
Learning Automata and
Grammars

Peter Černo

 The problem of learning or inferring automata and
grammars has been studied for decades and has
connections to many disciplines:

 Bio-informatics.

 Computational linguistics.

 Pattern recognition.

Learning Automata and Grammars

 In this presentation we:

 Introduce the formal language theory (FLT).

 Emphasize the importance of learnability.

 Explain the identification in the limit.

 Give as an example the algorithm LARS.

Learning Automata and Grammars

 The central notion in FLT is a (formal) language which
is a finite or infinite set of words.

 Word is a finite sequence consisting of zero or more
letters. The same letter may occur several times.

 The sequence of zero letters = the empty word λ.

 We restrict ourselves to some specific alphabet,
which is a finite nonempty set of letters.

 The set of all words from Σ is denoted as Σ*.

Formal Language Theory

 How to define a language?

 Acceptors: usually automata – they are given an input
word and after some processing they either accept or
reject this input word.

 Generators: usually grammars – they generate the
language using some finite set of rules.

 We want to learn automata / grammars under
suitable learning regime.

Formal Language Theory

 Grammar induction: finding a grammar (or
automaton) that can explain the data.

 Grammatical inference: relies on the fact that there
is a (true) target grammar (or automaton), and that
the quality of the learning process has to be
measured relatively to this target.

Induction / Inference

 Alexander Clark in [Clark, A.: Three learnable models
for the description of language] emphasized the
importance of learnability.

 He proposed that one way to build learnable
representations is by making them objective or
empiricist: the structure of the representation should
be based on the structure of the language.

Importance of Learnability

 In defining these representation classes the author
followed a simple slogan: “Put learnability first!”

 In the conclusive remarks the author suggested that
the representations, which are both efficiently
learnable and capable of representing mildly context-
sensitive languages seem to be good candidates for
models of human linguistic competence.

Importance of Learnability

 In a typical grammatical inference scenario we are
concerned with learning language representations
based on some source of information:

 Text.

 Examples and counter-examples.

 Etc.

 We assume a perfect source of information.

General Setting

 Let us fix the alphabet Σ.

 Let ℒ be a language class.

 Let ℛ be a class of representations for ℒ.

 Let L: ℛ → ℒ be the naming function, i.e. L(R) is the
language denoted, accepted, recognized or
represented by the object R ∊ ℛ.

General Setting

 There are two important problems:

 Membership problem: given w ∊ Σ* and R ∊ ℛ, is the
query w ∊ L(R) decidable?

 Equivalence problem: given R1, R2 ∊ ℛ, is the query
L(R1) = L(R2) decidable?

General Setting

 A presentation 𝛷 is an enumeration of elements,
which represents a source of information about
some specific language L ∊ ℒ.

 For instance, the enumeration of all positive and
negative samples of L (in some order).

 A learning algorithm A is a program that takes the
first n elements of a presentation (denoted as 𝛷n)
and returns some object R ∊ ℛ.

Identification in the Limit

 We say that ℛ is identifiable in the limit if there
exists a learning algorithm A such that for any target
object R ∊ ℛ and any presentation 𝛷 of L(R) there
exists a rank m such that for all n ≥ m A(𝛷n) does
not change and L(A(𝛷n)) = L(R).

 The above definition does not force us to learn the
target object, but only to learn an object equivalent
to the target.

Identification in the Limit

 However, there are some complexity issues with the
identification in limit:

 It neither tells us how we know when we have found
what we are looking for nor how long it is going to take.

 We illustrate this methodology on the so-called
delimited string-rewriting systems.

 The learning algorithm is called LARS.

Identification in the Limit

 String rewriting systems are usually specified by:

 Some rewriting mechanism,

 Some base of simple (accepted) words.

 Let us introduce two special symbols that do not
belong to our alphabet Σ :

 ¢ left sentinel,

 $ right sentinel.

String Rewriting Systems

 Term is a string from T(Σ) = {λ, ¢}.Σ*.{λ, $} .

 Term can be of one of the following types:

 Type 1: w ∊ Σ* (substring)

 Type 2: w ∊ ¢.Σ* (prefix)

 Type 3: w ∊ Σ*.$ (suffix)

 Type 4: w ∊ ¢.Σ*.$ (whole string)

 Given a term w, the root of w is w without sentinels.

String Rewriting Systems

 We define an order relation over T(Σ):

 We define u < v if and only if:

 root(u) <lex-length root(v) or

 root(u) = root(v) and type(u) < type(v).

 For instance, for Σ = {a, b} :

 ab < ¢ab < ab$ < ¢ab$ < ba

String Rewriting Systems

 A rewrite rule is an ordered pair ρ = (l , r), generally
written as ρ = l ⊢ r , where:

 l is the left-hand side of ρ and

 r is the right-hand side of ρ.

 We say that ρ = l ⊢ r is a delimited rewrite rule if l
and r are of the same type.

 Delimited string-rewriting system (DSRS) ℛ is a finite
set of delimited rewrite rules.

String Rewriting Systems

 The order extends to rules:

 We define (l1, r1) < (l2, r2) if and only if:

 l1 < l2 or

 l1 = l2 and r1 < r2 .

 A system is deterministic if not two rules share a
common left-hand side.

String Rewriting Systems

 Given a DSRS ℛ and a string w, there may be several
applicable rules.

 Nevertheless, only one rule is eligible.

 This is the rule having the smallest left-hand side.

 This rule might be eligible in different places. We
privilege the leftmost position.

String Rewriting Systems

 Given a DSRS ℛ and strings w1, w2 ∊ T(Σ), we say
that w1 rewrites in one step into w2 , i.e. w1 ⊢ℛ w2
(w1 ⊢ w2), if there exists an eligible rule (l ⊢ r) ∊ ℛ :

 w1 = ulv, w2 = urv, and

 u is shortest for this rule.

 String w is reducible if there exists a string w’ such
that w ⊢ w’, and irreducible otherwise.

String Rewriting Systems

 We denote by ⊢*
ℛ the reflexive and transitive closure

of ⊢ℛ . We say that w1 reduces to w2 or that w2 is
derivable from w1 if w1 ⊢*

ℛ w2 .

 Given a system ℛ and an irreducible string e ∊ Σ*, we
define the language:

 L(ℛ, e) = {w ∊ Σ* | ¢w$ ⊢*
ℛ ¢e$} .

String Rewriting Systems

 Example:

 L({ab ⊢ λ}, λ) is the Dyck language, i.e.:

 ¢abaabb$ ⊢ ¢aabb$ ⊢ ¢ab$ ⊢ ¢λ$.

 L({aabb ⊢ ab, ¢ab$ ⊢ ¢λ$}, λ) = {anbn | n ≥ 0+, i.e.:

 ¢aaabbb$ ⊢ ¢aabb$ ⊢ ¢ab$ ⊢ ¢λ$.

 L({¢ab ⊢ ¢}, λ) is the regular language (ab)*.

 It can be shown that any regular language can be
represented in this way.

String Rewriting Systems

 Deciding whether a string w belongs to a language
L(ℛ, e) consists of trying to obtain e from w.

 We will denote by APPLY(ℛ, w) the string obtained
by applying different rules in ℛ until no more rules
can be applied.

 This can be naturally extended to sets:

 APPLY(ℛ, S) = { APPLY(ℛ, w) | w ∊ S } .

String Rewriting Systems

 Learning Algorithm for Rewriting Systems.

 Generates the possible rules that can be applied over
the positive data S+.

 Tries using them and keeps them if they do not create
inconsistency (using the negative data S- for that).

 Algorithm calls the function NEWRULE , which
generates the next possible rule.

Algorithm LARS

 One should choose useful rules, i.e. those that can be
applied on at least one string from positive data S+.

 Moreover, a rule should allow to diminish the size of
the set S+ (i.e. two different strings rewrite into an
identical string).

 The function CONSISTENT checks the consistency of
the system.

Algorithm LARS

 The goal is to be able to learn any DSRS with LARS.

 The simplified version proposed here does identify in
the limit any DSRS.

 Formal study of the algorithm is beyond scope of this
presentations.

Algorithm LARS

 Input: S+ , S- .

 Output: ℛ.

 ℛ := ∅; ρ := (λ ⊢ λ);

 while |S+| > 1 do

 ρ := NEWRULE(S+ , ρ);

 if CONSISTENT(S+ , S- , ℛ ∪ *ρ}) then

 ℛ := ℛ ∪ *ρ};

 S+ := APPLY(ℛ, S+); S- := APPLY(ℛ, S-);

Algorithm LARS

 Alexander Clark (2010): Three Learnable Models for
the Description of Language.

 Colin de la Higuera (2010): Grammatical Inference

Learning Automata and Grammars

References

