disconnected during DPLL search

we can remove vertices which have a value in the current

partial truth assignment

we can remove edges which represent satis�ed clauses

Tomá² Balyo An Introduction to SAT Solving



De�nition & Motivation
Solving SAT

Graphs and SAT
Summary

Graph Representations of SAT Instances
Connected Components of SAT Formulas

Detecting Connected Components

Detection of components during search is prohibitively
expensive (even if we use the best version of the union-�nd
algorithm)

for this reason most solvers do not care about connected
components

We can use component friendly decision/phase heuristics
(BerkMin, Phase Saving)

these heuristics do not explicitly detect connected components,
but thanks to their properties they solve them separately and
e�ectively

COMPSAT uses component detection at the beginning of the
search and everytime a unary clause is learned

Tomá² Balyo An Introduction to SAT Solving



De�nition & Motivation
Solving SAT

Graphs and SAT
Summary

Summary

Solving SAT is important

Yes, it is exponential in the worst case, but works �ne most of
the practical applications

A lot of research is being done on SAT solving

There is still a lot to be improved

Tomá² Balyo An Introduction to SAT Solving



Appendix For Further Reading

For Further Reading I

Armin Biere, Marijn Heule, Hans van Maaren, and Toby Walsh
(eds.).
Handbook of Satis�ability.
IOS Press, 2009.

Tomá² Balyo An Introduction to SAT Solving


	Definition & Motivation
	What is SAT?
	Why do we need to solve SAT?

	Solving SAT
	DPLL
	Parallelization

	Graphs and SAT
	Graph Representations of SAT Instances
	Connected Components of SAT Formulas

	Summary
	Appendix
	Appendix
	



