
∆-Clearing Restarting Automata and CFL∗

Technical Report

Peter Černo Frantǐsek Mráz

April 28, 2011

Abstract

∆-clearing restarting automata represent a new restricted model of restarting
automata which, based on a limited context, can either delete a substring of the
current content of its tape or replace a substring by a special auxiliary symbol ∆,
which cannot be overwritten anymore, but it can be deleted later. The main result
of this paper consists in proving that besides their limited operations, ∆-clearing
restarting automata recognize all context-free languages.

Keywords: analysis by reduction, context-free languages, ∆-clearing restarting au-
tomata, formal languages.

1 Introduction

Restarting automata [5] were introduced as a tool for modeling some techniques used for
natural language processing. In particular they are used for analysis by reduction which
is method for checking (syntactical) correctness or non-correctness of a sentence. While
restarting automata are quite general (see [10] for an overview), they still lack some prop-
erties which could facilitate their wider use. One of such properties is that they differ from
the classical models of automata used in parsing. Restarting automata work in cycles. They
iteratively simplify the input sentence while preserving its (non-)correctness until a simple
(short) sentence is obtained for which it is easy to decide its (non-)correctness. If the ob-
tained simple form is correct, the whole input is accepted too. Each simplification is done
within a so-called cycle. During one cycle, a restarting automaton scans the current input
from the left to the right using a fixed size scanning window and a finite state control. In
one of the steps of a cycle the automaton rewrites the content of its scanning window by
a shorter string and later restarts its computation.

∗This work was partially supported by the Grant Agency of Charles University under Grant-No.
272111/A-INF/MFF and by the Czech Science Foundation under Grant-No. P103/10/0783 and Grant-No.
P202/10/1333.

1

Recently, Kutrib et al. in [6] and [7] introduced stateless restarting automata. For
monotone and/or deterministic version of these automata, if they can use auxiliary symbols
in rewriting, then they have the same power as the corresponding versions with states
([6, 8]). However, the stateless versions of restarting automata without auxiliary symbols
are strictly weaker than the respective versions which can use states.

Černo and Mráz [2] introduced an even more simplified version of restarting automata
called clearing restarting automata. While general restarting automata see the whole part
of the current sentence (word) to the left (and possibly also to the right) of the place they
rewrite, the rewriting done by clearing restarting automata depends only on a fixed context
around the rewritten subword. Moreover, clearing restarting automata can only “clear” a
subword, i.e. completely delete a subword based on limited context around the “cleared”
subword. Hence the automata have no states and in one cycle they can rewrite (exactly
once) at any place according to some of their finitely many instructions. Obviously, such
automata are more restricted than the weakest version of the stateless restarting automata
(the so-called stateless R-automata). It turned out that clearing restarting automata are
rather limited. While they can recognize all regular languages and even some languages that
are not context-free, they cannot recognize all context-free languages (see [2]). Hence there
were introduced ∆-clearing automata and ∆∗-clearing automata that can use an auxiliary
symbol ∆. Besides deleting a subword, ∆-clearing automata can rewrite a subword by the
special symbol ∆, which can be deleted in later cycles, too. ∆∗-clearing automata are even
stronger, as they can also rewrite a subword by ∆i, where i is not greater than the length
of the rewritten word.

In [1] we have shown that ∆-clearing automaton can accept the Greibach’s “hardest
context-free language” and later in [2] there was shown that ∆∗-clearing automata can
recognize all context-free languages. [2] conjectured that also ∆-clearing automata can
recognize CFL. In this paper we prove the conjecture.

The paper is divided into several sections. In Section 2 we introduce a general concept
called context rewriting system which will serve us as a framework for ∆-clearing restarting
automata and their extended version ∆∗-clearing restarting automata. We also prove some
of their basic properties. The main source for this section is [2]. In Section 3 we provide
a different algorithmic viewpoint on clearing restarting automata which will later simplify
many technical constructions used in this report. In Section 4 we describe a special cod-
ing used by ∆-clearing restarting automata to encode some information into its tape. In
Sections 5 and 6 we describe the algorithm behind the ∆-clearing restarting automaton
recognizing a given context-free language.

We use the standard notation from the theory of automata and formal languages. An
alphabet is a finite nonempty set. The elements of an alphabet Σ are called letters or
symbols. A word or string over an alphabet Σ is a finite sequence consisting of zero or more
letters of Σ, whereby the same letter may occur several times. The sequence of zero letters
is called the empty word, written λ. The set of all words (all nonempty words, respectively)
over an alphabet Σ is denoted by Σ∗ (Σ+, respectively). If x and y are words over Σ, then
so is their catenation (or concatenation) xy (or x · y), obtained by juxtaposition, that is,
writing x and y one after another. Catenation is an associative operation and the empty

2

word λ acts as an identity: wλ = λw = w holds for all words w. Because of the associativity,
we may use the notation wi in the usual way. By definition, w0 = λ.

Let u be a word in Σ∗, say u = a1 . . . an with ai ∈ Σ. We say that n is the length of u
and we write |u| = n. The sets of all words over Σ of length k, or at most k, are denoted
by Σk and Σ≤k, respectively. Finally a factorization of u is any sequence u1, ..., ut of words
such that u = u1 · · ·ut.

For a pair u, v of words we define the following relations:

1. u is a prefix of v, if there exists a word z such that v = uz,

2. u is a suffix of v, if there exists a word z such that v = zu, and

3. u is a factor (or subword) of v, if there exist words z and z′ such that v = zuz′.

Observe that u itself and λ are subwords, prefixes and suffixes of u. Other subwords,
prefixes and suffixes are called proper.

Subsets, finite or infinite, of Σ∗ are referred to as (formal) languages over Σ.

2 Theoretical Background

In this section we introduce a general concept called context rewriting system which will
serve us as a framework for ∆-clearing restarting automata and their extended version
∆∗-clearing restarting automata.

Definition 2.1 ([2]). Let k be a positive integer. A k-context rewriting system (k-CRS
for short) is a system R = (Σ,Γ, I), where Σ is an input alphabet, Γ ⊇ Σ is a working
alphabet not containing the special symbols ¢ and $, called sentinels, and I is a finite set
of instructions of the form:

(x, z → t, y) ,

where x is called left context, x ∈ LCk = Γk ∪ ¢ · Γ≤k−1, y is called right context, y ∈
RCk = Γk ∪ Γ≤k−1 · $ and z → t is called rule, z, t ∈ Γ∗.

A word w = uzv can be rewritten into utv (denoted as uzv →R utv) if and only if
there exists an instruction i = (x, z → t, y) ∈ I such that x is a suffix of ¢ · u and y is a
prefix of v · $. We often underline the rewritten part of the word w, and if the instruction
i is known we use →(i)

R instead of →R, i.e. uzv →(i)
R utv. The relation →R ⊆ Γ∗ × Γ∗ is

called rewriting relation.
The production language (reduction language, respectively) associated with R is defined

as L+(R) = {w ∈ Σ∗ | λ→∗R w} (L−(R) = {w ∈ Σ∗ | w →∗R λ}, respectively), where →∗R is
the reflexive and transitive closure of→R. Note that, by definition, λ ∈ L+(R) (λ ∈ L−(R),
respectively).

The production characteristic language (reduction characteristic language, respectively)
associated with R is defined as L+

C(R) = {w ∈ Γ∗ | λ→∗R w} (L−C(R) = {w ∈ Γ∗ | w →∗R λ},
respectively). Similarly, by definition, λ ∈ L+

C(R) (λ ∈ L−C(R), respectively). Obviously, for
each k-CRS R, it holds L+(R) = L+

C(R) ∩ Σ∗ (L−(R) = L−C(R) ∩ Σ∗).

3

Remark 2.1. We extend Definition 2.1 with the following notation: if X ⊆ LCk and
Y ⊆ RCk are finite nonempty sets, and Z is a finite nonempty set of rules of the form
z → t, z, t ∈ Γ∗, then we define (X,Z, Y) = {(x, z → t, y) | x ∈ X, (z → t) ∈ Z, y ∈ Y }.
However, if X = {x}, then instead of writing ({x}, Z, Y) we write only (x, Z, Y) for short.
The same holds for the sets Z and Y , too.

By reversing all rewriting rules of a k-CRS we obtain a dual system.

Definition 2.2 ([2]). Let R = (Σ,Γ, I) be a k-CRS. A dual context rewriting system RD is
a k-CRS RD = (Σ,Γ, ID), where ID = {(x, t→ z, y) | (x, z → t, y) ∈ I}. For an instruction
i = (x, z → t, y), we call iD = (x, t→ z, y) a dual instruction to the instruction i. We also
define a dual rewriting relation to the relation →R as (→R)D =→RD .

Theorem 2.1 (Duality theorem [2]). For each k-CRS R = (Σ,Γ, I) and its corresponding
dual system RD the following holds:

(1) (→R)D = (→R)−1,
(2) (RD)D = R,
(3) L+(R) = L−(RD),
(4) L+

C(R) = L−C(RD).

Proof. (1) Obviously, for all w,w′ ∈ Γ∗ : w(→R)Dw′ ⇔ w →RD w′ ⇔ w′ →R w, thus
(→R)D = (→R)−1.
(2) is trivial, (3) and (4) follow from (1).

Naturally, if we increase the length of contexts used in instructions of a CRS, we do not
decrease their expressiveness.

Theorem 2.2 (Context extension theorem ([2])). For each k-CRS R = (Σ,Γ, I) there exists
a (k + 1)-CRS R′ = (Σ,Γ, I ′) such that, for each w,w′ ∈ Γ∗, it holds w →R w

′ ⇔ w →R′ w
′.

Moreover, both R and R′ use the same rewriting rules:

{z → t | (x, z → t, y) ∈ I} = {z′ → t′ | (x′, z′ → t′, y′) ∈ I ′} .

Proof. For each instruction i = (x, z → t, y) ∈ I let us define Ji to be (X, z → t, Y), where:
(1) If x ∈ Γk, then X = (Γ∪{¢}) ·x. If x ∈ ¢ ·Γ≤k−1, then X = {x}. Evidently, X ⊆ LCk+1.
(2) If y ∈ Γk, then Y = y · (Γ∪{$}). If y ∈ Γ≤k−1 ·$, then Y = {y}. Obviously, Y ⊆ RCk+1.
It is easy to see that uzv →(i) utv if and only if uzv →(j) utv for some j ∈ Ji. This implies
that if we set I ′ :=

⋃
i∈I Ji, then we get a (k + 1)-CRS R′ = (Σ,Γ, I ′) which has the same

rewriting relation as the k-CRS R = (Σ,Γ, I) and both R and R′ use the same rewriting
rules.

Remark 2.2. Based on the above result, in Definition 2.1 we can allow contexts of any
length up to k, i.e. we can use:

LC≤k = Γ≤k ∪ ¢ · Γ≤k−1 =
⋃
i≤k LCi instead of LCk and

RC≤k = Γ≤k ∪ Γ≤k−1 · $ =
⋃
i≤k RCi instead of RCk.

4

The following theorem corresponds to correctness and error preserving properties of
restating automata.

Theorem 2.3 (Correctness and error preserving theorem [2]). Let R = (Σ,Γ, I) be a
k-CRS and u, v be two words from Σ∗ such that u→∗R v. Then:

(1) u ∈ L+(R)⇒ v ∈ L+(R),
(2) u /∈ L−(R)⇒ v /∈ L−(R).

Proof. Let us suppose that u, v ∈ Σ∗ and u→∗R v.
(1) u ∈ L+(R) implies λ→∗R u and thus λ→∗R u→∗R v. Hence, v is in L+(R).
(2) v ∈ L−(R) implies v →∗R λ and thus u→∗R v →∗R λ, which implies u ∈ L−(R).

It is easy to see that general k-CRS can simulate any type 0 grammar (according to the
Chomsky hierarchy [4]). Hence we will not study k-CRS in their general form, since they
are too powerful (they can represent recursively enumerable languages). Instead, we will
always put some restrictions on the rules of instructions and then study such restricted
models. The first model we introduce is called clearing restarting automaton which is a
k-CRS such that Σ = Γ and all rules in its instructions are of the form z → λ, where
z ∈ Σ+.

Definition 2.3 ([2]). Let k be a positive integer. A k-clearing restarting automaton (k-cl-RA
for short) is a system M = (Σ, I), where R = (Σ,Σ, I) is a k-CRS such that for each in-
struction i = (x, z → t, y) ∈ I it holds z ∈ Σ+ and t = λ. Since t is always the empty word,
we use the notation i = (x, z, y). The width of the instruction i = (x, z, y) is |i| = |xzy|.

The k-cl-RA M recognizes the language L(M) = {w ∈ Σ∗ | w `∗M λ} = L−(M), where
`M is the rewriting relation →R of R.

In the following, k-cl-RA (cl-RA, respectively) denotes the class of all k-clearing restart-
ing automata (clearing restarting automata, respectively), where cl-RA =

⋃∞
k=1 k-cl-RA.

L(k-cl-RA) (L(cl-RA), respectively) denotes the class of all languages accepted by k-cl-RA
(cl-RA, respectively), L(cl-RA) =

⋃∞
k=1 L(k-cl-RA).

The simplicity of the cl-RA model implies that the investigation of its properties and the
proofs are not so difficult and also the learning of languages is easy, fast and straightforward.
Another important advantage of this model is that the instructions are human readable
and simpler than the meta-instructions of general restarting automata [10].

Example 2.1. Let M = (Σ, I) be the 1-cl-RA with Σ = {a, b} and I consisting of the
following two instructions:

(1) (a, ab, b),
(2) (¢, ab, $).

Then we have aaaabbbb `(1)
M aaabbb `(1)

M aabb `(1)
M ab `(2)

M λ which means that aaaabbbb `∗M
λ. So the word aaaabbbb is accepted by M . It is easy to see that M recognizes the language
L(M) = {anbn | n ≥ 0}.

5

Remark 2.3. By definition, each cl-RA accepts λ. If we say that a cl-RA M recognizes (or
accepts) a language L, we always mean that L(M) = L ∪ {λ}.

This implicit acceptance of the empty word can be avoided by a slight modification of
the definition of clearing restarting automata, or even context rewriting systems, but in
principle, we would not get a more powerful model.

Remark 2.4. As we have seen, the language recognized by a k-cl-RA M = (Σ, I) is defined
as the reduction language of M , i.e. L(M) = L−(M). Also note that L+(M) = {λ}. Now
suppose that N = MD is a dual k-CRS to the k-CRSM . N is no longer a clearing restarting
automaton, because it contains instructions of the form (x, λ → z, y), where z ∈ Σ+. But
according to the Duality Theorem (Theorem 2.1), L(M) = L−(M) = L+(MD) = L+(N).
This reasoning suggests that we can look at clearing restarting automata from two points
of view:

1. We can consider a cl-RA M = (Σ, I) to be an automaton that recognizes the language
L(M) by using reductions, i.e. L(M) = {w ∈ Σ∗ | w `∗M λ}, where `M is the
rewriting relation of M , called reduction relation.

2. We can consider a cl-RAM = (Σ, I) to be a generative device generating the language
L(M) by using productions, i.e. L(M) = {w ∈ Σ∗ | λ a∗M w}, where aM = (`M)−1

is the rewriting relation of N = MD, called production relation.

Clearing restarting automata are studied in [2]. We only mention that they can recog-
nize all regular languages, some context-free languages and even some non-context-free lan-
guages. However, there are some context-free languages that are outside the class L(cl-RA).

Theorem 2.4. The language L = {ancbn | n ≥ 0} ∪ {λ} is not recognized by any cl-RA.

Proof. For a contradiction, let us suppose that there exists a k-cl-RA M = (Σ, I) such
that L(M) = L. Let m be the maximal width of instructions of M . Obviously, amcbm ∈ L
implies amcbm `∗M λ and the word amcbm cannot be reduced to λ in a single step. On the
other hand, if we erase any single nonempty continuous proper subword from the word
amcbm, then we get a word that does not belong to L – a contradiction to L(M) = L.

In [2] there were introduced two extended versions of clearing restarting automata –
the so-called ∆-clearing restarting automata and ∆∗-clearing restarting automata. Both of
them can use a single auxiliary symbol ∆ only. ∆-clearing restarting automata can leave
a mark – a symbol ∆ – at the place of deleting besides rewriting into the empty word
λ. ∆∗-clearing restarting automata can rewrite a subword w into ∆k where k is bounded
from above by the length of w. In what follows we will first repeat a result from [2]
that shows ∆∗-clearing restarting automata are powerful enough to recognize all context-
free languages. Actually, the proof we will present differs in some parts from the proof
from [2]. In particular, we will use a modified encoding of nonterminals, which will be
later used in the next part of the paper where we describe how to transform a ∆∗-clearing
restarting automaton recognizing a given context-free language into a ∆-clearing restarting
automaton recognizing the same language.

6

Definition 2.4. Let k be a positive integer. A k-∆-clearing restarting automaton (k-∆cl-RA
for short) is a system M = (Σ, I), where R = (Σ,Γ, I) is a k-CRS such that ∆ /∈ Σ,
Γ = Σ ∪ {∆}, and for each instruction i = (x, z → t, y) ∈ I: z ∈ Γ+ and either t = λ, or
t = ∆.

The k-∆cl-RA M recognizes the language L(M) = {w ∈ Σ∗ | w `∗M λ} = L−(M),
where `M is the rewriting relation →R of R.

The characteristic language of M is the language LC(M) = L−C(M).

By ∆cl-RA we denote the class of all ∆-clearing restarting automata. L(k-∆cl-RA)
(L(∆cl-RA), respectively) denotes the class of all languages accepted by k-∆cl-RA (∆cl-RA,
respectively).

Example 2.2. Let M = (Σ, I) be a 1-∆cl-RA with Σ = {a, b, c} and the set of instructions
I consisting of the following instructions:

(1) (a, c→ ∆, b),
(2) (a, a∆b→ ∆, b),
(3) (¢, a∆b→ ∆, $),
(4) (¢, c→ ∆, $),
(5) (¢,∆→ λ, $).

An input word ancbn, for arbitrary n > 1, is accepted by M in the following way:

ancbn `(1)
M an−1a∆bbn−1n `(2)

M an−1∆bn−1 `(2)
M . . . `(2)

M a∆b `(3)
M ∆ `(5)

M λ .

First, M deletes c while marking its position by ∆. In each of the following steps, M deletes
one a and one b around ∆ until it obtains single-letter word ∆, which is then reduced into
the empty word λ.

It is easy to see that M recognizes the language L = {ancbn | n ≥ 0} ∪ {λ}.
The characteristic language of M is

LC(M) = {ancbn, an∆bn | n ≥ 0} ∪ {λ} .

Now we introduce a generalization of ∆cl-RA, a so-called ∆∗-clearing restarting au-
tomata, which are able to recognize all context-free languages.

Definition 2.5. Let k be a positive integer. A k-∆∗-clearing restarting automaton (k-∆∗cl-RA
for short) is a system M = (Σ, I), where R = (Σ,Γ, I) is a k-CRS such that ∆ /∈ Σ,
Γ = Σ ∪ {∆}, and for each instruction i = (x, z → t, y) ∈ I: z ∈ Γ+ and t = ∆i, where
0 ≤ i ≤ |z|.

The k-∆∗cl-RA M recognizes the language L(M) = {w ∈ Σ∗ | w `∗M λ} = L−(M),
where `M is the rewriting relation →R of R.

The characteristic language of M is the language LC(M) = L−C(M).

7

By ∆∗cl-RA we denote the class of all ∆∗-clearing restarting automata. L(k-∆∗cl-RA)
(L(∆∗cl-RA), respectively) denotes the class of all languages accepted by k-∆∗cl-RA (∆∗cl-RA,
respectively).

Next we show that 1-∆∗cl-RA can recognize any context-free language. The following
proof utilizes the same idea as in [2], but a little modified encoding of nonterminals of a
context-free grammar using ∆’s.

Theorem 2.5. For each context-free language L there exists a 1-∆∗cl-RA-automaton M
recognizing L.

Proof. Let L be a context-free language. Then there exists a context-free grammar G =
(VN , VT , S, P) in Chomsky normal form generating the language L(G) = L r {λ}. Let
VN = {N1, . . . , Nm}, S = N1 and ∆ 6∈ VN ∪ VT , and let G′ = (VN , V

′
T , S, P

′) be the
grammar obtained from G by adding a new terminal symbol ∆ to VT (V ′T = Σ∪{∆}), and
adding new productions Ni → a∆ib to P , for all 1 ≤ i ≤ m and all a, b ∈ VT . Obviously,
L(G′) ∩ Σ∗ = L(G). We will show that we can effectively construct a 1-∆∗cl-RA M such
that LC(M) = L(G′)∪ {λ} and L(M) = LC(M)∩Σ∗ = (L(G′)∪ {λ})∩Σ∗ = L(G)∪ {λ}.

For the automaton M all the words a∆ib for all a, b ∈ Σ represent “codes” for the non-
terminal Ni. The letters a, b ∈ Σ serve as separators for distinguishing several consecutive
encoded nonterminals.

The automaton M works in a bottom-up manner. If the automaton recognizes that
some subword w of the input tape can be derived from some nonterminal Ni, then the
automaton can (nondeterministically) replace this subword w by a corresponding code ∆i.
Or to be more precise, the automaton M replaces only the inner part of the subword w by
the code ∆i in order to leave the first and the last letter of w as separators. If the word on
the input tape is short enough and belongs to the language L(G′) then the automaton M
just erases the whole input word in a single step.

The obvious obstacle of this approach is how to ensure that the resulting automaton M
will have only finitely many instructions? The answer lies in the observation that for every
context-free grammar there exists an upper limit c for the length of subwords w such that
if we restrict the automaton M only to the words of length at most c, then the automaton
will work correctly and recognize exactly the corresponding context-free language. Before
we continue we prove the following useful lemma.

Lemma 2.1 (Tree Lemma). Let T be a rooted binary tree with a root node r, such that each
leaf node l of T has an associated weight w(l) ∈ {1, 2, . . . , U} (where U is a positive integer
constant) and each internal node v of T has weight w(v) equal to the sum of weights of all
its descendant leaf nodes. Then for any positive integer constant c ≥ U either w(r) ≤ c, or
there is an internal node v such that c < w(v) ≤ 2c.

Proof. If w(r) ≤ c then there is nothing to prove and the lemma obviously holds. If w(r) > c
then we inductively define a path v1v2 . . . vk in the tree T , such that k > 1, v1, v2, . . . , vk−1

are internal nodes and vk is a leaf node. First, we define v1 = r. The node v1 cannot be
a leaf node, since w(v1) = w(r) > c ≥ U . Let us suppose that we have defined the nodes

8

v1, v2, . . . , vi. If vi is a leaf node, then k = i and the path is completed. Otherwise, vi is not
a leaf node and it has two sons (the tree is binary) vl and vr. Then we define vi+1 to be
a son with weight at least half of the weight of vi. More precisely, if w(vl) > w(vr), then
vi+1 = vl, otherwise vi+1 = vr.

Observe, that w(v1) ≥ w(v2) ≥ . . . ≥ w(vk) and w(vk) ≤ U ≤ c. Let j ∈ {1, 2, . . . , k−1}
be the largest index such that w(vj) > c. We claim that w(vj) ≤ 2c. Obviously, j < k and
vj has two sons vl and vr. Without loss of generality we can suppose that wj+1 = vl, i.e.
w(vl) ≥ w(vr). By the choice of j we have w(vj+1) = w(vl) ≤ c, i.e. w(vj) = w(vl)+w(vr) ≤
2w(vl) ≤ 2c.

Now we apply Tree Lemma 2.1 to our context-free grammar G′. Consider any word
w ∈ L(G′) and any derivation tree T corresponding to this word w. The nonterminals
in the derivation tree T represent internal nodes and the terminal words derived from
nonterminals in the derivation tree T represent leaf nodes. Let r be the root of T labeled
by the initial nonterminal S. If we define the weight of the leaf nodes as the length of
the words represented by these leaf nodes we obtain a binary tree with an upper limit
U = m+ 2 for the weight of leaf nodes, where m is the number of nonterminals in G′. Let
us take c = U = m + 2. By Tree Lemma 2.1 either w(r) ≤ c, or there is an internal node
v such that c < w(v) ≤ 2c. In other words, either |w| ≤ c, or there exists a derivation
S ⇒∗G′ xNiy ⇒∗G′ xzy such that w = xzy and c < |z| ≤ 2c. Thus we have shown the
following corollary.

Corollary 2.1. Let G′ = (VN , V
′
T , S, P

′) be the grammar constructed above and w be a
word from L(G′) of length |w| > c = |VN | + 2. Then there exist words x, y, z from (V ′T)∗

and a nonterminal Ni ∈ VN such that S ⇒∗G′ xNiy ⇒∗G′ xzy and w = xzy.

Now we construct a 1-∆∗cl-RA M = (Σ, I), where Σ = VT , Γ = Σ ∪ {∆} = V ′T , such
that LC(M) = L(G′) ∪ {λ}. First, we set:

I1 = {(¢, w → λ, $) | w ∈ L(G′), |w| ≤ c}.

For every i ∈ {1, 2, . . . ,m} let us define:

Li = {z ∈ Γ∗ | Ni ⇒∗G′ z, c < |z| ≤ 2c}.

For every such z ∈ Li, z = z1z2 . . . zs−1zs, consider the instruction:

(z1, z2 . . . zs−1 → ∆i, zs) .

This instruction rewrites the inner part of the word z to ∆i leaving z1 and zs as separators.
Let I2 be the set of all such instructions. (Observe that z1, zs ∈ Σ, and both I1 and I2 are
finite sets of instructions). Then M = (Σ, I1 ∪ I2) is the required automaton.

Lemma 2.2. L(G′) ⊆ LC(M).

9

Proof. (By induction on the length of words from L(G′))
Let w ∈ L(G′). If |w| ≤ c, then (¢, w → λ, $) ∈ I1, thus w `M λ which implies w ∈

LC(M). Suppose |w| > c. According to Corollary 2.1, there are x, z, y ∈ Γ∗, c < |z| ≤ 2c,
and i ∈ {1, 2, . . . ,m}, such that there exists a derivation S ⇒∗G′ xNiy ⇒∗G′ xzy = w, where
z = z1z2 . . . zs−1zs for some z1, . . . , zs ∈ V ′T . The definition of I2 implies that there is an
instruction (z1, z2 . . . zs−1 → ∆i, zs) ∈ I2. If we use this instruction in the word w, we get
the reduction: w = xz1z2 . . . zs−1zsy `M xz1∆izsy = w′. Now s = |z| > c = m + 2 implies

that s−2 > m ≥ i. So |z2 . . . zs−1| > |∆i| implies |w| > |w′|. On the other hand, in G′ there
is a production rule Ni → z1∆izs, so S ⇒∗G′ xNiy ⇒G′ xz1∆izsy = w′. Thus w′ ∈ L(G′)
and by the induction hypothesis (since |w′| < |w|) we have w′ ∈ LC(M) and w′ `∗M λ
which implies w `M w′ `∗M λ and w ∈ LC(M).

Lemma 2.3. LC(M) ⊆ L(G′) ∪ {λ} .

Proof. (By induction on the number of reduction steps)
Suppose w ∈ LC(M) and w = wn `M wn−1 `M . . . `M w1 `M λ. For each i = 1, 2, . . . n,

let us prove that wi ∈ L(G′)∪ {λ}. w1 `M λ implies that there is the instruction (¢, w1 →
λ, $) in I1, and thus w1 ∈ L(G′) according to the definition of I1. Suppose that wj ∈ L(G′)
and in the reduction wj+1 `M wj we have used the instruction φ = (z1, z2 . . . zs−1 →
∆i, zs) ∈ I2, i.e. wj+1 = xz1z2 . . . zs−1zsy `M xz1∆izsy = wj. We have wj ∈ L(G′), therefore

S ⇒∗G′ xz1∆izsy. The sequence of letters z1∆izs in our derivation could have been created
only by using the production rule Ni → z1∆izs (because z1, zs ∈ Σ). Therefore, there
exists a derivation S ⇒∗G′ xNiy ⇒G′ xz1∆izsy in G′. From the definition of φ ∈ I2 we also
have Ni ⇒∗G′ z1z2 . . . zs−1zs, where c < s = |z| ≤ 2c. Thus in G′ there exists a derivation
S ⇒∗G′ xNiy ⇒∗G′ xz1z2 . . . zs−1zsy = wj+1, which implies that wj+1 ∈ L(G′).

This completes the proof of Theorem 2.5.

We have shown that 1-∆∗cl-RA are able to recognize all context-free languages (contain-
ing the empty word λ – see Remark 2.3). This result opens an interesting question whether
it is possible to transform each ∆∗cl-RA into an equivalent ∆cl-RA. If we are interested
only in the problem whether ∆cl-RA can recognize all context-free languages, then we do
not need to do this transformation to all ∆∗cl-RA. We just need to do this transformation
to such ∆∗cl-RA which were obtained from a context-free grammar, as was shown above.
Moreover, the aforementioned construction can be generalized, i.e. we can put some extra
restrictions on the instructions of the resulting ∆∗cl-RA. We can generalize the construction
of the grammar G′ and the corresponding ∆∗cl-RA M in the following four ways:

1. We can choose a minimal length m0 ≥ 1 of codes for nonterminals, i.e. we code Ni

by using at least m0 consecutive letters ∆.

2. We can choose a minimal length m1 ≥ 1 of shortening for each reduction, i.e. for
each instruction (x, u→ ∆r, y) such that r ≥ 1, we guarantee that |u| − |∆r| ≥ m1.

10

3. We can choose a number of codes m2 ≥ 1 representing one nonterminal, i.e. we code
Ni by using m0 +m2(i− 1) + j − 1 consecutive letters ∆, for all j ∈ {1, 2, . . .m2}.

4. We can choose a length k ≥ 1 of the separator, i.e. instead of one letter we use k
consecutive arbitrary letters from Σ as a separator.

Suppose we have chosen the constants m0, m1, m2 and k, and L be a given context-free
language. Let G = (VN , VT , S, P) be a context-free grammar in Chomsky normal form
generating the language L(G) = L \ {λ}, VN = {N1, . . . , Nm}, S = N1 and ∆ 6∈ VN ∪ VT .
Let G′ = (VN , V

′
T , S, P

′) be a grammar which we obtain from G by adding a new terminal
symbol ∆ to VT and adding new productions Ni → x∆m0+m2(i−1)+j−1y to P , for all 1 ≤ i ≤
m, 1 ≤ j ≤ m2, and all x, y ∈ (VT)k. Let Σ = VT and Γ = Σ∪{∆} = V ′T . We can effectively
construct a k-∆∗cl-RA M with the above properties such that LC(M) = L(G′)∪{λ}. This
again implies that L(M) = LC(M) ∩ Σ∗ = L(G) ∪ {λ}.

Consider any word w ∈ L(G′) and any derivation tree T corresponding to this word w.
Again, we can look at T as a binary tree with internal nodes corresponding to nonterminals
in T , and leaf nodes corresponding to terminal words in T . Let r be the root internal node
corresponding to the root nonterminal S in the derivation tree T . If we define the weight
of leaf nodes as the length of the words represented by these leaf nodes we obtain a binary
tree with an upper limit U = m0 +m2m− 1 + 2k for the weight of the leaf nodes (because
the largest possible code is the code x∆m0+m2(m−1)+m2−1y for the nonterminal Nm, where
|x| = |y| = k). Let us take c = U + m1 − 1. By Tree Lemma 2.1 either w(r) ≤ c, or there
is an internal node v such that c < w(v) ≤ 2c. In other words, either |w| ≤ c, or there
exists a derivation S ⇒∗G′ xNiy ⇒∗G′ xzy such that w = xzy and c < |z| ≤ 2c. Now we can
construct a k-∆∗cl-RA M as follows. First, we set:

I1 = {(¢, w → λ, $) | w ∈ L(G′), |w| ≤ c}.

For every i ∈ {1, 2, . . . ,m} let us define:

Li = {z ∈ Γ∗ | Ni ⇒∗G′ z, c < |z| ≤ 2c}.

For every such z ∈ Li, z = xuy, |x| = |y| = k, and every j ∈ {1, 2, . . . ,m2} consider the
following instruction φ (see Figure 1):

φ = (x, u→ ∆m0+m2(i−1)+j−1, y) .

Let I2 be the set of all such instructions. (Observe again that x, y ∈ Σk, and both I1 and
I2 are finite sets of instructions). Then M = (Σ, I1 ∪ I2) is the required automaton.

We can easily generalize Lemma 2.2 and Lemma 2.3 to fit to our case and prove that
LC(M) = L(G′) ∪ {λ}. We omit these obvious proofs and verify only that the result-
ing automaton M has the desired properties. The properties 1, 3 and 4 can be eas-
ily verified. The only interesting property is the property 2. Consider any instruction
(x, u→ ∆m0+m2(i−1)+j−1, y) ∈ I2, where i ∈ {1, 2, . . . ,m} and j ∈ {1, 2, . . . ,m2}. We know
that |x| = |y| = k and |xuy| > c = U +m1− 1. Therefore, |u| ≥ m0 +m1 +m2m− 1. Since
m0+m2(i−1)+j−1 ≤ m0+m2m−1, we immediately get that |u|−|∆m0+m2(i−1)+j−1| ≥ m1.

The following lemma will be important later:

11

Figure 1: The illustration of the instruction φ = (x, u→ ∆m0+m2(i−1)+j−1, y).

Lemma 2.4. For each t ≥ 1, we can set the parameters m1 and k in such a way, that for
each instruction (x, u → ∆r, y) ∈ I2, there exists a subword v ∈ Σ∗ (not containing ∆) in
the word u with the length |v| ≥ t. Moreover, m1, k = Θ(t). The parameters m0 and m2

can be chosen arbitrarily.

Proof. Set k := t and m1 := 2t + m2m − 1. Consider any instruction (x, u → ∆r, y) ∈ I2.
If u ∈ Σ∗ then v := u and we obtain |v| = |u| > m1 > t. Suppose that there are
some letters ∆ in u. If we can find two consecutive continuous sequences of letters ∆ in
u, then at least k letters from Σ separate these two sequences. We can set v to be this
separator. Suppose that there is only one continuous sequence of letters ∆, i.e. u = w1∆sw2

for some w1, w2 ∈ Σ∗. We know that |w1| + s + |w2| − r ≥ m1. On the other hand,
|w1|+ s+ |w2| − r ≤ |w1|+ |w2|+m2m− 1, since m0 ≤ r, s ≤ m0 +m2m− 1. Accordingly,
|w1| + |w2| + m2m − 1 ≥ m1. The longer of the words w1, w2 has the length at least
1
2
(m1 −m2m+ 1) = t.

In the following, we would like to outline the basic idea behind the transformation of a
k-∆∗cl-RA M obtained from the previous construction into an equivalent ∆cl-RA N . First
suppose that we do this transformation in a trivial way, i.e. we transform each instruction
φ = (x, u→ ∆r, y) of M , where r > 1 and u = u1 . . . us, into the following set of so-called
partial instructions :

φ1 = (x, u1 → ∆, u2u3 . . . usy),
φ2 = (x∆, u2 → ∆, u3u4 . . . usy),
. . .
φr−1 = (x∆r−2, ur−1 → ∆, urur+1 . . . usy),
φr = (x∆r−1, urur+1 . . . us → ∆, y).

Apparently, this technique gives us only the inclusion L(M) ⊆ L(N). The other inclusion
is not guaranteed. The problem is that we can find two different instructions φ and ψ in M
such that they have different partial instructions φi and ψj applicable in the same context.
One possible way how to avoid such situations is to introduce some new special instructions,
which will encode some extra information into u by rewriting some letters with auxiliary
∆-symbols. By using Lemma 2.4 we can guarantee a long enough subword v ∈ Σ∗ in u,
which we can use to encode this information. In the rest of this report we describe how
to accomplish this task by using one specific coding. However, before we jump into the

12

description of this coding, we introduce a new algorithmic viewpoint on clearing restarting
automata, which somehow resembles interactive protocols or even Arthur-Merlin games
from the complexity theory. This viewpoint will later simplify many complex constructions
used in this report which would otherwise be very technical and difficult to understand.

3 Algorithmic Viewpoint

Let Σ be an input alphabet not containing the sentinels ¢ and $. Consider two nondeter-
ministic machines: the querier Q, the solver S, and the following protocol :

Meta-Algorithm 3.1. Protocol describing the work of the querier Q and the solver S.

Input: Word u ∈ Σ∗.

Description:
Let w ← ¢ · u · $.
Repeat:
(1) The querier Q chooses a subword x in w, i.e. w = w1xw2.
(2) If the solver S accepts x then Accept and halt.
(3) If the solver S answers y on the input x then set w ← w1yw2.

The protocol (Q,S) accepts a word u if and only if there exists an accepting computa-
tion. Let L(Q,S) denotes the language recognized by the protocol (Q,S):

L(Q,S) = { u | protocol (Q,S) accepts u }

Consider a class of queriers Q and a class of solvers S. Then L(Q,S) denotes the class
of languages recognized by these queriers and solvers:

L(Q,S) = { L(Q,S) | Q ∈ Q, S ∈ S }

In the following we will consider only the class of queriers Q = {Q1, Q2, . . .}, such that
each querier QK ∈ Q for the given input word w chooses nondeterministically an arbitrary
subword x of the word w of the length |x| ≤ K.

The only constraint we put on the solver S is that it should preserve the sentinels ¢
and $. In other words, the solver can neither erase these sentinels, nor create new ones. We
are not interested in the time or space complexity of the solver S.

On the other hand, depending on the other constraints we put on the solvers we obtain
different classes of solvers, and therefore also different classes of languages L(Q,S). In the
following we list several examples.

1. Consider the class of solvers Scl, such that each solver S ∈ Scl works according to the
following schema:

(a) if the input word x = ¢ · λ · $ then Accept,

13

(b) otherwise, either Reject, or return y, which can be obtained from x by deleting
some substring of x (and preserving the sentinels ¢ a $).

It is easy to see that L(Q,Scl) = L(cl-RA).

The inclusion L(cl-RA) ⊆ L(Q,Scl) is trivial. Suppose that M = (Σ, I) is a k-cl-RA.
Let us define K to be the maximal width of instructions of M . The solver S will
work according to the above schema in such a way that it will erase a substring from
the given input word x only if there exists an instruction of the automaton M which
allows such erasing. Apparently, L(QK , S) = L(M).

For the proof of the other inclusion L(Q,Scl) ⊆ L(cl-RA) we use the fact the the
querier only asks queries with the length bounded above by some constantK. Suppose
that we have a protocol (QK , S), where the solver S works according to the above
schema. There exist only finite many different queries the querier QK may ask. For
each such query x we can describe the behavior of the solver S on the input x by using
only the instruction of clearing restarting automata. If we unite all such instructions
over all the queries the querier QK may ask then we get the required cl-RA M , such
that L(M) = L(QK , S).

2. The class S∆cl consists of such solvers S that work according to the same schema as
presented in 1 with the only exception: in the case 1b, the solver S can leave a mark
∆ /∈ Σ at the place of deleting. Apparently, L(Q,S∆cl) = L(∆cl-RA).

3. By analogy, consider the class S∆∗cl which consists of solvers working according to the
schema presented in 1 with the only exception: in the case 1b the solver S can leave a
continuous segment ∆r at the place of deleting, where ∆ /∈ Σ and r is bounded above
by the length of the deleted substring. Not surprisingly, L(Q,S∆∗cl) = L(∆∗cl-RA).

4. The class SCFL consists of such solvers S that work according to the following schema:

(a) if x = ¢ ·N1 · $ then Accept,

(b) if x contains ¢ or $ then Reject,

(c) if x contains neither ¢, nor $, then either Reject, or return a nonterminal.

We prove that L(Q,SCFL) = CFL.

CFL ⊆ L(Q,SCFL): Let G = (VN , VT , N1, P) be a context-free grammar with VN =
{N1, . . . , Nm}, and ¢, $ /∈ VN ∪ VT . Let K be the length of the longest right-hand
side of productions from P . The corresponding solver S will work according to the
above schema in such a way, that in the case 4c S returns the nonterminal Ni only
if (Ni → x) ∈ P . Apparently, L(QK , S) = L(G).

L(Q,SCFL) ⊆ CFL: There exist only finite many different queries the querier QK

may ask. For each such query x we can describe the behavior of the solver S on the
input x by using context-free productions of the form (Ni → x). If we unite all such

14

productions over all the queries the querier QK may ask then we get the required
context-free grammar G, such that L(G) = L(QK , S).

5. The class SCSL consists of such solvers S that work according to the same schema as
presented in 4 with the only exception: in the case 4c, the solver S can rewrite any
subword of the input word x to a nonterminal Ni. Analogously, L(Q,SCSL) = CSL.

In this way we can characterize also other language classes, such as pure languages
[9] etc. All these classes have in common some kind of reduction analysis: we iteratively
reduce the input word to the point in which we can decide whether the word belongs to
the language or not. Moreover, all these reductions are local.

Also note, that if we restrict the class of queriers Q = {Q1, Q2, . . .} in such a way that
each querier QK ∈ Q can choose nondeterministically only a prefix or a suffix x of the given
input word w with the length |x| ≤ K, then the aforementioned classes will all collapse to
the class of regular languages.

However, the most important contribution of these protocols is that we no more perceive
any cl-RA (∆cl-RA, ∆∗cl-RA, respectively) automaton only as a mere set of instructions,
but rather as a nondeterministic machine S with an unbounded computational power
working according to a particular schema. Instead of giving a list of instructions we rather
describe the algorithm behind the corresponding solver. Now consider a k-∆∗cl-RA whose
construction was based on a given context-free grammar G as described in Section 2. Our
goal is now to construct a solver S ∈ Scl which will somehow imitate the work of the
automaton M in such a way, that S will split one instruction of M into several steps. In
the first phase S will encode into the tape (by using a special coding) the information
about which instruction of M the solver S is going to imitate. In the second phase S will
start building a continuous segment ∆r. The encoded information will exactly describe the
start and the end of this continuous segment and also which part of the input tape must
be cleared in the end in order to complete the realization of the instruction of M . The
coding will be designed in such a way that it will be possible to unambiguously interpret
the content of the input tape at any given time.

4 Coding

Consider a finite nonempty alphabet Σ and ∆ /∈ Σ. Our goal is to describe a mechanism
which would enable us to encode any information to an arbitrary, sufficiently long word
w ∈ Σ∗, only by replacing some letters of w by symbols ∆. Moreover, we require that it
should be possible to recover the original word w at any time.

Theorem 4.1 (Coding 1). Let Σ be a finite nonempty alphabet and ∆ /∈ Σ. Then there
exist a positive integer B and a table T of triples (x, z, y), xzy ∈ ΣB, z ∈ Σ, such that:

1. {xzy | (x, z, y) ∈ T} = ΣB,

2. For each pair (x, y), xy ∈ ΣB−1 there exists exactly one z ∈ Σ : (x, z, y) ∈ T .

15

This theorem guarantees us that if we take any word w ∈ ΣB then there exists a
factorization w = xzy, such that (x, z, y) ∈ T . Now if we replace the letter z by ∆, we do
not lose any information, since we are able to recover the letter z from the context (x, y)
by using the table T .

Proof. Let us set B = |Σ| and define a bipartite graph G = (U ∪ V,E) as follows:

1. U = ΣB,

2. V = (Σ ∪ {∆})B ∩ (Σ∗ ·∆ · Σ∗),

3. E = {{u, v} | u ∈ U, v ∈ V, u = xzy, v = x∆y}.

There is an edge {u, v} ∈ E between u ∈ U and v ∈ V if and only if v can be obtained
from u by replacing one of its letters by the symbol ∆ (see Figure 2).

Figure 2: Bipartite graph G = (U ∪ V,E) for Σ = {a, b, c}.

It is easy to see, that:

1. |U | = |ΣB| = BB,

2. |V | = B|Σ|B−1 = BB.

Moreover, the degree of each u ∈ U in G is B = |Σ| and the degree of each v ∈ V in G
is |Σ|. Therefore, G is a |Σ|-regular bipartite graph. By Hall’s Theorem [3] there exists a
perfect matching in G, which gives us the required table T .

Example 4.1. Consider Σ = {a, b}. The adjacency matrix of the corresponding bipartite
graph G used in the proof of Coding 1 Theorem 4.1 is shown in Table 1.

The highlighted perfect matching gives us the following bijection:

aa↔ a∆, ab↔ ∆b, ba↔ ∆a, bb↔ b∆,

and the corresponding table T = { (a, a, λ), (λ, a, b), (λ, b, a), (b, b, λ) }.

Example 4.2. For Σ = {a, b, c} we only give the resulting bijection:

16

a∆ b∆ ∆a ∆b

aa 1 0 1 0
ab 1 0 0 1
ba 0 1 1 0
bb 0 1 0 1

Table 1: Adjacency matrix for Σ = {a, b}.

aaa↔ ∆aa, aab↔ ∆ab, aac↔ aa∆, aba↔ ∆ba, abb↔ a∆b,
abc↔ ab∆, aca↔ a∆a, acb↔ ac∆, acc↔ a∆c, baa↔ b∆a,
bab↔ b∆b, bac↔ ba∆, bba↔ bb∆, bbb↔ ∆bb, bbc↔ ∆bc,
bca↔ ∆ca, bcb↔ bc∆, bcc↔ b∆c, caa↔ c∆a, cab↔ ca∆,
cac↔ ∆ac, cba↔ cb∆, cbb↔ c∆b, cbc↔ c∆c, cca↔ cc∆,
ccb↔ ∆cb, ccc↔ ∆cc.

Next consider the following sample word:

w = accbabccacaabbcabcbcacaa.

Let us factorize this word w into the groups of B = 3 letters:

w = acc | bab | cca | caa | bbc | abc | bca | caa.

Suppose that we want to encode the information i = 11001010 into the word w without
losing any information. We can achieve this by marking the groups of w by ∆ that corre-
spond to 1s in the information i. If we use the above bijection we will be able to recover the
original word w. After encoding the information i we get the following word:

w′ = a∆c | b∆b | cca | caa | ∆bc | abc | ∆ca | caa.

By applying the encoding from Example 4.2 we can store an n-bit information in any
word w of length at least nB. However, we need to “see” the whole word w in order to
correctly define the groups of B letters.

The perfect matching of a regular bipartite graph G can be found effectively with
respect to the size of the graph G. However, the table defining the bijection contains |Σ||Σ|
entries. It is an open problem, whether there is an algorithm realizing the bijection in a
polynomial time with respect to |Σ| without knowing the defining table.

As we can see, the coding introduced in Coding 1 Theorem 4.1 is length-preserving. It
means, that if we encode an information into a word w, the length of the word remains
preserved. The question is, whether we can find a length-reducing coding. The answer is:
yes, trivially. Consider the following word:

w = ababaababbbaabaa.

First, we group together consecutive letters of w:

w = ab ab aa ba bb ba ab aa.

17

Now consider the word w as a word over the pair alphabet:

Σ = {aa, ab, ba, bb}.

If we apply the length-preserving coding of Coding 1 Theorem 4.1 on the pair alphabet Σ,
we automatically get a length-reducing coding over the original alphabet Σ. This is because
the rewriting of one letter from the pair alphabet Σ by ∆ is equivalent to the rewriting of
two letters from the original alphabet Σ by ∆. However, in this case B = 2|Σ| = 2|Σ|2. For
example, for Σ = {a, b} we need groups of B = 2|Σ|2 = 8 letters. Can we do better? The
answer is: yes, but not too much.

Theorem 4.2 (κ-Reducing Coding 1). Let κ be a nonnegative integer, Σ a finite nonempty
alphabet and ∆ /∈ Σ. Then there exist a positive integer B and a table T of triples (x, z, y),
xzy ∈ ΣB, z ∈ Σκ+1, such that:

1. {xzy | (x, z, y) ∈ T} = ΣB,

2. For each pair (x, y), xy ∈ ΣB−κ−1 there exists exactly one z ∈ Σκ+1 : (x, z, y) ∈ T .

Proof. Again, consider a bipartite graph G = (U ∪ V,E), where:

1. U = ΣB,

2. V = (Σ ∪ {∆})B−κ ∩ (Σ∗ ·∆ · Σ∗),

3. E = {{u, v} | u ∈ U, v ∈ V, u = xzy, v = x∆y}.

There is an edge {u, v} ∈ E between u ∈ U and v ∈ V if and only if v can be obtained
from u by replacing one of its subwords z ∈ Σκ+1 by ∆. If we define B = |Σ|κ+1 + κ then
we get the equality |U | = |V |, because:

1. |U | = |ΣB| = |Σ|B,

2. |V | = (B − κ)|Σ|B−κ−1 = |Σ|κ+1|Σ|B−κ−1 = |Σ|B.

Moreover, the degree of each u ∈ U in G is B−κ = |Σ|κ+1 and the degree of each v ∈ V in
G is |Σ|κ+1. Therefore, G is a |Σ|κ+1-regular bipartite graph. By Hall’s Theorem [3] there
exists a perfect matching in G, which gives us the required table T .

For example, for Σ = {a, b} the 1-Reducing Coding 1 gives us B = |Σ|κ+1 + κ = 5,
which is an improvement to B = 8. However, this is not asymptotically better.

The obvious problem with Coding 1 is that we need to “see” the whole word w in order
to correctly define the groups of B letters. One possible way how to avoid this problem is to
find a coding that is not dependent on any specific factorization of the word to the groups
of letters. Our goal is to be able to recover the original letters hidden by the symbols ∆
only with the knowledge of local contexts of these symbols ∆.

18

Theorem 4.3 (Coding 2). Let Σ = {a, b}. There exist positive integers B, K, and a table
T of triples (x, z, y), x, y ∈ ΣK, z ∈ Σ, such that:

1. For each context (x, y) ∈ ΣK × ΣK there exists at most one triple (x, z, y) ∈ T .

2. For each word w ∈ ΣB there exists at least one triple (x, z, y) ∈ T such that xzy is a
subword of w.

Apparently, we can replace the letter z by ∆ in the subword xzy of w without losing
any information, because we can recover z from the context (x, y).

Proof. Let us set B = 8, K = 2, and

T = { (aa, a, aa), (ab, a, aa), (ba, b, aa), (bb, a, aa),
(aa, a, ab), (ab, a, ab), (ba, b, ab), (bb, a, ab),
(aa, b, ba), (ab, a, ba), (ba, b, ba), (bb, b, ba),
(aa, b, bb), (ab, a, bb), (ba, b, bb), (bb, b, bb) } .

The condition 1 obviously holds. The condition 2 is verified in Table 2.

aaaaa??? aaaab??? aaabaaa? aaabaab?
aaababa? aaababb? aaabba?? aaabbb??
aabaaa?? aabaab?? aababa?? aababb??
aabba??? aabbb??? abaaa??? abaab???
ababa??? ababb??? abbaaa?? abbaab??
abbabaa? abbabab? abbabba? abbabbb?
abbbaaa? abbbaab? abbbabaa abbbabab
abbbabba abbbabbb abbbba?? abbbbb??
baaaaa?? baaaab?? baaabaaa baaabaab
baaababa baaababb baaabba? baaabbb?
baabaaa? baabaab? baababa? baababb?
baabba?? baabbb?? babaa??? babab???
babba??? babbb??? bbaaa??? bbaab???
bbabaa?? bbabab?? bbabba?? bbabbb??
bbbaaa?? bbbaab?? bbbabaa? bbbabab?
bbbabba? bbbabbb? bbbba??? bbbbb???

Table 2: All possibilities for w ∈ ΣK .

Note that T can be shortly described as T = {(xx, y, y?)}∪{(xy, x, ??) | x 6= y}, where
x, y ∈ {a, b}, and the symbol ? represents an arbitrary letter. The intuition behind the
condition 2 is the following: consider a sufficiently long word w ∈ Σ∗. There are only two
cases: either each (internal) letter in w is doubled, i.e. each (internal) letter x in w has a
neighbor x, or there exists an (internal) letter x in w which does not have a neighbor x. In
the first case the pattern xxyy will occur, and in the second case the pattern xyx, where
x 6= y, will occur.

19

The obvious advantage of Coding 2 is that we do not need to factorize the input word
into the groups in order to decode ∆ symbols. However, it is an open problem, whether
Coding 2 works also for larger alphabets. If it does, we could use the pairing argument to
prove the length-reducing version of Coding 2.

Since we can prove Coding 2 Theorem 4.3 only for two-letter alphabets, we will use only
Coding 1 in our algorithms. For simplicity we will use only the length-preserving version
of Coding 1. In the end of this report we will give an argument explaining that it is also
possible to use the length-reducing version of Coding 1 in our algorithms.

As we have already mentioned before, the problem with Coding 1 is that the solver
S ∈ S∆cl may not be able to decode ∆ symbols in the input word w, since w can often
be only a small part of the original input tape. If the word w does not start with the left
sentinel ¢ then we are not able to correctly factorize w into the groups of B letters, and
thus we are not able to interpret ∆ symbols occurring in the word w.

Fortunately, there exists a simple trick how to avoid this problem. In order to correctly
factorize the input word w into the groups of B letters we need only some “fixed point”,
which exactly defines the starting position of the first group of the correct factorization. The
left sentinel ¢ is one example of such fixed point. Thus in the first phase we distribute such
fixed points throughout the whole input tape starting at the left sentinel ¢. The distances
between two consecutive fixed points will be approximately constant. We illustrate this
idea on the following simplified example. Suppose that we have the following word:

w = abacc∆bacbbacacbcbaacbcbacbacabab

The symbol ∆ in w represents our fixed point and defines the following factorization:

w = abacc∆ | bac | bba | cac | bcb | aac | bcb | acb | aca | bab

We place the next fixed point into the 9th group to the right from the highlighted fixed
point ∆ (by using the bijection from Example 4.2):

w′ = abacc∆ | bac | bba | cac | bcb | aac | bcb | acb | aca | b∆b

As you can see, the number of letters between two consecutive fixed points is either 3× 8,
or 3 × 8 + 1, or 3 × 8 + 2. We place another fixed point whenever the input word w is of
the form w ∈ ¢ · Σ≥3×9 or w ∈ Σ∗ ·∆ · Σ≥3×9.

5 Idea of the Algorithm

In this section we describe the algorithm behind the solver S ∈ S∆cl, which imitates
the work of the k-∆∗cl-RA M constructed according to a given context-free grammar in
Chomsky normal form (as described in Section 2). The automaton M works in a bottom-
up manner. If the automaton recognizes that some subword w of the input tape can be
derived from a nonterminal Ni, then it can replace the inner part of this subword w by
the code ∆r, where r = m0 + m2(i − 1) + j − 1 for some j ∈ {1, 2, . . . ,m2}, leaving the

20

first k letters and the last k letters of w as separators. The segment ∆r together with
its separators represents a code for the nonterminal Ni. These separators have a nice and
useful property: if one changes some letters in these separators, the acceptance of the whole
word on the input tape remains unchanged.

Our solver S is not obliged to preserve the representation used by the automaton M .
Moreover, because of some technical reasons, we will not represent the nonterminal Ni by
using a continuous segment ∆r. Instead, we will use the segment ∆x∆r−4y∆, where x, y ∈ Σ
are the so-called “holes”. These holes are useful in the sense that they can unambiguously
identify the start and the end of the segment ∆x∆r−4y∆ inside any word marked by other
symbols ∆. For example, in the following word:

a∆cca∆∆b∆r−4a∆aab

we have underlined such a segment with holes. It will be clear later why we need this
representation. However, for the simplicity of verbalization we will often use the following
convention: whenever we talk about a continuous segment ∆r with holes, we will always
mean the segment ∆x∆r−4y∆, where x, y ∈ Σ represent the holes.

In the following we introduce another conventions which will be used later in the de-
scription of the resulting algorithm. As we have already explained, if we want to encode
the information into some word w ∈ Σ∗, we need to know the factorization of this word
w into the groups of B letters (see Section 4). This factorization (once defined) cannot be
changed in the course of the algorithm. Otherwise, we could misinterpret the symbols ∆
occurring in the word w. In order to correctly factorize the input word we need to find the
so-called fixed point. We recognize three types of fixed points:

1. Fixed point ¢: In the word ¢ ·w, where w ∈ Γ∗, the fixed point ¢ defines the following
groups:

¢ | w1 | w2 | w3 | . . . ,
where w = w1w2w3 . . ., and |w1| = |w2| = |w3| = . . . = B. In other words, the start
of the input tape is a fixed point.

2. Fixed point ∆r with holes : In the word uw, where u is the segment ∆r with holes,
r = m0 +m2(i− 1) + j − 1 for some j ∈ {1, 2, . . . ,m2}, the fixed point u defines the
following groups:

w0 | w1 | w2 | w3 | . . . ,
where uw = w0w1w2 . . ., |w0| = m0 + m2(i − 1), and |w1| = |w2| = |w3| = . . . = B.
In other words, the segment ∆r with holes is a fixed point. Note that |w0| ≤ r. The
reason why we factorize the word uw in this way will be explained later.

3. Fixed point u∆v∆: In the word u∆v∆w, where u ∈ Σ2B, v ∈ Σ≤2B−2, w ∈ Σ · Γ∗,
the fixed point u∆v∆ defines the following groups:

u∆v∆ | w1 | w2 | w3 | . . . ,

where w = w1w2w3 . . ., and |w1| = |w2| = |w3| = . . . = B. In other words, two
symbols ∆, which are close to each other, represent a fixed point.

21

To prevent the accidental creation of fixed points of the type u∆v∆ we introduce the
following convention. We do not encode the information straight into the groups of length
B, but rather to the so-called units. A unit is defined as three consecutive groups of length
B. If we want to mark a unit in order to encode one bit of information we always mark the
middle group of the unit. The first and the third group of the unit serves as separators.
Thanks to these separators any two consecutive symbols ∆ in any two neighboring units are
separated by at least 2B letters from Σ. We illustrate this idea on the following example.
Consider Σ = {a, b, c} and the following word:

abc∆raccbabccacaabbcabcbcccaa,

where r = m0 +m2(i− 1). The fixed point ∆r (with holes) defines the following groups:

abc∆r || acc | bab | cca || caa | bbc | abc || bcc | caa,

where the units are separated by two lines (||). The middle groups of the units are in bold.
Note that if we mark two consecutive units, we never get the fixed point of the type

u∆v∆. However, we can always obtain such a fixed point by marking two consecutive
groups, provided that there are at least two unmarked groups preceding the first marked
group. We use this observation in the first phase of the algorithm, in which we distribute
the fixed points of this type throughout the whole input tape.

In the following we introduce the term working area. Consider an input tape with all
its fixed points. If we erase these fixed points, the input tape will break into the segments,
which we refer to as the working areas (see Figure 3).

Figure 3: The segmentation of the input tape into the working areas.

Fixed points exactly define the factorization into the groups of length B and thus they
also define the corresponding units inside these working areas. The term working space
refers to the longest subword of the working area containing only the whole units that can
be used to encode some information (see Figure 4).

Since we encode the information only into the middle groups of the units, no fixed
points can be created in this way. However, there is one special exception. During the
computation the algorithm gets into the state when it starts to create a new continuous
segment ∆r (with holes) somewhere inside the working space. This segment will (after
completing) represent a code for a nonterminal. By definition, the completed segment ∆r

22

Figure 4: Working space divided into the units.

(with holes) represents also a new fixed point. This could be a problem, since the process
of the realization of the instruction of the automaton M is not yet completed at this stage.
In order to finish this process we must also clear the remaining letters on the both sides of
the newly created segment ∆r (with holes). The problem is, that a new fixed point could
break the correctness of the previously defined factorization into the groups of length B.
Therefore, we introduce some new terms that will enable us to solve this problem.

The working area is called empty if it does not contain a subword u∆v, where u, v ∈ Σ4L.
Otherwise we call the working area reserved. Next we will distinguish between valid and
invalid fixed points. The fixed points of the types ¢ and u∆v∆ are always valid. The fixed
point of the type ∆r (with holes) is valid only if there exists at least one empty working
area adjacent to this fixed point. Otherwise, the fixed point ∆r (with holes) is invalid.
Thus, if we want to make the fixed point ∆r (with holes) invalid, we only need to place
this fixed point between two marked units.

Now we are ready to give the details of the algorithm imitating the work of the
k-∆∗cl-RA M (see Meta-Algorithm 5.1). We explain the individual steps of this algorithm
later.

Meta-Algorithm 5.1. The algorithm describing the work of the solver S ∈ S∆cl, which
imitates the work of the k-∆∗cl-RA M = (Σ,Γ, I).

Input: Word w ∈ {λ, ¢} · Γ∗ · {λ, $}.
Description:

1. Find all fixed points inside w. Determine which of them are valid.
2. Let w = z0o0z1o1 . . . zdod, where:
a) z0 is a fixed point (it may not be possible to decide if it is valid),
b) z1, . . . , zd are the (decidable) valid fixed points of w,
c) o0, . . . , od are the corresponding working areas in w.
The working area od may contain the right sentinel $.
If it is not possible to factorize w in this way, especially if w does not start
with the fixed point, then Reject.
3. Identify the groups of length B and the corresponding units in the work-
ing areas o1, . . . , od. If z0 is a valid fixed point then take also the working
area o0 into consideration.
4. If the working area od ∈ Σ≥const · {λ, $} (where const will be specified

23

later), then add another fixed point of the type u∆v∆ into this working
area and Halt.
5. Recover all symbols ∆ in the word w that can be recovered.
We use the notation ū for the recovered word u.
6. If w̄ = ¢ · ū · $ and (¢, ū→ λ, $) ∈ I, then Accept.
7. Otherwise, let φ = (x, u → ∆r, y) be the instruction of M , which can
be applied in the subword zαoα . . . zβoβ, where both zα and zβ are valid
fixed points. More precisely, either there exists a reserved working area oγ
(α ≤ γ ≤ β), in which it is exactly encoded, which instruction φ is being
realized in this area, or there is no such working area and xuy is a subword
of the word z̄αōα . . . z̄β ōβ (Even if there was a reserved working area oγ,
then the encoding process in this area might not be finished, which would
automatically imply that all its ∆ symbols can be recovered). In the case
that all the working areas oα, . . . , oβ are empty, we only need to choose
one of them. We know that in the word u there exists a sufficiently long
subword v ∈ Σ∗ in which we can encode the information. Suppose that v
covers the working area oγ, where α ≤ γ ≤ β. Then we choose oγ if both
of the following two conditions hold:
a) Either γ = α = 0 and z0 = ¢, or γ > α ≥ 0,
b) Either γ = β = d and od ends with the sentinel $, or γ < β ≤ d.
If there is no such instruction then Reject.
8. Execute one step of the realization of the instruction φ and Halt.

Step 1 is clear. Fixed points are exactly defined nonoverlapping segments (we suppose
that m0 ≥ 8). If we delete these segments the input word w will break into the areas.
These areas enable us to determine which fixed points are valid and which are not. The
only exception is the first fixed point z0. If z0 is of the type ∆r (with holes) then we may
not be able to decide if z0 is a valid fixed point, since we do not see to the left of z0. We
always suppose that the input word w starts with a fixed point (otherwise, we reject). Valid
fixed points exactly define both the factorization w = z0o0z1o1 . . . zdod in Step 2, and the
groups of length B and the corresponding units in Step 3. Thanks to these factorizations
we are able to recover the symbols ∆ occurring in the word w. If u is a subword of w then
we denote by ū the word u with all possible symbols ∆ occurring in u recovered. We may
not be able to recover all the symbols ∆ in u. We will describe later when this happens.
During the recovering process we also fill the holes of the segments ∆r (with holes) by the
symbols ∆. This is because the original automaton M uses as the code for the nonterminals
the full segments ∆r without holes.

Step 4 is important in the first phase of the algorithm when we distribute the fixed
points of the type u∆v∆ throughout the whole input tape. As we have already mentioned,
we create the fixed point of the type u∆v∆ by marking two consecutive groups by the
symbols ∆. Therefore, it is necessary to split Step 4 into two smaller steps – each step for
marking one group. In the case that it is not necessary to create another fixed point of the
type u∆v∆, we continue with Step 5.

24

In Step 6 we cover the instructions from I1 of the automaton M . This Step can be
realized only in the case when we see the whole input tape (i.e. z0 = ¢ and od ends with
the symbol $). This is the only place of the algorithm in which the solver can actually
accept the input word.

The most interesting steps are Step 7 and Step 8. In Step 7 we first choose nondeter-
ministically the instruction φ from I2, which can be applied in the word ū. Since it is not
possible for the solver S to realize this instruction in a single step, we need to choose a
working area oγ in which we will unfold the whole process of realizing this instruction φ
into many individual steps. The conditions in Step 7 will guarantee us that the neighboring
areas with the area oγ will be empty (if they exist). The reason for this is that we do not
want to unintentionally invalidate some other fixed points in Step 8. It is also possible
that there already exists a reserved working area oγ in the input word w. In that case we
only continue in the process of the realization of the instruction encoded in this reserved
working area. Step 8 is described in detail in the following Section 6.

6 Realization of single Instruction φ

In this section we describe Step 8 of Meta-Algorithm 5.1 in detail. Suppose that we want
to imitate the instruction φ = (x, u → ∆r, y) of the automaton M , where x, y ∈ Σk,
r = m0 + m2(i − 1) + (j − 1), 1 ≤ i ≤ m, 1 ≤ j ≤ m2. The number i is fixed for this
instruction. However, we can choose j ∈ {1, 2, . . . ,m2} arbitrarily. We will explain later
which value we have to choose for j. Suppose that the instruction φ can be applied in the
subword zαoα . . . zβoβ of the input word w, where both zα and zβ are valid fixed points. We
unfold the process of the realization of the instruction φ into several individual steps. All
these steps will be executed in the working area oγ, where α ≤ γ ≤ β. Suppose that the
neighboring working areas with oγ are empty (if they exist). Let pγ be the working space
corresponding to the working area oγ, and D1, . . . , Dh be all its units (see Figure 5).

Meta-Algorithm 6.1 describes the realization of the instruction φ in detail. The used
variables and constants will be defined later. The interpretation of the working space pγ is
illustrated in Figure 6.

Meta-Algorithm 6.1. The algorithm realizing one step of the instruction φ.

Input: Word w ∈ {λ, ¢} · Γ∗ · {λ, $}, working area oγ, [instruction φ].

Description: From the following steps execute the first step, which was not
yet executed and Halt. If you encounter a conflicting step, i.e. a step
which is either not possible to execute or which does not correspond to the
information already encoded in the working area oγ, then Reject.
1. Mark the unit D2. The corresponding ∆ is called the reference point.
Let left be the position of the first letter of u relative to the reference point,
right be the position of the last letter of u relative to the reference point.
Compute j and s = m0 + m2(i − 1) + (j − 1). If the instruction φ is not
given at the input, compute these values from the information encoded in

25

Figure 5: The realization of the instruction φ.

Figure 6: The interpretation of the working space pγ.

26

the corresponding units. If it is not possible, i.e. the units Dλ, Dρ, Dσ, Dδ

are not marked yet, then Reject.
2. Encode left into the units Dλ1 , . . . , Dλ2. Mark the unit Dλ.
3. Encode right into the units Dρ1 , . . . , Dρ2. Mark the unit Dρ.
4. Encode s into the units Dσ1 , . . . , Dσ2. Mark the unit Dσ.
5. Mark the unit Dδ.
6. Encode the segment ∆r (with holes) into the units Dδ1 , . . . , Dδ2.
7. Clear all letters from the end of the segment ∆r (with holes) to the
position right.
8. Clear all letters from the position left to the beginning of the segment
∆r (with holes).

The aforementioned algorithm is designed in such a way, that at any time it is possible
to determine unambiguously which steps were already executed and which were not. Each
step of the algorithm is consistent with some instruction φ of the simulated automaton M ,
therefore the solver cannot accept more than M . We will show later that it is possible to
define the parameters and constants used in the solver in such a way, that each instruction
of M can be simulated by the solver. Moreover, by using the length-reducing version of
coding it is possible to obtain a length-reducing version of the solver which shortens the
word in each step.

The reference point not only reserves the working area oγ (the units D1 and D3 must
remain empty), but it also exactly defines the relative positions of the first and the last
letter of the word u. The number left is defined as the number of letters of the shortest
prefix of u containing the reference point. By analogy, the number right is defined as the
number of letters of the smallest suffix of u containing the reference point.

Steps 1 to 5 are nondestructive in the sense that we are able to recover all the symbols ∆
created by these steps. However, when we start to create the continuous segment ∆r (with
holes) we lose the ability to recover all the symbols ∆ in the working area oγ. Therefore,
before we start to create this segment, we need to have all the information necessary to
complete the realization of the instruction φ already encoded in the working area oγ. We
use the standard binary representation for the numbers and we always encode the bits
from the lowest significant bit to the most significant bit in the direction from the left to
the right. For all the numbers left, right and r we use a fixed number of bits. Hence it is
easy to recognize markings in units Dλ, Dρ, Dσ and Dδ.

If the unit Dδ is marked then we are in the phase of creating the segment ∆r (with
holes), i.e. Step 6. We build this segment step by step from the left to the right by replacing
the letters in the subword Dδ1 , . . . , Dδ2 by the symbols ∆. After the completion of this
segment we move to the next Step 7. Note that before we execute Step 7 the newly created
segment ∆r (with holes) is not a valid fixed point, since this segment is placed between
two marked units (the reference point and the marked unit Dδ). After executing Step 7
this segment becomes a valid fixed point. This is because we clear the marked unit Dδ and
all the areas neighboring with the working area oγ are empty (if they exist). Therefore,
we need to choose the parameter j in such a way, that the newly defined groups of length

27

B, defined by the newly created fixed point of the type ∆r (with holes), are exactly the
same groups as the original groups before executing Step 7. In Step 8 this problem does
not arise, because the groups of length B are always defined relatively to the right of a
fixed point.

We conclude this section by mentioning one specific problem concerning Step 7 and
Step 8. The problem is, that the position left (right, respectively) can cross the fixed point
of the type u∆v∆ (see Figure 7).

Figure 7: Problem with the fixed point of the type u∆v∆.

The positions left and right are fixed and we cannot change them (these positions are
defined by the instruction φ). Fortunately, it does not matter if we damage the fixed point
of the type u∆v∆. This is because the newly created fixed point of the type ∆r (with
holes) defines the groups of length B in exactly the same way as did the damaged fixed
point. Moreover, thanks to the holes in the newly created fixed point we do not lose even
the ability to exactly define the borders of this newly created fixed point. The only issue is
that we lose the ability to recover the ∆ symbol(s) of the damaged fixed point. Fortunately
these ∆ symbols are close enough to the newly created segment ∆r (with holes), so they
are situated in the separator corresponding to this segment. As we have already said, the
letters in the separator can be set arbitrarily. Therefore, if we want to recover these symbols
∆ of the damaged fixed point, we can use any letter we want.

Note that the position left (right, respectively) cannot cross the fixed point of the type
∆r (with holes), because the word xuy covers always the whole code of the nonterminal
(including its separators).

7 Choosing the Parameters

In this section we define all the parameters and constants used in the previous sections.
Let Σ be a given alphabet and G be a context-free grammar with m nonterminals.

First we set m0 := 8. Thanks to this setting, each segment ∆r (with holes) will contain
∆4 as a subword. This is how we recognize such segments.

Each group is B = |Σ| letters long (since we use Coding 1) and each unit is (by
definition) 3B letters long. The parameter m2 defines the range for the parameter j in

28

Meta-Algorithm 6.1. Since we need this parameter j only to correctly adjust the groups of
length B defined by the newly created fixed point, it suffices to choose m2 = 3B.

The following computations will involve the parameter h, which represents the number
of units necessary to allow the execution of Meta-Algorithm 6.1.

The numbers left and right are bounded above by the width of the instruction φ, i.e.
by the constant 2c, where c = U + m1 − 1 and U = m0 + m2m − 1 + 2k. Therefore, to
encode such a number we need at most dlog2(2c)e units. The number r is bounded above
by m0 +m2m. Observe that this upper bound depends neither on m1, nor on k. To encode
r we need at most dlog2(m0 +m2m)e units. Finally, to create the segment ∆r (with holes)
we need at most r letters, i.e. at most dm0+m2m

3B
e units. Therefore, we need at most

h = O(m0 +m2m+ log(m1 + 2k)).

By Lemma 2.4 m1, k = Θ(t). Therefore, for any real α > 0, there exists a big enough t
such that αt is bigger than h. By using this technique we can guarantee, for any instruction
φ = (x, u → ∆r, y), a big enough subword v ∈ Σ≥t of the word u. This subword v will
guarantee us the existence of a long enough working area oγ inside this subword v. In our
case it is not sufficient only to say that v ∈ Σ≥t is long enough, because in our algorithm
this subword can be interrupted by fixed points of the type u∆v∆. The fact that v ∈ Σ∗

only means that we are able to recover the symbols ∆ of these fixed points. However, if
v is long enough then there will be many of these fixed points and therefore also many of
the corresponding working areas. Therefore, it will always be possible to choose one such
area oγ with empty neighbors.

Let us set α = 1
6

1
3B

, and let t be the smallest positive integer such that for the corre-
sponding parameters m1 and k the following holds:

1

6

1

3B
t > h.

In the first phase of our algorithm let us distribute the fixed point throughout the input
working tape in such a way that the corresponding working spaces between any two con-
secutive fixed points contain at least 2h units. Since t is bigger than the length of 6h units,
it is easy to see that we will always be able to find a long enough working area oγ inside
the subword v ∈ Σ≥t.

Also note that during the course of our algorithm the length of every working area
will be bounded above by 2h units. This is because the fact that during the course of
our algorithm we only replace some segments by new fixed points, so it is not possible to
enlarge any working area in this way.

Finally, the constant K of the querier must be long enough to enable us to see any
instruction φ of M as a whole, plus some extra working spaces on both sides of this
instruction. It is sufficient to set K = O(c+ h) = O(c).

29

8 Length-Reducing Algorithm

In is not difficult to modify Meta-Algorithms 5.1 and 6.1 in order to work with the length-
reducing version of Coding 1 (see Section 4). We only need to redefine the length of the
word | · | to a weighted sum of its letters, where the letters from Σ have the weight 1 and the
symbol ∆ has the weight equal to κ+ 1, where κ is the reduction factor from κ-Reducing
Coding 1 Theorem 4.2. Moreover, in order to create the segment ∆r (with holes) we need
now (κ+ 1) times more letters, i.e. (at most) (κ+ 1)(m0 +m2m) letters. When we create
the segment ∆r (with holes) we always rewrite κ + 1 consecutive letters from Σ to one
symbol ∆. It is easy to see that the constant κ can be easily incorporated into the previous
consideration in Section 7.

9 Conclusion

∆cl-RA are very limited in their operations. They can in one step either completely delete
a subword or they can delete a subword and simultaneously mark its position by a single
symbol ∆. Surprisingly, they can accept any context-free language. We have designed a
rather complicated coding of information used for encoding nonterminals during a bottom-
up analysis. It would be interesting to find a simpler encoding, e.g. without the fixed
points.

Another open problem is to characterize exactly the class of languages recognized by
∆cl-RA and ∆∗cl-RA. Obviously, L(∆cl-RA) ⊆ L(∆∗cl-RA), but we do not know whether
this inclusion is strict. Of course, ∆cl-RA and ∆∗cl-RA should be more precisely related to
the stateless restarting automata from [7] and [8]. In contrast to the stateless restarting
automata, ∆cl-RA and ∆∗cl-RA can use only single auxiliary symbol ∆, but on the other
hand, they need not to be length reducing.

References

[1] P. Černo and F. Mráz. Clearing restarting automata. In H. Bordinh, R. Freund,
M. Holzer, M. Kutrib, and F. Otto, editors, Workshop on Non-Classical Models for
Automata and Applications (NCMA), volume 256 of books@ocg.at, pages 77–90. Öster-
reichisches Computer Gesellschaft, 2009.

[2] P. Černo and F. Mráz. Clearing restarting automata. Fundamenta Informaticae,
104(1):17–54, 2010.

[3] P. Hall. On representatives of subsets. Journal of the London Mathematical Society,
s1-10(1):26–30, 1935.

[4] J. E. Hopcroft and J. D. Ullman. Formal Languages and their Relation to Automata.
Addison-Wesley, Reading, 1969.

30

[5] P. Jančar, F. Mráz, M. Plátek, and J. Vogel. Restarting automata. In H. Reichel,
editor, FCT’95, volume 965 of LNCS, pages 283–292, Dresden, Germany, August 1995.
Springer.

[6] M. Kutrib, H. Messerschmidt, and F. Otto. On stateless deterministic restarting
automata. In M. Nielsen, A. Kučera, P. B. Miltersen, C. Palamidessi, P. Tůma, and
F. D. Valencia, editors, SOFSEM, volume 5404 of LNCS, pages 353–364. Springer,
2009.

[7] M. Kutrib, H. Messerschmidt, and F. Otto. On stateless deterministic restarting
automata. Acta Inf., 47:391–412, December 2010.

[8] M. Kutrib, H. Messerschmidt, and F. Otto. On stateless two pushdown automata
and restarting automata. International Journal of Foundations of Computer Science,
21:781–798, 2010.

[9] H. Maurer, A. Salomaa, and D. Wood. Pure grammars. Information and Control,
44(1):47 – 72, 1980.

[10] F. Otto. Restarting automata. In Z. Ésik, C. Mart́ın-Vide, and V. Mitrana, edi-
tors, Recent Advances in Formal Languages and Applications, volume 25 of Studies in
Computational Intelligence, pages 269–303. Springer, Berlin, 2006.

31

	Introduction
	Theoretical Background
	Algorithmic Viewpoint
	Coding
	Idea of the Algorithm
	Realization of single Instruction
	Choosing the Parameters
	Length-Reducing Algorithm
	Conclusion

