
Learning Automata and
Grammars

Peter Černo

 The problem of learning or inferring automata and
grammars has been studied for decades and has
connections to many disciplines:

 Bio-informatics.

 Computational linguistics.

 Pattern recognition.

Learning Automata and Grammars

 In this presentation we:

 Introduce the formal language theory (FLT).

 Emphasize the importance of learnability.

 Explain the identification in the limit.

 Give as an example the algorithm LARS.

Learning Automata and Grammars

 The central notion in FLT is a (formal) language which
is a finite or infinite set of words.

 Word is a finite sequence consisting of zero or more
letters. The same letter may occur several times.

 The sequence of zero letters = the empty word λ.

 We restrict ourselves to some specific alphabet,
which is a finite nonempty set of letters.

 The set of all words from Σ is denoted as Σ*.

Formal Language Theory

 How to define a language?

 Acceptors: usually automata – they are given an input
word and after some processing they either accept or
reject this input word.

 Generators: usually grammars – they generate the
language using some finite set of rules.

 We want to learn automata / grammars under
suitable learning regime.

Formal Language Theory

 Grammar induction: finding a grammar (or
automaton) that can explain the data.

 Grammatical inference: relies on the fact that there
is a (true) target grammar (or automaton), and that
the quality of the learning process has to be
measured relatively to this target.

Induction / Inference

 Alexander Clark in [Clark, A.: Three learnable models
for the description of language] emphasized the
importance of learnability.

 He proposed that one way to build learnable
representations is by making them objective or
empiricist: the structure of the representation should
be based on the structure of the language.

Importance of Learnability

 In defining these representation classes the author
followed a simple slogan: “Put learnability first!”

 In the conclusive remarks the author suggested that
the representations, which are both efficiently
learnable and capable of representing mildly context-
sensitive languages seem to be good candidates for
models of human linguistic competence.

Importance of Learnability

 In a typical grammatical inference scenario we are
concerned with learning language representations
based on some source of information:

 Text.

 Examples and counter-examples.

 Etc.

 We assume a perfect source of information.

General Setting

 Let us fix the alphabet Σ.

 Let ℒ be a language class.

 Let ℛ be a class of representations for ℒ.

 Let L: ℛ → ℒ be the naming function, i.e. L(R) is the
language denoted, accepted, recognized or
represented by the object R ∊ ℛ.

General Setting

 There are two important problems:

 Membership problem: given w ∊ Σ* and R ∊ ℛ, is the
query w ∊ L(R) decidable?

 Equivalence problem: given R1, R2 ∊ ℛ, is the query
L(R1) = L(R2) decidable?

General Setting

 A presentation 𝛷 is an enumeration of elements,
which represents a source of information about
some specific language L ∊ ℒ.

 For instance, the enumeration of all positive and
negative samples of L (in some order).

 A learning algorithm A is a program that takes the
first n elements of a presentation (denoted as 𝛷n)
and returns some object R ∊ ℛ.

Identification in the Limit

 We say that ℛ is identifiable in the limit if there
exists a learning algorithm A such that for any target
object R ∊ ℛ and any presentation 𝛷 of L(R) there
exists a rank m such that for all n ≥ m A(𝛷n) does
not change and L(A(𝛷n)) = L(R).

 The above definition does not force us to learn the
target object, but only to learn an object equivalent
to the target.

Identification in the Limit

 However, there are some complexity issues with the
identification in limit:

 It neither tells us how we know when we have found
what we are looking for nor how long it is going to take.

 We illustrate this methodology on the so-called
delimited string-rewriting systems.

 The learning algorithm is called LARS.

Identification in the Limit

 String rewriting systems are usually specified by:

 Some rewriting mechanism,

 Some base of simple (accepted) words.

 Let us introduce two special symbols that do not
belong to our alphabet Σ :

 ¢ left sentinel,

 $ right sentinel.

String Rewriting Systems

 Term is a string from T(Σ) = {λ, ¢}.Σ*.{λ, $} .

 Term can be of one of the following types:

 Type 1: w ∊ Σ* (substring)

 Type 2: w ∊ ¢.Σ* (prefix)

 Type 3: w ∊ Σ*.$ (suffix)

 Type 4: w ∊ ¢.Σ*.$ (whole string)

 Given a term w, the root of w is w without sentinels.

String Rewriting Systems

 We define an order relation over T(Σ):

 We define u < v if and only if:

 root(u) <lex-length root(v) or

 root(u) = root(v) and type(u) < type(v).

 For instance, for Σ = {a, b} :

 ab < ¢ab < ab$ < ¢ab$ < ba

String Rewriting Systems

 A rewrite rule is an ordered pair ρ = (l , r), generally
written as ρ = l ⊢ r , where:

 l is the left-hand side of ρ and

 r is the right-hand side of ρ.

 We say that ρ = l ⊢ r is a delimited rewrite rule if l
and r are of the same type.

 Delimited string-rewriting system (DSRS) ℛ is a finite
set of delimited rewrite rules.

String Rewriting Systems

 The order extends to rules:

 We define (l1, r1) < (l2, r2) if and only if:

 l1 < l2 or

 l1 = l2 and r1 < r2 .

 A system is deterministic if not two rules share a
common left-hand side.

String Rewriting Systems

 Given a DSRS ℛ and a string w, there may be several
applicable rules.

 Nevertheless, only one rule is eligible.

 This is the rule having the smallest left-hand side.

 This rule might be eligible in different places. We
privilege the leftmost position.

String Rewriting Systems

 Given a DSRS ℛ and strings w1, w2 ∊ T(Σ), we say
that w1 rewrites in one step into w2 , i.e. w1 ⊢ℛ w2
(w1 ⊢ w2), if there exists an eligible rule (l ⊢ r) ∊ ℛ :

 w1 = ulv, w2 = urv, and

 u is shortest for this rule.

 String w is reducible if there exists a string w’ such
that w ⊢ w’, and irreducible otherwise.

String Rewriting Systems

 We denote by ⊢*
ℛ the reflexive and transitive closure

of ⊢ℛ . We say that w1 reduces to w2 or that w2 is
derivable from w1 if w1 ⊢*

ℛ w2 .

 Given a system ℛ and an irreducible string e ∊ Σ*, we
define the language:

 L(ℛ, e) = {w ∊ Σ* | ¢w$ ⊢*
ℛ ¢e$} .

String Rewriting Systems

 Example:

 L({ab ⊢ λ}, λ) is the Dyck language, i.e.:

 ¢abaabb$ ⊢ ¢aabb$ ⊢ ¢ab$ ⊢ ¢λ$.

 L({aabb ⊢ ab, ¢ab$ ⊢ ¢λ$}, λ) = {anbn | n ≥ 0+, i.e.:

 ¢aaabbb$ ⊢ ¢aabb$ ⊢ ¢ab$ ⊢ ¢λ$.

 L({¢ab ⊢ ¢}, λ) is the regular language (ab)*.

 It can be shown that any regular language can be
represented in this way.

String Rewriting Systems

 Deciding whether a string w belongs to a language
L(ℛ, e) consists of trying to obtain e from w.

 We will denote by APPLY(ℛ, w) the string obtained
by applying different rules in ℛ until no more rules
can be applied.

 This can be naturally extended to sets:

 APPLY(ℛ, S) = { APPLY(ℛ, w) | w ∊ S } .

String Rewriting Systems

 Learning Algorithm for Rewriting Systems.

 Generates the possible rules that can be applied over
the positive data S+.

 Tries using them and keeps them if they do not create
inconsistency (using the negative data S- for that).

 Algorithm calls the function NEWRULE , which
generates the next possible rule.

Algorithm LARS

 One should choose useful rules, i.e. those that can be
applied on at least one string from positive data S+.

 Moreover, a rule should allow to diminish the size of
the set S+ (i.e. two different strings rewrite into an
identical string).

 The function CONSISTENT checks the consistency of
the system.

Algorithm LARS

 The goal is to be able to learn any DSRS with LARS.

 The simplified version proposed here does identify in
the limit any DSRS.

 Formal study of the algorithm is beyond scope of this
presentations.

Algorithm LARS

 Input: S+ , S- .

 Output: ℛ.

 ℛ := ∅; ρ := (λ ⊢ λ);

 while |S+| > 1 do

 ρ := NEWRULE(S+ , ρ);

 if CONSISTENT(S+ , S- , ℛ ∪ *ρ}) then

 ℛ := ℛ ∪ *ρ};

 S+ := APPLY(ℛ, S+); S- := APPLY(ℛ, S-);

Algorithm LARS

 Alexander Clark (2010): Three Learnable Models for
the Description of Language.

 Colin de la Higuera (2010): Grammatical Inference

Learning Automata and Grammars

References

