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 The problem of learning or inferring automata and 
grammars has been studied for decades and has 
connections to many disciplines: 

 Bio-informatics. 

 Computational linguistics. 

 Pattern recognition. 

Learning Automata and Grammars 



 In this presentation we: 

 Introduce the formal language theory (FLT). 

 Emphasize the importance of learnability. 

 Explain the identification in the limit. 

 Give as an example the algorithm LARS. 

Learning Automata and Grammars 



 The central notion in FLT is a (formal) language which 
is a finite or infinite set of words. 

 Word is a finite sequence consisting of zero or more 
letters. The same letter may occur several times. 

 The sequence of zero letters = the empty word λ. 

 We restrict ourselves to some specific alphabet, 
which is a finite nonempty set of letters. 

 The set of all words from Σ  is denoted as Σ*. 

Formal Language Theory 



 How to define a language? 

 Acceptors: usually automata – they are given an input 
word and after some processing they either accept or 
reject this input word. 

 Generators: usually grammars – they generate the 
language using some finite set of rules. 

 We want to learn automata / grammars under 
suitable learning regime. 

Formal Language Theory 



 Grammar induction: finding  a grammar (or 
automaton) that can explain the data. 

 Grammatical  inference: relies on the fact that there 
is a (true) target grammar (or automaton), and that 
the quality of the learning process has to be 
measured relatively to this target. 

Induction / Inference 



 Alexander Clark in [Clark, A.: Three learnable models 
for the description of language] emphasized the 
importance of learnability. 

 He proposed that one way to build learnable 
representations is by making them objective or 
empiricist: the structure of the representation should 
be based on the structure of the language. 

Importance of Learnability 



 In defining these representation classes the author 
followed a simple slogan: “Put learnability first!” 

 In the conclusive remarks the author suggested that 
the representations, which are both efficiently 
learnable and capable of representing mildly context-
sensitive languages seem to be good candidates for 
models of human linguistic competence. 

Importance of Learnability 



 In a typical grammatical inference scenario we are 
concerned with learning language representations 
based on some source of information: 

 Text. 

 Examples and counter-examples. 

 Etc. 

 We assume a perfect source of information. 

General Setting 



 Let us fix the alphabet Σ. 

 Let ℒ  be a language class. 

 Let ℛ  be a class of representations for ℒ. 

 Let L: ℛ → ℒ  be the naming function, i.e. L(R)  is the 
language denoted, accepted, recognized or 
represented by the object R ∊ ℛ. 

General Setting 



 There are two important problems: 

 Membership problem: given w ∊ Σ*  and R ∊ ℛ, is the 
query w ∊ L(R) decidable? 

 Equivalence problem: given R1, R2 ∊ ℛ, is the query 
L(R1) = L(R2) decidable? 

General Setting 



 A presentation 𝛷  is an enumeration of elements, 
which represents a source of information about 
some specific language L ∊ ℒ. 

 For instance, the enumeration of all positive and 
negative samples of L  (in some order). 

 A learning algorithm A  is a program that takes the 
first n  elements of a presentation (denoted as 𝛷n) 
and returns some object R ∊ ℛ. 

Identification in the Limit 



 We say that ℛ  is identifiable in the limit if there 
exists a learning algorithm A  such that for any target 
object R ∊ ℛ  and any presentation 𝛷  of L(R)  there 
exists a rank m  such that for all n ≥ m  A(𝛷n)  does 
not change and L(A(𝛷n)) = L(R).  

 The above definition does not force us to learn the 
target object, but only to learn an object equivalent 
to the target. 

Identification in the Limit 



 However, there are some complexity issues with the 
identification in limit:  

 It neither tells us how we know when we have found 
what we are looking for nor how long it is going to take. 

 We illustrate this methodology on the so-called 
delimited string-rewriting systems. 

 The learning algorithm is called LARS. 

Identification in the Limit 



 String rewriting systems are usually specified by: 

 Some rewriting mechanism, 

 Some base of simple (accepted) words. 

 Let us introduce two special symbols that do not 
belong to our alphabet Σ : 

 ¢  left sentinel, 

 $  right sentinel. 

String Rewriting Systems 



 Term is a string from T(Σ) = {λ, ¢}.Σ*.{λ, $} . 

 Term can be of one of the following types: 

 Type 1: w ∊ Σ*  (substring) 

 Type 2: w ∊ ¢.Σ* (prefix) 

 Type 3: w ∊ Σ*.$  (suffix) 

 Type 4: w ∊ ¢.Σ*.$  (whole string) 

 Given a term w, the root of w  is w  without sentinels. 

String Rewriting Systems 



 We define an order relation over T(Σ): 

 We define u < v  if and only if:  

 root(u) <lex-length root(v)  or  

 root(u) = root(v)  and  type(u) < type(v). 

 For instance, for Σ  = {a, b} : 

 ab < ¢ab < ab$ < ¢ab$ < ba 

String Rewriting Systems 



 A rewrite rule is an ordered pair ρ = (l , r), generally 
written as ρ = l ⊢ r , where: 

 l  is the left-hand side of ρ  and 

 r  is the right-hand side of ρ. 

 We say that ρ = l ⊢ r  is a delimited rewrite rule if l  
and r  are of the same type. 

 Delimited string-rewriting system (DSRS) ℛ is a finite 
set of delimited rewrite rules. 

String Rewriting Systems 



 The order extends to rules: 

 We define (l1, r1) < (l2, r2)  if and only if: 

 l1 < l2  or 

 l1 = l2  and r1 < r2 . 

 A system is deterministic if not two rules share a 
common left-hand side. 

String Rewriting Systems 



 Given a DSRS ℛ  and a string w, there may be several 
applicable rules. 

 Nevertheless, only one rule is eligible. 

 This is the rule having the smallest left-hand side. 

 This rule might be eligible in different places. We 
privilege the leftmost position. 

String Rewriting Systems 



 Given a DSRS ℛ  and strings w1, w2 ∊ T(Σ), we say 
that w1  rewrites in one step into w2 , i.e. w1 ⊢ℛ w2  
(w1 ⊢ w2 ), if there exists an eligible rule (l ⊢ r) ∊ ℛ  : 

 w1 = ulv, w2 = urv, and 

 u  is shortest for this rule. 

 String w  is reducible if there exists a string w’  such 
that w ⊢ w’, and irreducible otherwise. 

String Rewriting Systems 



 We denote by ⊢*
ℛ the reflexive and transitive closure 

of ⊢ℛ . We say that w1  reduces to w2  or that w2  is 
derivable from w1  if w1 ⊢*

ℛ w2 . 

 Given a system ℛ  and an irreducible string e ∊ Σ*, we 
define the language: 

 L(ℛ, e) = {w ∊ Σ* | ¢w$ ⊢*
ℛ ¢e$} . 

String Rewriting Systems 



 Example: 

 L({ab ⊢ λ}, λ)  is the Dyck language, i.e.: 

 ¢abaabb$ ⊢ ¢aabb$ ⊢ ¢ab$ ⊢ ¢λ$ . 

 L({aabb ⊢ ab, ¢ab$ ⊢ ¢λ$}, λ) = {anbn | n ≥ 0+, i.e.: 

 ¢aaabbb$ ⊢ ¢aabb$ ⊢ ¢ab$ ⊢ ¢λ$ . 

 L({¢ab ⊢ ¢}, λ)  is the regular language (ab)*. 

 It can be shown that any regular language can be 
represented in this way. 

String Rewriting Systems 



 Deciding whether a string w  belongs to a language 
L(ℛ, e)  consists of trying to obtain e  from w. 

 We will denote by APPLY(ℛ, w)  the string obtained 
by applying different rules in ℛ  until no more rules 
can be applied. 

 This can be naturally extended to sets: 

 APPLY(ℛ, S) = { APPLY(ℛ, w) | w ∊ S } . 

String Rewriting Systems 



 Learning Algorithm for Rewriting Systems. 

 Generates the possible rules that can be applied over 
the positive data S+. 

 Tries using them and keeps them if they do not create 
inconsistency (using the negative data S-  for that). 

 Algorithm calls the function NEWRULE , which 
generates the next possible rule. 

Algorithm LARS 



 One should choose useful rules, i.e. those that can be 
applied on at least one string from positive data S+. 

 Moreover, a rule should allow to diminish the size of 
the set S+  (i.e. two different strings rewrite into an 
identical string). 

 The function CONSISTENT  checks the consistency of 
the system. 

Algorithm LARS 



 The goal is to be able to learn any DSRS with LARS. 

 The simplified version proposed here does identify in 
the limit any DSRS. 

 Formal study of the algorithm is beyond scope of this 
presentations. 

Algorithm LARS 



 Input: S+ , S- . 

 Output: ℛ. 

 ℛ := ∅; ρ := (λ ⊢ λ); 

 while  |S+| > 1  do  

 ρ := NEWRULE(S+ , ρ); 

 if  CONSISTENT(S+ , S- , ℛ ∪ *ρ})  then 

 ℛ := ℛ ∪ *ρ}; 

 S+ := APPLY(ℛ, S+);  S- := APPLY(ℛ, S-); 

 

Algorithm LARS 
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