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Time series
What to predict?

Time series

e A sequence of values depending on time {x(to), x(t1),... }.

e Output of a process — discrete or continuos (sampled in high
enough frequence given by Nyquist theorem).

e Cloudiness, temperature, electricity demand, stock market
index, ...

Processing tasks

e Prediction of x(t) given x(t —1),...,x(t — p).
e Classification into a few casses, e.g. x(t) will rise, drop or stay.

e Transform series, electricity demand — electricity price.



Time series
How to predict

Process's properties w.r.t to time

e Stationary — properties of the time series do not change.

e Non-stationary — properties change with time.

Models for stationary processes

e Hidden Markov Model, Dynamic Bayesian Network, various
types of Temporal Neural Networks.

e In general — classifier + short-term memory.
Models for non-stationary processes

e Temporal Neural Networks, Recurrent Neural Networks.

e In general — classifier + short-term memory + ability to adapt.



Memory

Finite Impulse Response

e Memory able to remember a finite number of the most recent
values.

e Possible generalization to set up depth/resolution tradeoff.

x[ n] 71 71 71

Y Y Y




Temporal Neural Networks
Models

Possible architecture ranges from a perceptron (focused
neuronal filter) to a static network (focused time lagged
feedforward network).

Input is a FIR — convolution of the lagged sequence.

If there are more input variables (= more FIRS) then we
obtain a multiple input neuronal filter or a network model
called spatio-temporal model.

Theory says that every myopic shift invariant causal map can
be approximated by a memory + static neural network. This
means that every non-stationary process can be modelled by
spatio-temporal model. [Sandberg 1991]



Models of Temporal Neural Networks
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Models of Temporal Neural Networks

Focused networks - perceptron

xn = p) Synaptic
weights

Focused neuronal filter,

X(n) = (x(n),x(n = 1),...,x(n - p))
w = (w(0),...,w(p))
y = ¢(wTX(n) + b)



Models of Temporal Neural Networks

Focused networks - network
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FIGURE 13.10 Focused time lagged feedforward network (TLFN); the bias
levels have been omitted for convenience of presentation.



Models of Temporal Neural Networks

Spatio-temporal models
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Temporal Neural Networks

Non-stationary processes

Distributed time lagged feedforward network

e The influence of time is distrubuted throughout the network.

e With each neuron we have a FIR that saves its last states —
each neuron in the network is a multiple input neuronal filter.

e Learning using Temporal Back-Propagation.

e Model also explained in An Overview of Temporal
Backpropagation (1991) by Timothy Edwards.



Distributed time lagged feedforward network




Temporal Back-Propagation

Motivated by unfolding the network into a static one and
following the known derivation of Back-Propagation. Formulas
for Awj; are the same except in this case we have vectors.

The more layers the network contains the more data need to
be stored when learning because of causality constraints.

When adapting the weights are changed in advance. The
formulas work with older values — compensated by mild
learning rates.

More computationally demanding than simple
Back-Propagation.

When modeling stationary processes it is not necessary to use
this model.

Possible uses with chaotic systems in Wan 1994 — prediction
of pulsation of NH3 laser.



Recurrent Neural Networks

Models

Memory is created also by the network itself. The network is
no longer a DAG, it contains feedback loops.

Network keeps its state.

Multilayer perceptrons with one hidden layer with recurrencies
(Elman type RNN).

Perceptrons with multiple hidden layers.
Second order models (best suited for modeling FSAs).

Fully connected RNNs are referred to as NARX (Nonlinear
Autoregressive with Exogeneous inputs).
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State-space model
SRN - 1 layer

Let X be a state (neurons from hidden layer), i be the presented
input and ¥ be the output vector.

Function f is usually computed as (matrices W, and W, denote
weights between state neurons and states or inputs).

X(n+1) = (W,X(n) + Wpi(n))



Recurrent Neural Networks

Remarks

Computational power

e Every finite state automaton can be simulated by a RNN.
e Every Turing machine can be simulated by a RNN.

e Each RNN can be simulated by NARX with one hidden layer
and a prescribed activation function (modification of the
sigmoid). Such a NARX is almost SRN.

e McCulloch and Pitts, Minsky, Kleene.

Learning

e The algorithm are for learning of SRNs with one hidden layer.

e The learning can be done during processing so that the
learning process never stops.



Recurrent Neural Networks

Learning

Epochwise learning

A predicted sequence is presented to the RNN.

Overall epoch error is computed and the weights are adapted.

Each epoch we start in a different state different from the
finish state of the last epoch. Possibly start from an initial
state.

Back-Propagation through time.

Continuous tranining
e Use when there are no reset states and/or on-line learning is
required.
e RNN is learning and processing at the same time.

e Real-time recurrent algorithm.



Back-Propagation Through Time

e Based on the unfolding the network in epoch time [ng, n1].

o Overall epoch error 35" o 2k (dk(n) — yi(n))? is used to
adapt the weights.

Adaptation

Aw;i(m) =—n Z dixi(n—1)
n=ng+1

d;i(n) = ¢'(vj(n))ej(n) for n=m

§i(n) = ¢'(vj(n)) (ej(n) + Z Wik Ok (n + 1)) forng <n<m
K



Truncated Back-Propagation Through Time

e Based on the same unfolding of the network as in the previous
case.
e The time for which we account is bounded by a constant h.

e We distribute only the current error and thus we get a
real-time algorithm.
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Real-time recurrent algorithm

e Continuous training - each
adaptation step must be
fast.

e Approximation of the
steepest descent.

e Does not respect overall
epoch error. The weights
are adapted just according
to the last error as in
non-batch

Fully connected recurrent network for formula-

Back_ P ropagation . tion of the RTRL algorithm.



Real-time recurrent algorithm
Adapting weights

zero matrix up to the j-th row containing (X(n), d(n))
0

diagonal matrix consisting of ¢'((W,, )" (X(n), i(n)))
0

O(m)(W. ( )Aj(n) + Uj(n))

n) —
CK()()



Improvements/Problems

Teacher forcing — replace output of a neuron with the desired
response. Leads to a faster training and does only corrections
that keep already learned weights intact.

Present samples in lexigraphic order and the shortest samples
first.

Size of the samples should be incrementally increased.

Synaptic weights are adjusted only if the correction is greater
than some prescribed criterion.
Use of weight decay is recommended — prevents large weights.

Vanishing gradient — RNN either has a long-term memory or
is not robust to the presence of noise. Use extended Kalman
filters for more efficient use of information.



Sources

e Simon Haykin: Neural Networks - A Comprehensive
Foundation

e Timothy Edwards: An Overview of Temporal Backpropagation



