LIMITED CONTEXT RESTARTING
AUTOMATA AND MCNAUGHTON
FAMILIES OF LANGUAGES

Friedrich Otto
Peter Cerno, FrantiSek Mraz

Introduction

- Part I: Introduction,

- Part Il: Clearing and A-Clearing Restarting Automata,

- Part lll: Limited Context Restarting Automata,

- Part IV: Confluent Limited Context Restarting Automata,
- Part V: Concluding Remarks.

Part I: Introduction

- Restarting Automata:
- Model for the linguistic technique of analysis by reduction.
- Many different types have been defined and studied intensively.

- Analysis by Reduction:
- Method for checking [non-]correctness of a sentence.
- Iterative application of simplifications.
- Until the input cannot be simplified anymore.

- Restricted Models:

- Clearing, A-Clearing and A*-Clearing Restarting Automata,
- Limited Context Restarting Automata.

Part Il: Clearing Restarting Automata

- Let k¥ be a nonnegative integer.
- k-context rewriting system (k-CRS)

-lsatripleM=, 1)
- Y ...input alphabet, ¢ $ &2,

- I' ... working alphabet, r'22 'eﬁ°°”te’:itghtcontext
- I ... finite set of instructions (x, z—=¢ y): X z y J
. xe{¢ LT, [x/<k (left context) l
- yeI.{A, 8}, [v/<k (right context) x [t

- zelt,z#tel*
- ¢ and § ... sentinels.

Rewriting

cuzviy, utv iff I3(x,z->ty)el:
- x iIsasuffix of ¢z and y is a prefix of v§.

v left sentinel right sentinel
¢ u X z y \ $
left context = ¢ = right context
¢ u X t y v $

(M) ={wel*|wr,, A}
L. (M)={wel*/wFr,, A}

L
Empty Word

- Note: For every k-CRSM: A *,, A, hence A € L(M).

- Whenever we say thata k-CRSM recognizes a
language L, we always mean that L(M) =L U {A}.

- We simply ignore the empty word in this setting.

Clearing Restarting Automata

- k-Clearing Restarting Automaton (k-c/-RA)
- Isa k-CRS M = (2, 2, 1) such that:
- Foreach (x, z—=t y)el. zel?, t=A. @
- k-4 -Clearing Restarting Automaton (k-4-c/-RA)
- Isa k-CRS M = (2, I, I) such that:
- I'=Xu {4) where 4 is a new symbol, and > v
- Foreach (x, z—t y)el.zel'", te{l, A} = =
- k-4*-Clearing Restarting Automaton (k-4*c/-RA)
- Isa k-CRS M = (2, I, I) such that:
- I'=2U{A} where 4 is a new symbol, and v
- Foreach (x, z—>ty)el. zelt, t=4,0<i</z. =

v

Example 1
input word
- L, ={a"b" [n>0} U {A)}: ¢la/a ala blb b|/b]|$
- I-cd-RAM = ({a b} I), im
- Instructions 7 are: =
CRI=(3ab—Ab), tlaiaje b
- R2=(¢ab—-19%). ¢R1
¢lala b|b|$
¢R1
¢la b|$
R2
- Note: ¢
- We did not use 4. ClA]|S :

Example 2
input word
« L,={a"ch" [n>0} U {A)}: ¢lalalalc|[b b bls
+ 1-4-cl-RAM = ({3, b, ¢} I), im
- Instructions 7 are:

¢la ajla A b|b b|$

. R]:(a,gﬁd, b),

- RZ2=(a,adb—-4,b), iRZ
- R3=(¢adb- 1 %) . TaTa A BT5] s
iRZ
¢fa A b|$
R3
- Note: i
- We must use 4. AR ACCEPT

Clearing Restarting Automata

- Clearing Restarting Automata:
- Accept all regular and even some non-context-free languages.
- They do not accept all context-free languages ({a’cb” [n > 0}).
- A-Clearing and A*-Clearing Restarting Automata:
- Accept all context-free languages.
- The exact expressive power remains open.

- Here we establish an upper bound by showing that
Clearing, A- and A*-Clearing Restarting Automata only
accept languages that are growing context-sensitive

[Dahlhaus, Warmuth].

Clearing Restarting Automata

- Theorem: £(4*cl-RA) < GCSL.
- Proof.
- Let M= (2, [’ I) be a k-4*cl-RA for some k= 0.
- Let2=rU{e¢ $ Y}, where Y is a new letter.
- Let (M) be the following string-rewriting system over .2:
SM) ={xzy—>xty[(x,z->ty)€I}U{¢§>Y}
- Let g be a weight function: g(4) =1 and g(a) =2 for all a #A.
- Claim: L(M) coincides with the McNaughton language
[Beaudry, Holzer, Niemann, Otto] specified by (S(M), ¢, $,).

- As S(M) is a finite weight-reducing system, it follows

that the McNaughton language L(M) is a growing
context-sensitive language, that is, L(M) € GCSL. =

Clearing Restarting Automata

D
Part lll: Limited Context RA

- Limited Context Restarting Automaton (/c-RA):
- Is defined exactly as Context Rewriting Systems, except that:
- There is no upper bound & on the length of contexts.
- The instructions are usually written as: (x/z—=t/y).

- There is a weight function g such that g(z) > g(t) for all
instructions (x/z -t /y) of the automaton.

left context right context
L@ -

!

X |t y

Limited Context Restarting Automata

- Restricted types: Ic-RAM = (2, I’]) Is of type:
- R, , If I I1s an arbitrary finite set of (weight-reducing) instructions,
- R/ Ifft|<1,
R, ifJt|]<1,xe{e A}, ye{A $},
- RS ifft|<1,xe{¢ A}, y=29,
forall (x/z—-t/y)€el.

- Moreover, Ic-RAM = (2, I;]) is of type:
Ry s (R, R, , Ry, respectively) if it is of type:
- Ry, (R, R, RS, respectively) and all instructions of M are
length-reducing (i.e. /z/> [t/ forall (x/z—=t[y)eT).
- We use the notation Ic-RA[/R], Ic-RA[R,] to denote the
corresponding class of the restricted /c-RAs.

e R ki BHE
lc-RA[R,’] and Ic-RA[R,]

- Theorem: £L(c-RA[R,’]) = L(Ic-RA[R,]) = GCSL.

- Proof.

- For each Ic-RAM = (2, I’ [) we can associate a finite weight-
reducing string-rewriting system S(M) such that L(M) is the
McNaughton language specified by the four-tuple (S(M), ¢ $, Y).

SM)={xzy>xty[(x|z—>t][y)elJU{e$>Y].

- It follows that L(M) € GCSL.

- On the other hand, each growing context-sensitive language is
accepted by an /c-RA[/R,/ =

e R ki BHE
lc-RA[R,/

- Theorem: £L(Ic-RA[R,’]) = GCSL.
- Proof.
- LetG=(N, T S P) be aweight-increasing context-sensitive
grammar. By taking:
- I(G) = {((u/x->A/v)/(uAv->uxv)eP}U
{(¢[r>2]8)](E~1)€P}
- we obtain an Ic-RA[R,’] M(G) = (T NUT I(G)) such that
- L(IM(G)) = L(G) U{A}.
- The class of languages generated by weight-increasing context-
sensitive grammars, which is known as the class ACSL (acyclic

context-sensitive languages), coincides with the class GCSL
[Niemann, WoinowskKi].

- Thus, £(Ic-RA[R,]]) 2 GCSL. m

e R ki BHE
lc-RA[R,]

- Theorem: £L(lc-RA[R,]) = GACSL.

- Proof.

- Let Ic-RAM = (%, I I) be of type Z, .
- Forall (x/z—=t/y)el: [z/> [t/ and [t/ < 1.

- Lemma: It is possible to obtain an equivalent /c-RA M such that:
- Forall x/z—-t/y)el: [z/>[tf and Jtf=1 if x#¢ or y# .

- From string-rewriting system: R={xty-»xzy[(x[/z->t[y) €},

- We construct a length-increasing context-sensitive grammar :

- G=(;% S R) suchthat L(G)=¢.L(M). $.

- The class of languages generated by length-increasing context-

sensitive grammars is known as the class GACSL (growing
acyclic context-sensitive languages). GACSL € ACSL = GCSL .

- ¢.L(M). $€GACSL , i.e. L(M) € GACSL [Buntrock]. Similarly 2. m

e R ki BHE
lc-RA[R,’] and Ic-RA[R,]

- Theorem: L(lc-RA[R,’]) = L(Ic-RA[R,]) = CFL.
- Proof.

- Let Ic-RAM = (2, I 1) be of type 2,’.

- Forall (x/z—=t/y)el: [t)<1,xe{¢c A}, ye{A $}.

- We split R(M) = {xzy - xty [(x[z—t/y) €[} into 4 subsystems:
(a) Rpig ={¢z$ = ¢y$ | (¢ |z —y|9$) €}, the bifix rules of R(M),
(b) Rpre ={¢x — ¢y| (¢|xz—vy|A) el}, the prefiz rules of R(M),
(¢) Reuys ={25—=u$ | (AN|z—uy|$) el}, the suffiz rules of R(M),
(d) Rinf ={z—y|(A|z—y| A el}, theinfix rules of R(M).

- Take A(M) = {a € I'" | ¢a$ € dom(Ryy) and ¢ca =75, €5}

- Then A(M) is a finite set. Let R' = R, U Reuy U Ripy. Then L(M) =

{weX | ewS =%y e3}={wek"|dac AM)U{A}: ¢w$ =% cab}

e R ki BHE
lc-RA[R,’] and Ic-RA[R,]

- Proof. (Continued).

- Consider a mixed rewriting system: P(M) = P,,e U Py U Py

- Prefix-rewriting system: Py.e = {z — v | (¢z — ¢y) € Ry}

- Suffix-rewriting system: P,; = {z — v | (z$ — y3$) € R.s}

- String-rewriting system: P,,; = Ry

- The rules of a prefix-rewriting system (suffix-rewriting system)
are only applied to the prefix (suffix) of a word.

- Apparently: L(M) = Vi, (AM) U {A}) N X

- As P(M) only contains generalized monadic rules, it follows that
the language L(M) is context-free [Leupold, Otto].

- Moreover, it is easy to obtain from a given context-free grammar
an equivalent Ic-RAM = (2, I; I) of the type 2, .

- Thus we have: CFL € L(Ic-RA[R, |) € L(Ic-RA[R,’]) € CFL . m

e R ki BHE
lc-RA[R[] and Ic-RA[R,]

- Theorem: £L(c-RA[R;’]) = L(Ic-RA[R, |) = REG.
- Proof.

- Let /c-RAM = (2, I;) be of type 2,’.

- Forall (x/z—=t/y)el: [t)<s1,xe{¢c A}, y=29.

- We split R(M) = { xzy - xty [(x[z—t[y) €[} into 2 subsystems:
(a) Ryif ={¢x$ = ¢y | (¢c|z—y|$) e}, the bifiz rules of R(M).
(b) Rewg ={28 = u$ | (A |z — vy |$) €I}, the suffivr rules of R(M).

- Now we take only the suffix-rewriting system P(M) =P,,, , where:

* Py ={y— | (25— y$) € Rauy }

- Apparently: L(M) = Ap i (A(M) U {A}) NX* is regular.

- Again, it is easy to obtain from a given regular grammar an
equivalent Ic-RAM = (2, I; I) of the type Z;.

- Thus we have: REG € L(Ic-RA[R,]) € L(Ic-RA[R,’]) €S REG . m

Limited Context Restarting Automata

- Hierarchy of Language Classes:

L(Ie-R[Ro)) = L(Ic-R[R}]) = GCSL
;:(lc-F”sz*;j) ?
£(Ic-Ft'?R1:) = GACSL

L(Ic-R[R3]) = £(Ic-R[R}]) — CIT:L

L(Ic-R[R3]) = L(Ic-R[R}]) = RITEG

D
Part IV: Confluent Ic-RA

- Since Ic-RA M 1s a nondeterministic device, it is difficult
to decide the membership in L(M).

- Here we are interested in Ic-RAM = (%, I’ I) for which all
computations from ¢w.$ lead to ¢ §, if weL(M).

- The reduction relation ~,, corresponds to the single-step
reduction relation =, induced by the string-rewriting
system R(M) ={xzy—»xty [(x[z—t[/y) €]} on ¢T*$.

- As it is undecideable whether R(M) is confluent on the
congruence class [¢ $/zq,, We consider only confluence.

- An Ic-RAM = (2, I’]) is called confluent if the
corresponding string-rewriting system R(M) is confluent.

- We use the prefix con- to denote confluent /c-RA.

111111l .
lc-RA/[COH-JQOY and /c-RA/ con- 0]

- Theorem: £L(Ic-RA[con-R,’]) = L(Ic-RA[con-R,[) = CRL.
- Proof.
- For each Ic-RA[con-R,))] M=, [[I): S(M) =R(M)U{¢$—->Y} isa
finite weight-reducing string-rewriting system that is confluent.
- L(M) is the McNaughton language specified by (S(M), ¢ $,), i.e.
- L(M) is a Church-Rosser language [McNaughton, Narendran, Otto].

- On the other hand, each Church-Rosser language L is

accepted by a length-reducing deterministic two-pushdown
automaton A4 [Niemann, Otto].

- Based on 4 it is possible to construct a confluent /c-RA of type %,
recognizing the language L. m

L
lc-RA[con-R;’] and Ic-RA[con-7,]

- Theorem: £L(lc-RA[con-R,’]) = L(Ic-RA[con-R, |) = REG.
- Proof.
- Apparently, £L(lc-RA[con-2;’]) € L(Ic-RA[R;’]) = REG.

- Conversely, if L& X* is regular then there exists DFA A= (Q %, q,,
E 6) that accepts LX. We define Ic-RAM= (2,2 U Q, I), where [=

{(¢]ab—q|A)[d(go,ab)=q}U{(¢|qa—q |A)]d(ga)=q} U
{(€lg—=A[$) |qgeF} U{(¢|a—=A|$) |acEnLB}
- It is easy to see that L(M) = L%, and that the string-rewriting
system R(M) is confluent. By taking M’= (2,2 U Q, I’), where:
'={(\|uv*=2"|9)|(¢|lu—v|Xel}U
{(¢|u =" |$)|(¢c|u—v]|$)el}.
- We obtain a confluent Ic-RA of type 2, that accepts L. m

L
lc-RA[con-2,’] and Ic-RA[con-7,]

- For other classes we have no characterization results.
- We have only some preliminary results.
- Lemma: £(lc-RA[con-R,’]) € DCFL N DCFILX

- Proof Idea.

- Consider the leftmost derivation, which can be realized by a
deterministic pushdown automaton. m

- Lemma: The deterministic context-free language
L,={ca"b'c|n>1} U {da™b*"d | m > 1}

- Is not accepted by any Ic-RA[con-2,’].

- Note: Both L, and L ® are DLIN languages.

- Corollary: £L(c-RA[con-R,’]) € DCFL N DCFLX.

L
lc-RA[con-2,’] and Ic-RA[con-7,]

- Lemma: The nonlinear language {a*b" c?d” [nm=> 1}
IS accepted by a confluent /c-RA of type Z,.

- Corollary: The class of languages accepted by confluent
Ic-RA of type ®,” Isincomparable to DLIN and LIN.

- These results also hold for the class of languages that are
accepted by lc-RA[con-%,].
- The exact relationship of these classes of languages to

the class of confluent [generalized] monadic McNaughton
languages [Leupold, Otto] remains open.

L
lc-RA[con-2,’[and /c-RA/ con- 1/

- Lemma: The language L, ,,;={a*" /[n=>0} is accepted
by an Ic-RA[con-Z,].
- Proof. Take X ={a}, '={a b,A B C D}, and M= (% I;I), where I:

I R(M)
(1) (¢a®|a®* — B|a) ta® — ¢a’Ba
(2) (¢|a*—=b|Ba) | ¢a*Ba — ¢bBa
(3) (Aa® | a*> — B a) Aa® — Aad’Ba
(4) (\ | Aa® - b| Ba) | Aa’Ba — bBa
(5) (b|Ba— A|A) bBa — bA
6) (A|A—=A|9) A$ — §
(7) (M| V= C|b*9) b8 — CbH$
(8) (Cb|b*—al$) ch*$ — Cba$
(9) (A Cb— D|a) Cba — Da
(10) (A | v* = C | v*D) D — CbD
(11) (Cb | b*D —a | N)| CV¥PD — Cba
(12) (¢ | D — A|A) ¢D — ¢
(13) (¢]a—=XA]|9) ta$ — ¢$
(14) (¢|b—=A|9) b — ¢

L
lc-RA[con-®,’] and Ic-RA[con-7, |

- As the language L,,,,s; Is not context-free, we obtain:

- Corollary: The class of languages accepted by confluent
Ic-RA of type #Z, Isincomparable to CFL.

- In particular, Ic-RA[con-®, | > Ic-RA[con-%,].

- These results also hold for the class of languages that are
accepted by lc-RA[con-R,’].

Confluent Ic-RA

- Hierarchy of Language Classes:

GCSL

7

L(le-R[con-Ro]) = L(lc-R[con-Rj]) == CRL CFL

)2 T / \

L(lc-R[con-R)]) DCFL
L(lc-R[con-R4]) symDCFL
/ A
1 L(lc-R[con-R5]) LIN

=
L(lc-R[con-R3]) /
}

L(lc-R[con-R3)) = £L(lc-R[con-R,]) = REG

Part V: Concluding Remarks

- The class GCSL forms an upper bound for all types of
limited context restarting automata considered.

- Under the additional requirement of confluence, the
Church-Rosser languages form an upper bound.

- For the most restricted types of /c-RA we obtain regular
languages, both in confluent and non-confluent case.

- For the intermediate systems, the guestion for an exact
characterization of the corresponding classes of
languages remains open.

- For the intermediate systems it even remains open
whether the weight-reducing /c-RA are more expressive
than the corresponding length reducing /c-RA.

References

BASOVNIK, Learning restricted restarting automata using genetic algorithm.
Master's thesis, Charles University, MFF, Prague, 2010.
BASOVNIK, MRAZ, Learning limited context restarting automata by genetic algorithms.
In: J. DASSOW, B. TRUTHE (eds.), Theorietag 2011. Otto-von-Guericke-Universitat, Magdeburg, 2011, 1-4.
BEAUDRY, HOLZER, NIEMANN, OTTO, McNaughton families of languages.
Theoret. Comput. Sci. 290 (2003), 1581-1628.
BOOK, OTTO, String-Rewriting Systems. Springer, New York, 1993.
BUCHI, Regular canonical systems.
Arch. f. Math. Logik Grundlagenf. 6 (1964), 91-111.
G. BUNTROCK, Wachsende kontext-sensitive Sprachen.
Habilitationsschrift, Fakultat fir Mathematik und Informatik, Universitat at Wirzburg, 1996.
BUNTROCK, OTTO, Growing context-sensitive languages and Church-Rosser languages.
Inform. and Comput. 141 (1998), 1-36.
- CERNO, MRAZ, Clearing restarting automata. Fund. Inf. 104 (2010), 17-54.
- CERNO, MRAZ, A-clearing restarting automata and CFL.
In: G. MAURI, A. LEPORATI (eds.), DLT 2011. LNCS 6795, Springer, Berlin, 2011, 153-164.
- DAHLHAUS, WARMUTH, Membership for growing context-sensitive grammars is polynomial.
J. Comput. System Sci. 33 (1986), 456-472.
- HOFBAUER, WALDMANN, Deleting string rewriting systems preserve regularity.
Theoret. Comput. Sci. 327 (2004), 301-317.
- JANCAR, MRAZ, PLATEK, VOGEL, Restarting automata.
In: H. REICHEL (ed.), FCT'95. LNCS 965, Springer, Berlin, 1995, 283-292.
- LEUPOLD, OTTO, On McNaughton families of languages that are specified by some variants of monadic string-rewriting systems.
Fund. Inf. 112 (2011), 219-238.
- MCNAUGHTON, NARENDRAN, OTTO, Church-Rosser Thue systems and formal languages.
J. Assoc. Comput. Mach. 35 (1988), 324-344.
- NIEMANN, OTTO, The Church-Rosser languages are the deterministic variants of the growing context-sensitive languages.
Inform. and Comput. 197 (2005), 1-21.
- NIEMANN, WOINOWSKI, The growing context-sensitive languages are the acyclic context-sensitive languages.
In: W. KUICH, G. ROZENBERG, A. SALOMAA (eds.), DLT 2002 . LNCS 2295, Springer, Berlin, 2002, 197-205.
- OTTO, On deciding the congruence of a finite string-rewriting system on a given congruence class.
J. Comput. System Sci. 35 (1987), 285-310.
- OTTO, Restarting automata.

In: Z. ESIK, C. MARTIN-VIDE, V. MITRANA (eds.), Recent Advances in Formal Languages and Applications. Studies in Computational Intelligence 25, Springer, Berlin,
2006, 269-303.

D
Thank You!

- This presentation is available on the following website:
http://popelka.ms.mff.cuni.cz/cerno/files/otto_cerno_mraz_lcra_presentation.pdf

