
Time series prediction

Martin Babka

December 1, 2011



Time series
What to predict?

Time series

• A sequence of values depending on time {x(t0), x(t1), . . . }.
• Output of a process – discrete or continuos (sampled in high

enough frequence given by Nyquist theorem).

• Cloudiness, temperature, electricity demand, stock market
index, ...

Processing tasks

• Prediction of x(t) given x(t − 1), . . . , x(t − p).

• Classification into a few casses, e.g. x(t) will rise, drop or stay.

• Transform series, electricity demand → electricity price.



Time series
How to predict

Process’s properties w.r.t to time

• Stationary – properties of the time series do not change.

• Non-stationary – properties change with time.

Models for stationary processes

• Hidden Markov Model, Dynamic Bayesian Network, various
types of Temporal Neural Networks.

• In general – classifier + short-term memory.

Models for non-stationary processes

• Temporal Neural Networks, Recurrent Neural Networks.

• In general – classifier + short-term memory + ability to adapt.



Memory

Finite Impulse Response

• Memory able to remember a finite number of the most recent
values.

• Possible generalization to set up depth/resolution tradeoff.



Temporal Neural Networks
Models

• Possible architecture ranges from a perceptron (focused
neuronal filter) to a static network (focused time lagged
feedforward network).

• Input is a FIR – convolution of the lagged sequence.

• If there are more input variables (= more FIRS) then we
obtain a multiple input neuronal filter or a network model
called spatio-temporal model.

• Theory says that every myopic shift invariant causal map can
be approximated by a memory + static neural network. This
means that every non-stationary process can be modelled by
spatio-temporal model. [Sandberg 1991]



Models of Temporal Neural Networks
General Temporal Neural Network



Models of Temporal Neural Networks
Focused networks - perceptron

~x(n) = (x(n), x(n − 1), . . . , x(n − p))

~w = (w(0), . . . ,w(p))

y = ϕ(~wT~x(n) + b)



Models of Temporal Neural Networks
Focused networks - network



Models of Temporal Neural Networks
Spatio-temporal models

~yj(n) = ϕ

(
m0∑
i=0

p∑
l=0

wji (l)xi (n − l) + bj

)



Temporal Neural Networks
Non-stationary processes

Distributed time lagged feedforward network

• The influence of time is distrubuted throughout the network.

• With each neuron we have a FIR that saves its last states –
each neuron in the network is a multiple input neuronal filter.

• Learning using Temporal Back-Propagation.

• Model also explained in An Overview of Temporal
Backpropagation (1991) by Timothy Edwards.



Distributed time lagged feedforward network



Temporal Back-Propagation

• Motivated by unfolding the network into a static one and
following the known derivation of Back-Propagation. Formulas
for ∆~wij are the same except in this case we have vectors.

• The more layers the network contains the more data need to
be stored when learning because of causality constraints.

• When adapting the weights are changed in advance. The
formulas work with older values – compensated by mild
learning rates.

• More computationally demanding than simple
Back-Propagation.

• When modeling stationary processes it is not necessary to use
this model.

• Possible uses with chaotic systems in Wan 1994 – prediction
of pulsation of NH3 laser.



Recurrent Neural Networks

Models

• Memory is created also by the network itself. The network is
no longer a DAG, it contains feedback loops.

• Network keeps its state.

• Multilayer perceptrons with one hidden layer with recurrencies
(Elman type RNN).

• Perceptrons with multiple hidden layers.

• Second order models (best suited for modeling FSAs).

• Fully connected RNNs are referred to as NARX (Nonlinear
Autoregressive with Exogeneous inputs).



RNN - models



State-space model
SRN - 1 layer

Let ~x be a state (neurons from hidden layer), ~u be the presented
input and ~y be the output vector.

~x(n + 1) = f (~x , ~u)

~y(n) = C~x(n)

Function f is usually computed as (matrices Wa and Wb denote
weights between state neurons and states or inputs).

~x(n + 1) = ϕ(Wa~x(n) + Wb~u(n))



Recurrent Neural Networks
Remarks

Computational power

• Every finite state automaton can be simulated by a RNN.

• Every Turing machine can be simulated by a RNN.

• Each RNN can be simulated by NARX with one hidden layer
and a prescribed activation function (modification of the
sigmoid). Such a NARX is almost SRN.

• McCulloch and Pitts, Minsky, Kleene.

Learning

• The algorithm are for learning of SRNs with one hidden layer.

• The learning can be done during processing so that the
learning process never stops.



Recurrent Neural Networks
Learning

Epochwise learning

• A predicted sequence is presented to the RNN.

• Overall epoch error is computed and the weights are adapted.

• Each epoch we start in a different state different from the
finish state of the last epoch. Possibly start from an initial
state.

• Back-Propagation through time.

Continuous tranining

• Use when there are no reset states and/or on-line learning is
required.

• RNN is learning and processing at the same time.

• Real-time recurrent algorithm.



Back-Propagation Through Time

• Based on the unfolding the network in epoch time [n0, n1].

• Overall epoch error 1
2

∑n1
n=n0

∑
k(dk(n)− yk(n))2 is used to

adapt the weights.

Adaptation

∆wji (n1) = −η
n1∑

n=n0+1

δjxi (n − 1)

δj(n) = ϕ′(vj(n))ej(n) for n = n1

δj(n) = ϕ′(vj(n))

(
ej(n) +

∑
k

wjkδk(n + 1)

)
for n0 < n < n1



Truncated Back-Propagation Through Time

• Based on the same unfolding of the network as in the previous
case.

• The time for which we account is bounded by a constant h.

• We distribute only the current error and thus we get a
real-time algorithm.



Real-time recurrent algorithm

• Continuous training - each
adaptation step must be
fast.

• Approximation of the
steepest descent.

• Does not respect overall
epoch error. The weights
are adapted just according
to the last error as in
non-batch
Back-Propagation.



Real-time recurrent algorithm
Adapting weights

Uj(n) = zero matrix up to the j-th row containing (~x(n), ~u(n))

~Λj(0) = 0

φ(n) = diagonal matrix consisting of ϕ′((~wa, ~wb)T (~x(n), ~u(n)))

x(0) = 0

~Λj(n + 1) = Φ(n)(Wa(n)~Λj(n) + Uj(n))

~e(n) = ~d(n)− C~x(n)

∆~wj(n) = ηC~Λj(n)~e(n)



Improvements/Problems

• Teacher forcing – replace output of a neuron with the desired
response. Leads to a faster training and does only corrections
that keep already learned weights intact.

• Present samples in lexigraphic order and the shortest samples
first.

• Size of the samples should be incrementally increased.

• Synaptic weights are adjusted only if the correction is greater
than some prescribed criterion.

• Use of weight decay is recommended – prevents large weights.

• Vanishing gradient – RNN either has a long-term memory or
is not robust to the presence of noise. Use extended Kalman
filters for more efficient use of information.



Sources

• Simon Haykin: Neural Networks - A Comprehensive
Foundation

• Timothy Edwards: An Overview of Temporal Backpropagation


