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 The problem of learning or inferring automata and 
grammars has been studied for decades and has 
connections to many disciplines: 

 Bio-informatics. 

 Computational linguistics. 

 Pattern recognition. 

Learning Automata and Grammars 



 In this presentation we: 

 Introduce the formal language theory (FLT). 

 Emphasize the importance of learnability. 

 Explain the identification in the limit. 

 Give as an example the algorithm LARS. 

Learning Automata and Grammars 



 The central notion in FLT is a (formal) language which 
is a finite or infinite set of words. 

 Word is a finite sequence consisting of zero or more 
letters. The same letter may occur several times. 

 The sequence of zero letters = the empty word λ. 

 We restrict ourselves to some specific alphabet, 
which is a finite nonempty set of letters. 

 The set of all words from Σ  is denoted as Σ*. 

Formal Language Theory 



 How to define a language? 

 Acceptors: usually automata – they are given an input 
word and after some processing they either accept or 
reject this input word. 

 Generators: usually grammars – they generate the 
language using some finite set of rules. 

 We want to learn automata / grammars under 
suitable learning regime. 

Formal Language Theory 



 Grammar induction: finding  a grammar (or 
automaton) that can explain the data. 

 Grammatical  inference: relies on the fact that there 
is a (true) target grammar (or automaton), and that 
the quality of the learning process has to be 
measured relatively to this target. 

Induction / Inference 



 Alexander Clark in [Clark, A.: Three learnable models 
for the description of language] emphasized the 
importance of learnability. 

 He proposed that one way to build learnable 
representations is by making them objective or 
empiricist: the structure of the representation should 
be based on the structure of the language. 

Importance of Learnability 



 In defining these representation classes the author 
followed a simple slogan: “Put learnability first!” 

 In the conclusive remarks the author suggested that 
the representations, which are both efficiently 
learnable and capable of representing mildly context-
sensitive languages seem to be good candidates for 
models of human linguistic competence. 

Importance of Learnability 



 In a typical grammatical inference scenario we are 
concerned with learning language representations 
based on some source of information: 

 Text. 

 Examples and counter-examples. 

 Etc. 

 We assume a perfect source of information. 

General Setting 



 Let us fix the alphabet Σ. 

 Let ℒ  be a language class. 

 Let ℛ  be a class of representations for ℒ. 

 Let L: ℛ → ℒ  be the naming function, i.e. L(R)  is the 
language denoted, accepted, recognized or 
represented by the object R ∊ ℛ. 

General Setting 



 There are two important problems: 

 Membership problem: given w ∊ Σ*  and R ∊ ℛ, is the 
query w ∊ L(R) decidable? 

 Equivalence problem: given R1, R2 ∊ ℛ, is the query 
L(R1) = L(R2) decidable? 

General Setting 



 A presentation 𝛷  is an enumeration of elements, 
which represents a source of information about 
some specific language L ∊ ℒ. 

 For instance, the enumeration of all positive and 
negative samples of L  (in some order). 

 A learning algorithm A  is a program that takes the 
first n  elements of a presentation (denoted as 𝛷n) 
and returns some object R ∊ ℛ. 

Identification in the Limit 



 We say that ℛ  is identifiable in the limit if there 
exists a learning algorithm A  such that for any target 
object R ∊ ℛ  and any presentation 𝛷  of L(R)  there 
exists a rank m  such that for all n ≥ m  A(𝛷n)  does 
not change and L(A(𝛷n)) = L(R).  

 The above definition does not force us to learn the 
target object, but only to learn an object equivalent 
to the target. 

Identification in the Limit 



 However, there are some complexity issues with the 
identification in limit:  

 It neither tells us how we know when we have found 
what we are looking for nor how long it is going to take. 

 We illustrate this methodology on the so-called 
delimited string-rewriting systems. 

 The learning algorithm is called LARS. 

Identification in the Limit 



 String rewriting systems are usually specified by: 

 Some rewriting mechanism, 

 Some base of simple (accepted) words. 

 Let us introduce two special symbols that do not 
belong to our alphabet Σ : 

 ¢  left sentinel, 

 $  right sentinel. 

String Rewriting Systems 



 Term is a string from T(Σ) = {λ, ¢}.Σ*.{λ, $} . 

 Term can be of one of the following types: 

 Type 1: w ∊ Σ*  (substring) 

 Type 2: w ∊ ¢.Σ* (prefix) 

 Type 3: w ∊ Σ*.$  (suffix) 

 Type 4: w ∊ ¢.Σ*.$  (whole string) 

 Given a term w, the root of w  is w  without sentinels. 

String Rewriting Systems 



 We define an order relation over T(Σ): 

 We define u < v  if and only if:  

 root(u) <lex-length root(v)  or  

 root(u) = root(v)  and  type(u) < type(v). 

 For instance, for Σ  = {a, b} : 

 ab < ¢ab < ab$ < ¢ab$ < ba 

String Rewriting Systems 



 A rewrite rule is an ordered pair ρ = (l , r), generally 
written as ρ = l ⊢ r , where: 

 l  is the left-hand side of ρ  and 

 r  is the right-hand side of ρ. 

 We say that ρ = l ⊢ r  is a delimited rewrite rule if l  
and r  are of the same type. 

 Delimited string-rewriting system (DSRS) ℛ is a finite 
set of delimited rewrite rules. 

String Rewriting Systems 



 The order extends to rules: 

 We define (l1, r1) < (l2, r2)  if and only if: 

 l1 < l2  or 

 l1 = l2  and r1 < r2 . 

 A system is deterministic if not two rules share a 
common left-hand side. 

String Rewriting Systems 



 Given a DSRS ℛ  and a string w, there may be several 
applicable rules. 

 Nevertheless, only one rule is eligible. 

 This is the rule having the smallest left-hand side. 

 This rule might be eligible in different places. We 
privilege the leftmost position. 

String Rewriting Systems 



 Given a DSRS ℛ  and strings w1, w2 ∊ T(Σ), we say 
that w1  rewrites in one step into w2 , i.e. w1 ⊢ℛ w2  
(w1 ⊢ w2 ), if there exists an eligible rule (l ⊢ r) ∊ ℛ  : 

 w1 = ulv, w2 = urv, and 

 u  is shortest for this rule. 

 String w  is reducible if there exists a string w’  such 
that w ⊢ w’, and irreducible otherwise. 

String Rewriting Systems 



 We denote by ⊢*
ℛ the reflexive and transitive closure 

of ⊢ℛ . We say that w1  reduces to w2  or that w2  is 
derivable from w1  if w1 ⊢*

ℛ w2 . 

 Given a system ℛ  and an irreducible string e ∊ Σ*, we 
define the language: 

 L(ℛ, e) = {w ∊ Σ* | ¢w$ ⊢*
ℛ ¢e$} . 

String Rewriting Systems 



 Example: 

 L({ab ⊢ λ}, λ)  is the Dyck language, i.e.: 

 ¢abaabb$ ⊢ ¢aabb$ ⊢ ¢ab$ ⊢ ¢λ$ . 

 L({aabb ⊢ ab, ¢ab$ ⊢ ¢λ$}, λ) = {anbn | n ≥ 0+, i.e.: 

 ¢aaabbb$ ⊢ ¢aabb$ ⊢ ¢ab$ ⊢ ¢λ$ . 

 L({¢ab ⊢ ¢}, λ)  is the regular language (ab)*. 

 It can be shown that any regular language can be 
represented in this way. 

String Rewriting Systems 



 Deciding whether a string w  belongs to a language 
L(ℛ, e)  consists of trying to obtain e  from w. 

 We will denote by APPLY(ℛ, w)  the string obtained 
by applying different rules in ℛ  until no more rules 
can be applied. 

 This can be naturally extended to sets: 

 APPLY(ℛ, S) = { APPLY(ℛ, w) | w ∊ S } . 

String Rewriting Systems 



 Learning Algorithm for Rewriting Systems. 

 Generates the possible rules that can be applied over 
the positive data S+. 

 Tries using them and keeps them if they do not create 
inconsistency (using the negative data S-  for that). 

 Algorithm calls the function NEWRULE , which 
generates the next possible rule. 

Algorithm LARS 



 One should choose useful rules, i.e. those that can be 
applied on at least one string from positive data S+. 

 Moreover, a rule should allow to diminish the size of 
the set S+  (i.e. two different strings rewrite into an 
identical string). 

 The function CONSISTENT  checks the consistency of 
the system. 

Algorithm LARS 



 The goal is to be able to learn any DSRS with LARS. 

 The simplified version proposed here does identify in 
the limit any DSRS. 

 Formal study of the algorithm is beyond scope of this 
presentations. 

Algorithm LARS 



 Input: S+ , S- . 

 Output: ℛ. 

 ℛ := ∅; ρ := (λ ⊢ λ); 

 while  |S+| > 1  do  

 ρ := NEWRULE(S+ , ρ); 

 if  CONSISTENT(S+ , S- , ℛ ∪ *ρ})  then 

 ℛ := ℛ ∪ *ρ}; 

 S+ := APPLY(ℛ, S+);  S- := APPLY(ℛ, S-); 

 

Algorithm LARS 
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