
Hashing

Martin Babka

January 12, 2011



Hashing, Universal hashing, Perfect hashing

Hashing

• Input data is uniformly distributed.

• A dynamic set is stored.

Universal hashing

• Randomised algorithm – uniform choice of a hash function
from a universal system. No probabilistic assumptions on the
input data.

• A dynamic set is stored.

Perfect hashing

• Stores a static set, but a dynamic variant is possible.

• Guarantees a constant look-up time.



Separate Chaining

Notation

• U - the universe.

• S ⊂ U - the stored set.

• B - the set of buckets of the hash table.

• n = |S |, m = |B|, α = n
m - the load factor.

Common hashing

• Uses a single hash function which may create collisions.

• Buckets of colliding elements are usually represented by singly
linked lists.

• Table is resized when the load factor is out of the prescribed
bounds.



Separate Chaining

Estimates

• Expected length of the chain is α.

• Expected maximal length of the chain when α ≤ 1 is

O

(
log n

log log n

)
.

• Estimates assume uniform distribution of the input data.

Disadvantages and Advantages

+ Simple to implement and analyse.

+ Predictable behaviour for high load factors.

- Relatively slow. Lacks good cache behaviour.

- Relatively high memory consumption.



Separate Chaining
Other methods for Separate Chaining without explicit linked lists

• Do not store the chains in external linked lists. The buckets of
colliding elements are created within the hash table instead.

• Hashing with relocations – uses singly linked lists. Chain may
start on a different position than the one given by the hash
function.

• Hashing with two pointers – uses doubly linked lists.

• The same lengths – as the common variant.

• Better cache behaviour.



Open Addressing

Common features

• Chains of colliding elements with different hash values merge
together.

• Methods do not require additional memory for storing chains.
Chains are stored within the hash table.

• The next element in the chain is determined implicitly by
another hash function.

Algorithm

• Hash function in the form h(x , i) – hash value of the element
x when it is at the i-th position in the chain.

• Iterates the chain until an empty position is found.

• Problematic deletion, false delete.



Open Addressing
Double Hashing

Double hashing

• h(x , i) = h1(x) + ih2(x).

• Needs two hash functions h1 and possibly h2.

• Results in a slower computation of the hash value h(x , i).

Expected running times

• Number of comparisons in the unsuccessful case is 1
1−α .

• Number of comparisons in the successful case is 1
α ln 1

1−α .

• Good behaviour for lower load factors. Still reasonable for
α ≤ 0.9.



Linear Probing, Quadratic Probing

Linear probing

• h(x , i) = h1(x) + i .

• May be in the form h(x , i) = h1(x) + ci but usually c = 1.

• Good cache behaviour. This method only iterates the table
starting at the position h1(x).

• Usable with low load factors, suitable for α ≤ 0.75.

• Number of tests in the unsuccessful case is 1
2

(
1 +

(
1

1−α

)2
)

.

• Number of tests in the successful case is 1
2

(
1 + 1

1−α

)
.

Quadratic probing

• h(x , i) = h1(x) + bi + ai2 for a 6= 0.



Robin-Hood Hashing

The method

• Variation of linear probing.

• With every stored element we store its position in the chain.
This information is stored in each non-empty slot of the table.

• Expected length of the probing sequence is 1
α ln(1− α), the

variance is constant.

• The find operation may be improved so that it runs in
expected constant time (independently on α).



Robin-Hood Hashing, Insert

Insert

• The new element x should be inserted in the i-th position in
its chain.

• Assume that the position h(x , i) is occupied by an element y
stored at the j-th position in its chain.

• If j < i , then swap the two elements x and y store x and
continue with y . Otherwise continue with x .

• i < j < E [psl ] – using x decreases the variance more than
using y .

• i < E [psl ] < j – using x decreases the variance, using y
increases it.

• E [psl ] < i < j – moving x increases the variance less than
using y .



Robin-Hood Hashing, LCFS, FCFS

• Another modification of linear probing is LCFS (last come
first served)

• Again, only insertion is modified.

• If the position, where the new element x should be placed, is
occupied by an element y , then store x at the position and
continue with the element y .

• Common linear probing is FCFS (first come first served).

• Both Robin-Hood and LCFS decrease the variance of the
length of the probing sequence.



Open Addressing
Hopscotch hashing – Introduction

Hopscotch hashing

• Improvement of linear probing.

• Superb cache behaviour – specifically designed to be suitable
for cache.

• Choose a constant H (usually the size of the word).

• Element may be placed only H − 1 buckets far from its hash
value.

• Every bucket i contains a bitmap of H bits indicating at which
positions are the elements with the hash value i .

Algorithms

• Find performs at most H comparisons.



Open Addressing
Hopscotch hashing – Algorithms

Insert

• Let i = h(x). Find the nearest empty position j .

• If j is at most H − 1 buckets far from i , insert x in the bucket
with the address j .

• Otherwise find an element y such that i ≤ h(y) ≤ j ,
j ≤ h(y) + H − 1 and y is placed before j . Place y at j and
use the freed bucket.

• If any place near i can not be freed, then the table is resized
and rehashed.

Delete

• Remove the element, update the bitmap in the bucket at the
element’s hash value.



Open Addressing
Hopscotch hashing – Algorithms



Open Addressing
Hopscotch hashing – Analysis

Analysis

• Probability of failure (rehashing the table when inserting) is
less than 1

H! .

• Expected running time of Insert is constant, the expected
number of elements in a bucket is 1 + e2α−1−2α

4 .

• Parameter H may be chosen as a constant provided that α is
upper bounded. For α = 1 choice H = 3 is sufficient.

Delete

• Remove the element, update the bitmap in the bucket at the
element’s hash value.



Two-way Hashing

Based on the study of balls and bins systems.

Theorem
Consider placing n balls into n buckets using the following process.
For every ball randomly and uniformly choose h, h ≥ 2, buckets.
Put the ball inside the bucket containing the smallest number of
elements. After inserting the last ball the probability of having a
bucket with more than ln ln n

ln h + O(1) balls is o(1).

Applications

• Load balancing.

• Hashing.



Two-way Hashing

Algorithms

• Use h, h ≥ 2, functions f1, . . . , fh.

• The more functions are used the more tests have to be
performed. Use h = 2.

Insert

• Consider the buckets at positions f1(x), . . . , fh(x).

• Insert into the bucket with the smallest number of elements.

Find

• Consider the buckets f1(x), . . . , fh(x).

• Seek each of the buckets for the element x .



Two-way Hashing

Analysis, pros and cons

+ Good worst-case performance O(ln ln n).

+ Many variants are studied nowadays.

+ Promising experimental results.

0 Analysis is not easy but not that difficult.

- Problematic delete. There are dynamic versions of the
previous theorem or use a workaround.

- Straightforward use of the theorem leads to separate chaining.

- Usage of better methods combined with two-way chaining
may be complicated.



Two-way Hashing with Linear Probing

• Tries to solve the problem of two-way hashing without
separate chaining.

• Divide the hash table into blocks. When inserting compute
two hash values – they uniquely determine the blocks. Insert
into the emptiest block and probe only inside the block.

• Leads to a more complicated but still reasonable
implementation.

• Worst case number of tests is at most log log n+O(1)
1−α + 1 with a

high probability (1− o(1)).

• Simple implementations have Ω
(

log n
log log n

)
worst-case

behaviour.



Universal hashing

Probability space

• Multiset of functions H = {h : U ⇒ B | ...} is used.

• Probability space – random uniform choice of a function
h ∈ H. No probability assumptions on the input data.

Universal systems

System H of functions is

• c-universal if for x 6= y ∈ U: Pr (h(x) = h(y)) ≤ c
m ,

• strongly k-universal if for different x1, . . . , xk ∈ U and for
y1, . . . , yk : Pr (h(x) = h(y)) ≤ 1

mk ,

• strongly ω-universal if it is strongly universal for every k ∈ N.

• There are many various systems and many various estimates
on the sizes of the systems.



Universal systems

Properties

• Constant c is usually higher than 1.

• Every strongly k + 1-universal system is also strongly
k-universal.

• Constant c is usually higher than 1.

Systems

• System of polynomials
∑k

i=1 aix
i mod m is strongly

k + 1-universal.

• System of all functions is strongly ω-universal.

• System of all linear transformations between vector spaces is
1-universal.



Separate chaining as universal hashing

Properties of universal hashing

• At first choose the hash function uniformly at random from
the universal system.

• Do separate chaining with the chosen function.

• Another function may be chosen when rehashing.

• Expected O(1 + cα) running time for c-universal systems.

• Expected maximal length of the chain is hard to analyse. For

ω-universal systems it is O
(

log n
log log n

)
.

• For the system of linear transformations and n = m log m it is
O(log m log log m). This result is obtained by a rather
complicated analysis.



Perfect hashing

Algorithm

• Probabilistic approach to finding a suitable function from a
universal system which does not create many collisions.

• The expected number of collisions in universal hashing is cn2

m .
Use Markov inequality to obtain a function which creates a
small number of collisions.

• For m = O(n) there are many functions which create a linear
number of collisions.

• Hence
∑n

i=1 n2
i = O(n) where ni is the number of colliding

elements in the i-th bucket.

• For m = O(n2) there are many function which do not create
collisions at all.

• First use m = O(n). Then for representing elements in the
bucket i choose mi = O(n2

i ).



Perfect hashing

Obtained result

• The created hash table is stored in O(n) memory.

• Hash function may be computed in O(1) time.

• Guarantees O(1) look-up time.

• After choosing mi slightly bigger than for the static version a
dynamic version may be obtained.

• The dynamic version achieves O(1) amortised update time
and still has O(1) look-up time.

• Other variants and dynamisation techniques are known.

• Used in theory more than in practice. Real-time applications
that need O(1) look-up time are possible.



Cuckoo Hashing

Cuckoo hashing

• Uses two tables with the same size (1 + ε)n for ε > 0. Thus
α < 0.5.

• We use two hash functions chosen from a strongly
O(log n)-universal system. One function for each of the tables.

• There is such a system which can be evaluated in a constant
time. Polynomials would need O(log n) time.

• Eeach element x must be stored at the positions h1(x) in T1

or h2(x) in T2.

Find, Delete

• Look for the element only at the prescribed positions.

• They require a constant time only.



Cuckoo Hashing
Algorithms, Insert



Cuckoo Hashing
Algorithms, Insert

Insert

• Insert places a newly inserted element x in the table T1 at the
position h1(x). If h1(x) is already occupied place the former
element into T2. If this position is occupied place the element
into T1 and so on. The maximal number of these iterations is
bounded by a value in O(log n) – the same as the universality
of the system.

• Insert is problematic and may fail and need a rehash with
choosing another pair of functions.

• Such a failure has a low O
(

1
n2

)
probability.

• Insert runs in amortised constant time.



Linear Probing as universal hashing

Description

• Needs at least strongly 5-universal system.

• Polynomials of degree 5 are possible but slow to compute.

• Ongoing research of such systems. Tabulation methods.

• Strongly 2-universal systems are not sufficient. There is a set
of n elements for which Ω(n log n) operations are needed in
order to store it in the expected case.

• Slight improvement in the definition of the hash function
h(x , i) = h1(x)⊕ i where h1 is chosen from a universal system.

• Algorithm is the same as with linear probing.



Experimental results

• Some present results show that for low load factors Hopscotch
hashing is the best. And it is also secure for higher load
factors but the improvement is not so obvious. It should be
still the best.

• Cuckoo hashing is regularly beaten by Hopscotch hashing. It
is comparable to two-way hashing. Experiments are usually
done for α < 0.5 since it can not be used with α > 0.5.

• When α ≈ 0.5 cuckoo hashing degrades.

• Experimental comparison of two-way chaining linear probing
to other methods is missing. The methods look promising.

• Old methods should be replaced by their newer variants. They
give better theoretical results and yet remain simple.



Experimental results
Cuckoo hashing



Experimental results
Hopscotch hashing



Hash table implementations
Java

Actual implementation

• Uses the most simple separate chaining.

• Predefined maximal load factor is 0.75.

• Does not shrink the table after deletions.

• Predefined maximal size of the table is 230.

Java 5.0 vs. 6.0

• Timestamp of the last source code change comes from 2006,
in 5.0 from 2004.

• Small changes in source code, no algorithmic changes in Java
6.0.



Hash table implementations
C++ - Boost, TR1

Intrusive

• Rather complicated but generic library.

• Generic code allows usage of separate chaining and linear
probing.

• Other methods should be possible to use by implementing
new traits.

Unordered, TR1

• Interface defined by the TR1 draft assumes usage of separate
chaining (iterators invalidation).

• Straightforward implementation.

• Default maximal load factor is 1.0, no shrinking.



Literature
Basic methods

• Mehlhorn, K., Sanders, P.: Data Structures and Algorithms,
The Basic Toolbox, Springer (2008)

• Knuth, D. E.: The Art of Computer Programming Volume 3,
Addison-Wesley (1997)

• Carter, J. W., Wegman, M. N.: Universal classes of hash
functions, STOC ’77 (1977).

• Fredman, M., Komlós, J., Szemerédi, E.: Storing a Sparse
Table with O(1) Worst Case Access Time, Journal of the
ACM (1984)

• Dietzfelbinger, M., Karlin, A., Mehlhorn, K., auf der Heide,
F.M., Rohnert, H., Tarjan, R.E.: Dynamic perfect hashing:
upper and lower bounds, Foundations of Computer Science
(1988)



Literature
Current methods

• Celis, P.: Robin Hood Hashing, Ph.D. thesis, University of
Waterloo (1986)

• Herlihy, M., Shavit, N., Tzafrir, M.: Hopscotch Hashing,
DISC ’08: Proceedings of the 22nd international symposium
on Distributed Computing (2008)

• Mitzenmacher M., Upfal, E.: Probability and Computing,
Cambridge University Press (2005)

• Malalla, E.: Two-way Hashing with Separate Chaining and
Linear Probing, Ph.D. thesis, McGill University (2004)

• Pagh, R., Rodler. F.: Cuckoo Hashing, Journal of Algorithms,
51 (2004)

• Pagh, A., Pagh, R., Ružić, M.: Linear Probing with Constant
Independence. SIAM J. Comput. 39, 3 (2009)


