
Univerzita Karlova v Praze
Matematicko-fyzikální fakulta

BAKALÁRSKA PRÁCA

Peter Černo

Prostredie pre reštartovacie automaty

Kabinet software a výuky informatiky

Vedúci bakalárskej práce: RNDr. František Mráz, CSc.

Študijný program: Obecná informatika

Praha, 2008

ii

Charles University in Prague
Faculty of Mathematics and Physics

BACHELOR THESIS

Peter Černo

An environment for restarting automata

Department of Software and Computer Science Education

Supervised by RNDr. František Mráz, CSc.

Study program: General Computer Science

Prague, 2008

iv

Acknowledgements

I would like to thank RNDr. František Mráz, CSc. for his time and all advices
and suggestions that led to writing this thesis.

I declare that I have written all of the thesis on my own with the exceptions
explicitly mentioned, and that I cited all used sources of information. I agree
with public availability and lending of the thesis.

In Prague 2nd November 2008 Peter Černo

v

vi

Contents

Preface xi

1 Theoretical background 1
1.1 Basic definitions and notations 1
1.2 Finite state automata . 1
1.3 Grammars . 8
1.4 Restarting automata . 9

2 Learning regular languages 13
2.1 Dana Angluin’s L* Algorithm 14
2.2 RPNI Algorithm . 19
2.3 SLT Languages . 22

3 Implementation 25
3.1 Requirements . 25
3.2 Architecture . 27
3.3 General overview . 29
3.4 Core classes . 31

3.4.1 GenericString<T> 31
3.4.2 Alphabet<T> . 33
3.4.3 DFA<T> . 34
3.4.4 LStar<T> . 36
3.4.5 RPNI<T> . 39
3.4.6 Regex . 41
3.4.7 SLT<T> . 42

3.5 Introduction to XML Serialization in C♯ 43
3.5.1 An example . 43
3.5.2 Controlling XML Serialization 46
3.5.3 Serializing compositions 47

vii

3.5.4 Serializing derived classes 48
3.5.5 XML Serialization summary 50

3.6 XML counterparts of core classes 51
3.6.1 AlphabetXML<T> 53
3.6.2 DFAXML<T> . 54

3.7 Restarting automata . 56
3.7.1 Languages . 57
3.7.2 Metainstructions . 59
3.7.3 RestartingAutomaton<T> 60

3.8 How to add new learning protocols 60
3.9 How to add new functionality 64

4 User guide 65
4.1 Purpose . 66
4.2 Installation . 67
4.3 Language tools . 67

4.3.1 DFA Modeler Tool 68
4.3.2 LStar Algorithm Tool 70
4.3.3 RPNI Algorithm Tool 74
4.3.4 Regular Expression Tool 76
4.3.5 SLT Language Tool 76

4.4 Construction of restarting automaton 79
4.5 Using restarting automaton 82

4.5.1 Word To All . 82
4.5.2 Word To Word . 84

4.6 Remoting . 85

Conclusion 89

Bibliography 91

viii

Názov: Prostredie pre reštartovacie automaty
Autor: Peter Černo
Katedra (ústav): Kabinet software a výuky informatiky
Vedúci bakalárskej práce: RNDr. František Mráz, CSc.
e-mail vedúceho: Frantisek.Mraz@mff.cuni.cz

Abstrakt: Reštartovacie automaty sú lingvisticky motivované modely au-
tomatov, ktoré môžu byť použité napríklad na kontrolu správnosti viet.
Hlavným cieľom tejto práce je vytvoriť špecializovaný program, ktorý umožní
jednoduchý interaktívny návrh a testovanie týchto automatov a poskytne
špecializované nástroje určené na učenie konečných automatov a definovanie
jazykov. Práca prezentuje teoretické základy a uvádza formálnu definíciu reš-
tartovacieho automatu. Ďalej sú v práci diskutované možnosti implementá-
cie takéhoto systému a je popísaná skutočná realizácia systému. K práci je
priložená užívateľská príručka.
Kľúčové slová: regulárne jazyky, reštartovací automat, redukčná analýza,
gramatická inferencia

Title: An environment for restarting automata
Author: Peter Černo
Department: Department of Software and Computer Science Education
Supervisor: RNDr. František Mráz, CSc.
Supervisor’s e-mail address: Frantisek.Mraz@mff.cuni.cz

Abstract: Restarting automata are linguistically motivated models of au-
tomata that can be used e.g. in checking correctness of a sentence. The main
subject of this work is to design a specialized program which allows an easy
design and testing of these automata and provides specialized tools for learn-
ing finite automata and defining languages. The thesis presents theoretical
background and gives formal definition of restarting automaton. Then the
possibilities of implementation of such system are discussed and the actual
implementation is described. The user guide is included in the thesis.
Keywords: regular languages, restarting automata, analysis by reduction,
grammatical inference

ix

x

Preface

Restarting automaton was introduced as a model that can be used in anal-
ysis by reduction in linguistics. Analysis by reduction consists in stepwise
reductions of a given extended sentence until a correct simple sentence is ob-
tained. If this simple sentence is accepted then the whole extended sentence
is correct. Each simplification replaces a short part of the sentence by an
even shorter one. Restarting automata have been studied for several years
now. Few tools for manipulating restarting automata have been developed
and several attempts for learning restarting automata by genetic algorithms
have been made. Unfortunately the results are far from being applicable. In
spite of this we believe that restarting automata, representing a quite new
approach in linguistic and grammatical inference, have a bright future and
that it is worth to investigate them.
The main goal of this thesis is to develop a specialized program with a

simple user-friendly interface enabling to design and to test restarting au-
tomata. This program will be used as a tool for exploring properties of these
automata. The project is not intended to provide functionalities sufficient
to design complex restarting automata that are able to check correctness of
real sentences from natural languages. It allows you only to design simple
restarting automata recognizing only simple formal languages with small al-
phabets consisting of few letters. The main purpose of the project is that a
user gets a better insight of restarting automata and perhaps one day he or
she will join the research of these automata. This application also allows you
to verify some simple conjectures or hypotheses about restarting automata
and it is also a good framework on which you can build a more complicated
and specialized systems.
The whole thesis is divided into four chapters. In the first chapter we

introduce all necessary definitions and theorems without proofs mainly from
the theory of automata and formal languages. In this chapter we also give
a formal definition of a restarting automaton.

xi

The design of restarting automaton can be a complex task. One of
the possibilities how to define a restarting automaton is by using meta-
instructions. Regular languages play a main role in defining meta-instructions.
One of the methods how to obtain regular languages can be machine learning
from examples. Therefore the second chapter introduces learning protocols
for machine learning of deterministic finite-state automata (DFA). Learning
of DFA means identifying a DFA consistent with presentation comprising
of a finite non-empty set of positive and negative examples. DFAs are rec-
ognizers of regular languages and regular languages play a main role in the
meta-instructions of the restarting automaton. In this chapter we describe
three learning protocols: Dana Angluin’s L* algorithm, RPNI (Regular Posi-
tive and Negative Inference) algorithm and the class of SLT (Strictly Locally
Testable) languages.
In the third chapter we outline the development of an application for

design and testing of restarting automata. First we capture requirements
that define what such system should do. Then we make a rough analysis
and describe some core classes of the system. After reading this chapter you
should be able to modify or extend the system with your own modules.
The last fourth chapter is a user guide to the application. In this chapter

we describe how to work with RestartingAutomaton application.
All chapters are quite independent of each other, but we recommend to

start with the first chapter to acquire a good theoretical background which
is necessary for understanding the rest of the thesis.

xii

Chapter 1

Theoretical background

In this chapter we introduce all necessary definitions and theorems without
proofs mainly from the theory of automata and formal languages. The main
sources for this chapter are Barták [1], Hopcroft, Motwani, Ullman [2] and
Parekh, Honavar [6].

1.1 Basic definitions and notations

Let Σ be a finite nonempty set of symbols called the alphabet, Σ∗ be the set
of all finite strings over Σ, Σ+ = Σ∗ − {λ}. Let α, β, γ be strings in Σ∗.
Then |α| is the length of the string α, λ is a special string called the null
string and has length 0. Given a string α = βγ, β is the prefix of α and γ is
the suffix or postfix of α. A language L is a subset of Σ∗. If L1, L2 ⊆ Σ∗ are
languages, then L1.L2 = {uv ∈ Σ∗ : u ∈ L1 ∧ v ∈ L2} is the concatenation
of the languages L1 and L2. The standard order of strings of the alphabet
Σ is denoted by <. The standard enumeration of strings over Σ = {a, b} is
λ, a, b, aa, ab, ba, bb, aaa, . . .

1.2 Finite state automata

Definition A deterministic finite automaton (DFA) A is a five-tuple A =
(Q,Σ, δ, q0, F), where:

Q is a finite nonempty set of states,

Σ is an alphabet (finite nonempty set of input symbols),

1

δ : Q×Σ→ Q is a transition function that takes as arguments a state and
an input symbol and returns a state,

q0 ∈ Q is a start state and

F ⊆ Q is a set of final or accepting states.

In informal graph representation, δ is represented by arcs between states
and the labels on the arcs. If q is a state, and a is an input symbol, then
there is an arc labeled a from q to δ(q, a).
Extended transition function δ∗ : Q × Σ∗ → Q is defined inductively:

δ∗(q, λ) = q, δ∗(q, wx) = δ(δ∗(q, w), x), for all q ∈ Q, x ∈ Σ and w ∈ Σ∗.
A state d0 ∈ Q such that ∀a ∈ Σ : δ(d0, a) = d0 is called a dead state.
The language of a DFA A = (Q,Σ, δ, q0, F) is denoted L(A), and is

defined by L(A) = {w|δ∗(q0, w) ∈ F}. The language of A is the set of all
strings w that take start state q0 to one of the accepting states.
If for L ⊆ Σ∗ there exists a DFA A such that L = L(A), then we say L

is a regular language.
In the Figure 1.1 is an example of DFA with alphabet Σ = {a, b} that

accepts exactly the words with even number of as and even number of bs.

a

b

a

b

b

a

b

a

0

1

2

3

Figure 1.1: Deterministic finite automaton.

This DFA can be represented also in a tabular form:

a b

<-> 0 1 2

1 0 3

2 3 0

3 2 1

2

Definition A nondeterministic finite automaton (NFA) A is a five-tuple
A = (Q,Σ, δ, S, F), where:

Q is a finite nonempty set of states,

Σ is an alphabet (finite nonempty set of input symbols),

δ : Q×Σ→ P(Q) is a transition function that takes as arguments a state
and an input symbol and returns a set of states,

S ⊆ Q is a set of starting states and

F ⊆ Q is a set of final or accepting states.

Analogously, in informal graph representation, δ is represented by arcs
between states. If p is a state, a is an input symbol and q ∈ δ(p, a), then
there is an arc labeled a from p to q.
The word w = x1 . . . xn from Σ∗ is accepted by a nondeterministic finite

automaton A = (Q,Σ, δ, S, F) if and only if there exists a sequence of states
q0, . . . , qn ∈ Q such that:

q0 ∈ S,

qi ∈ δ(qi−1, xi) for all i ∈ {1, . . . , n} and

qn ∈ F .

λ is accepted if and only if S ∩ F 6= ∅.

We denote L(A) the set of all words from Σ∗ that are accepted by A.
Apparently every deterministic finite automaton is a special case of non-
deterministic finite automaton. But it can be also proved that the reverse
implication holds.

Theorem 1.2.1. If A is a nondeterministic finite automaton then there
exists a deterministic finite automaton B such that L(A) = L(B).

This theorem implies that nondeterministic finite automata recognize ex-
actly regular languages. Deterministic finite automata and nondeterministic
finite automata are collectively called finite state automata.

3

Definition Let A = (Q,Σ, δ, q0, F) be a deterministic finite automaton.
A labeled example (w, c(w)) for A is such that w ∈ Σ∗ and c(w) = + if
w ∈ L(A) (i.e., w is a positive example) or c(w) = − if w /∈ L(A) (i.e., w is
a negative example).
Let S+ and S− denote some set of positive and negative examples of A

respectively. A is consistent with a sample S = S+ ∪ S− if A accepts all
positive examples and rejects all negative examples.
A set S+ is said to be structurally complete with respect to DFA A if S+

covers each transition of A (except the transitions associated with the dead
state) and uses every element of the set of final states of A as an accepting
state.

aa q2q1q0

a

q3

b

d0

a,b

b
b

a,b

Figure 1.2: Deterministic finite automaton.

It can be verified that the set S+ = {b, aa, aaaa} is structurally complete
with respect to the DFA in Figure 1.2. (Here d0 is a dead state).

Definition Given a set S+, let PTA(S+) denote the prefix tree acceptor
for S+. PTA(S+) is a DFA that contains a path from the start state to
an accepting state or each string in S+ modulo common prefixes. Clearly
L(PTA(S+)) = S+. Learning algorithms such as the RPNI (see the chapter
2) require the states of the PTA to be numbered in standard order. If we
consider the set Pref(S+) of prefixes of the set S+ then for each state qi

of the PTA there exists exactly one string wi in the set Pref(S+) such that
δ∗(q0, wi) = qi and vice-versa. The strings of Pref(S+) are sorted in standard
order and each state qi is numbered by the position of its corresponding
string wi in the sorted list. The PTA for the set S+ = {b, aa, aaaa} is shown
in the following Figure 1.3. Note that its states are numbered in standard
order.

4

aa q3q1q0

q2

b

q4 q5

a a

Figure 1.3: PTA.

Definition Let A1 = (Q1,Σ, δ1, q1, F1) and A2 = (Q2,Σ, δ2, q2, F2) be two
deterministic finite automata. We say that A1 and A2 are equivalent if
L(A1) = L(A2).

Definition A mapping h : Q1 → Q2 is called a homomorphism if:

1. h(q1) = q2,

2. h(δ1(q, x)) = δ2(h(q), x),

3. q ∈ F1 ⇔ h(q) ∈ F2.

If h is a bijection we call it an isomorphism and say that A1 and A2 are
isomorphic.

Theorem 1.2.2. If there is a homomorphism h : Q1 → Q2 of A1, A2, then
A1 and A2 are equivalent.

Definition Let A = (Q,Σ, δ, q0, F) be a deterministic finite automaton. We
say that q ∈ Σ is reachable state if ∃w ∈ Σ∗ : δ∗(q0, w) = q. Otherwise we
say that q is unreachable.

Theorem 1.2.3. If we delete all unreachable states from the DFA A we get
an equivalent DFA.

Definition We say that p, q ∈ Q are equivalent and denote p ∼ q, if ∀w ∈
Σ∗ : δ∗(p, w) ∈ F ⇔ δ∗(q, w) ∈ F .
Let us define i-equivalence p ∼i q for all i ∈ {0, 1, . . .} as ∀w ∈ Σ∗|w| ≤

i : δ∗(p, w) ∈ F ⇔ δ∗(q, w) ∈ F . Apparently p ∼ q ⇔ ∀i : p ∼i q.

5

We can construct ∼i iteratively:

1. p ∼0 q if and only if p ∈ F ⇔ q ∈ F ,

2. p ∼i+1 q if and only if p ∼i q ∧ ∀x ∈ Σ : δ(p, x) ∼i δ(q, x).

Theorem 1.2.4. Let us denote Ri = Q/∼i
for all i ∈ {0, 1, . . .}. Then the

following holds:

1. Ri+1 refines Ri.

2. if Ri+1 = Ri then for all t > 0 : Ri+t = Ri.

3. if |Q| = n then ∃k : 0 ≤ k ≤ n − 1 and Rk+1 = Rk.

4. if Ri+1 = Ri then p ∼ q ⇔ p ∼i q.

This gives us the following algorithm for finding equivalent states:

Algorithm for finding equivalent states

Input: DFA A = (Q,Σ, δ, q0, F)
Output: R = Q/∼ where ∼ is state equivalence of DFA A

begin
construct R0
repeat
construct Ri+1 from Ri

until Ri+1 = Ri

return Ri

end

Definition Let ≡ be an equivalence on Q. We say that ≡ is an automaton
congruency if ∀p, q ∈ Q : p ≡ q ⇒ (p ∈ F ⇔ q ∈ F) ∧ ∀x ∈ Σ : δ(p, x) ≡
δ(q, x).

Theorem 1.2.5. The equivalence ∼ of states is an automaton congruency.

6

Definition Let A = (Q,Σ, δ, q0, F) be a deterministic finite automaton and
≡ be an equivalence on Q. We define a quotient automaton A/≡ to be A/≡ =
(Q/≡,Σ, δ≡, {[q0]≡}, {[q]≡|q ∈ F}), where δ≡([q]≡, x) = {[δ(p, x)]≡|p ∈ [q]≡}.

A/≡ is obtained by merging states of A that belong to the same equiva-
lence class of ≡.

Sometimes it is useful to consider only a partition of the set of states. If
π is a partition of the set of states Q then we define Aπ to be A/≡ where
≡ is an equivalence on the set Q such that π = Q/≡. Analogously if q ∈ Q
then we define [q]π to be [q]≡ = {p ∈ Q|p ≡ q}.

For example, the quotient automaton corresponding to the equivalence≡
on the set Q = {q0, q1, q2, q3} of the states of the DFA in Figure 1.2 (without
considering the dead state d0) with partition Q/≡ = {{q0, q1}, {q2}, {q3}} is
shown in the Figure 1.4.

a r1r0

a

r2

b

a

Figure 1.4: Quotient automaton.

Theorem 1.2.6. If A is a deterministic finite automaton and ≡ is an au-
tomaton congruency then A/≡ is a deterministic finite automaton equivalent
with A. In this case we use an alternative definition of quotient automaton:
A/≡ = (Q/≡,Σ, δ≡, [q0]≡, {[q]≡|q ∈ F}), where δ≡([q]≡, x) = [δ(q, x)]≡.

Theorem 1.2.7. A/∼ is a deterministic finite automaton equivalent with A
with no distinct equivalent states.

Definition We say that a DFA is reduced if it does not have unreachable
states and also if it does not have distinct equivalent states.
We say that DFA B is a reduction of DFA A if B is reduced and if A

and B are equivalent.

7

Theorem 1.2.8. For every DFA A there exists its reduction B.

Theorem 1.2.9. Two reduced deterministic finite automata are equivalent
if and only if they are isomorphic.

Corollary 1.2.10.

1. The reductions of two equivalent deterministic finite automata are iso-
morphic.

2. For every deterministic finite automaton there exists exactly one its
reduction (except for isomorphism).

1.3 Grammars

Definition A production system is a couple R = (V, P), where:

V is a finite alphabet and

P is a finite set of production rules, where production rule (production) is
a couple (u, v), where u, v ∈ V ∗ (we write u → v).

We say that w can be directly rewritten to z (we write w ⇒ z) if
∃u, v, x, y ∈ V ∗ such that w = xuy, z = xvy and (u, v) ∈ P .
We say that w can be rewritten to z (we write w ⇒∗ z) if ∃u1, . . . , un ∈ V ∗

such that w = u1 ⇒ u2 ⇒ . . . ⇒ un = z.
The sequence u1, . . . , un is called a derivation. If ∀i 6= j : ui 6= uj, then

we call this sequence a minimal derivation.

Definition A (generative) grammar is a four-couple G = (VN , VT , S, P),
where:

VN is a finite nonempty set of nonterminal symbols,

VT is a finite nonempty set of terminal symbols,

VN ∩ VT = ∅,

S ∈ VN is a starting nonterminal symbol and

P is a system of production rules u → v, where u, v ∈ (VN ∪ VT)∗ and u
contains at least one nonterminal symbol.

8

A language L(G) generated by a grammar G is defined as L(G) = {w ∈
V ∗

T |S ⇒∗ w}. Grammars G1 and G2 are equivalent if L(G1) = L(G2).

Chomsky hierarchy is a classification of grammars based on the form of
the production rules.

1. grammars of type 0 (recursively enumerable languages L0) - production
rules in general form.

2. grammars of type 1 (context-sensitive languages L1) - only production
rules of the form αXβ → αwβ, X ∈ VN , α, β ∈ (VN ∪ VT)∗, w ∈
(VN ∪ VT)+. The only exception is a rule S → λ, but in that case S
does not occur in the right side of any other production rule.

3. grammars of type 2 (context-free languages L2) - only production rules
of the form X → w, X ∈ VN , w ∈ (VN ∪ VT)∗.

4. grammars of type 3 (regular/ right linear languages L3) - only produc-
tion rules of the form X → wY , X → w, X,Y ∈ VN , w ∈ W ∗

T .

It can be proved that the following relations hold: L0 ⊃ L1 ⊃ L2 ⊃ L3.

1.4 Restarting automata

The main source for this section is Mráz, Otto, Plátek [4]. Restarting au-
tomata can be used to model so called syntactic reduction systems. These
reduction systems represent a base for analysis by reduction which is a lin-
guistically motivated method for checking correctness of a sentence. So we
are going to start with the definition of reduction systems.

Definition A syntactic reduction system is a tuple R = (Σ,Γ,⊢R, LS),
where:

Σ is a finite nonempty input alphabet,

Γ is a finite nonempty working alphabet containing Σ,

⊢R⊆ Γ∗ × Γ∗ is a reduction relation and

LS ⊆ Γ∗ is a set of simple sentential forms.

9

Any string from Γ∗ is called a sentential form. The reflexive and transitive
closure of ⊢R is denoted by ⊢∗

R.

With each syntactic reduction system R = (Σ,Γ,⊢R, LS) we associate
the following two languages:

1. the input language of R: L(R) = {u ∈ Σ∗|∃v ∈ LS : u ⊢∗

R v},

2. the characteristic language of R: LC(R) = {u ∈ Γ∗|∃v ∈ LS : u ⊢∗

R v}.

Trivially, L(R) = LC(R) ∩ Σ∗.

Definition A syntactic reduction system R = (Σ,Γ,⊢R, LS) is called:

length-reducing if, for each u, v ∈ Γ∗, u ⊢R v implies |u| > |v|,

locally reducing if there exists a constant k > 0 such that, for each u, v ∈ Γ∗,
u ⊢R v implies that there exist words u1, u2, x, y ∈ Γ∗ for which u = u1xu2
and v = u1yu2, and |x| ≤ k.

We are interested in syntactic reduction systems that are length-reducing
and locally reducing. In the case of a natural language, the relation ⊢R cor-
responds to a stepwise simplification of (extended) sentences, and LS corre-
sponds to (correct) simple sentences. Apparently, the analysis by reduction
is nondeterministic, but it has so-called error preserving property:
if u ⊢∗

R v and u /∈ LC(R), then v /∈ LC(R).
Analysis by reduction can be modeled for instance by the RRWW-

automaton. Instead of its formal definition (stated in Jančar and col. [3]) we
will use its alternative representation adapted from Niemann, Otto [5].

Definition A restarting automaton is a system M = (Σ,Γ, I), where:

Σ is a finite nonempty input alphabet,

Γ is a finite nonempty working alphabet containing Σ and

I is a finite set of meta-instructions of the following two types:

(a) rewriting meta-instruction is of the form (El, x → y, Er), where x, y ∈
Γ∗ such that |x| > |y|, and El, Er ⊆ Γ∗ are regular languages called
left and right constraints.

10

(b) accepting meta-instruction is of the form (E,Accept), where E ⊆ Γ∗

is a regular language.

A restarting automaton M = (Σ,Γ, I) induces a length-reducing and
locally reducing syntactic reduction system R(M) = (Σ,Γ,⊢M , S(M)) as
follows:

1. for each u, v ∈ Γ∗, u ⊢M v if and only if there exists an instruction
i = (El, x → y, Er) in I and words u1, u2 ∈ Γ∗ such that u = u1xu2,
v = u1yu2, u1 ∈ El and u2 ∈ Er, and

2. S(M) =
⋃
(E,Accept)∈I E.

Accordingly, the restarting automaton M = (Σ,Γ, I) defines an input
language L(M) and a characteristic language LC(M):

L(M) = {w ∈ Σ∗|∃z ∈ S(M) : w ⊢∗

M z} and

LC(M) = {w ∈ Γ∗|∃z ∈ S(M) : w ⊢∗

M z}.

Thus, an input word (a sentential form) w is accepted by M if and only
if w can be reduced to some simple sentential form z ∈ S(M).

The problem of learning analysis by reduction (a restarting automaton)
consists in learning the reduction relation ⊢M and the set of simple sentential
forms S(M). There are many possible approaches.
For learning different meta-instructions we can use different models and

algorithms for learning regular languages. We can use several learning proto-
cols like learning from positive and negative examples, learning using mem-
bership and equivalence queries, etc.
The learning can be done in an incremental way. First we can learn some

basic meta-instructions which define only a subset of the target language.
Then we can continue to learn new meta-instructions to improve our ap-
proximation of the target language.

11

12

Chapter 2

Learning regular languages

The main sources for this chapter are Mráz, Otto, Plátek [4], Parekh, Honavar
[6] and Rivest, Baggett [7].
Finding a DFA consistent with a given sample is called learning of DFA.

Efficient learning of DFA is a challenging research problem in grammatical
inference. Gold showed that the problem of identifying the minimum state
DFA consistent with a presentation S comprising of a finite non-empty set
of positive examples S+ and possibly a finite nonempty set of negative ex-
amples S− is NP-hard.
Angluin showed that given a live-complete set of examples (that contains

a representative string for each live state of the target DFA) and a knowl-
edgeable teacher to answer membership queries it is possible to exactly learn
the target DFA. In a later paper, Angluin relaxed the requirement of a live-
complete set and has designed a polynomial time inference algorithm using
both membership and equivalence queries.

In this chapter we introduce three learning protocols:

1. Dana Angluin’s L* Algorithm,

2. The RPNI (Regular Positive and Negative Inference) Algorithm,

3. The class of SLT (Strictly Locally Testable) Languages.

13

2.1 Dana Angluin’s L* Algorithm

Dana Angluin’s L* algorithm is an algorithm for learning finite state au-
tomata using membership and equivalence queries.

1. Membership query is that a teacher has to decide whether to accept
or reject a given word. Membership queries alone do not give efficient
learning algorithms for DFAs.

2. Equivalence query is that a teacher gets a conjecture (deterministic
finite automaton – DFA) and he has to decide whether this DFA is a
desired DFA or not. If it is not then he also has to provide a coun-
terexample.

The L* algorithm runs in time polynomial in the size of the minimal DFA
equivalent to the target DFA and in the size of the longest counterexample
the teacher provides.

The best way to understand how this algorithm works is by an ex-
ample. Suppose that we want to find a DFA that recognizes a language
L = {w ∈ {a, b}∗ : |w|a = 2k and |w|b = 2l for some integers k, l ≥ 0}. This
language contains exactly the words that have an even number of as and an
even number of bs.

During the algorithm we maintain:

1. A set of words S ⊆ Σ∗ for prefixes,

2. A set of words E ⊆ Σ∗ for postfixes,

3. A function T on strings that returns 1 if the string is accepted by
the target automaton and 0 otherwise. This function represents our
knowledge base and we extend this function using the membership
queries.

Let Σ = {a, b} be our alphabet. At the beginning we set S := {λ} and
E := {λ} and extend our knowledge base T to (S ∪ S.Σ).E = {λ, a, b}.
We ask membership queries for λ, a, b and apparently we get: T (λ) = 1,

T (a) = 0, T (b) = 0.

14

This gives us the following table T1:

T1 λ
λ 1
a 0
b 0

The table has basically two parts. In the first (top) part we have rows
corresponding to the strings in the set S and in the second (bottom) part
we have rows corresponding to the strings in the set S.Σ. In the second part
we will note only the rows that are not already present in the first part.
Each column of the table corresponds to exactly one postfix in E. To-

gether we have |S ∪ S.Σ| rows and |E| columns in this table.
For each row s ∈ S ∪ S.Σ and each column e ∈ E the corresponding cell

in the table has a value T (s.e).

Some terminology will be useful in subsequent explanation. If s is a string
from the alphabet Σ then row(s) denotes a vector (T (s.e1), . . . , T (s.em))
where E = {e1, . . . , em}. Apparently, the corresponding table is filled, i.e.
all the membership queries are answered, if and only if this function is well
defined for all the strings from the set S ∪ S.Σ.
For instance in our table T1 we have row(λ) = (1)T , row(a) = (0)T etc.
We say that a table is closed if and only if every row in the bottom part

has a corresponding row in the top part, i.e. ∀s ∈ S.Σ ∃t ∈ S : row(s) =
row(t).
Our table T1 is not closed because for instance for a string a from the

bottom part of the table we do not have a corresponding string in the top
part of the table.
Similarly, we say a table is consistent if every pair of rows in the top part

of the table with identical experiment results (columns) also has identical
experiment results when any alphabet symbol is added, i.e. ∀s1, s2 ∈ S :
row(s1) = row(s2)⇒ ∀a ∈ Σ : row(s1.a) = row(s2.a).
Our table T1 is apparently consistent because it has only one row in the

top part.

Because our table T1 is not closed, we move the row a from the bottom
part to the top part of the table. Now we get new S = {λ, a} and extend our
knowledge base T to (S ∪ S.Σ).E = {λ, a, b, aa, ab}, i.e. we ask membership

15

queries for aa, ab and we get T (aa) = 1, T (ab) = 0.

The corresponding table is now:

T2 λ
λ 1
a 0
b 0
aa 1
ab 0

This table is closed and consistent, so we can construct the conjecture
(DFA) A = (Q,Σ, δ, q0, F), where:

Q = {row(s), s ∈ S} = {0, 1},

Σ = {a, b},

δ(row(s), a) = row(s.a) for all s ∈ S and a ∈ Σ,

q0 = row(λ) = 1,

F = {row(s)|T (s) = 1} = {1}.

This gives us the following automaton:

a b

<-> 1 0 0

0 1 0

The teacher responds with the counterexample bb. We incorporate the
counterexample into the table by adding bb and all its prefixes to the top of
the table. Since λ is already in the S, this means we add b and bb. We have
S = {λ, a, b, bb}. Again we extend our knowledge base T to (S ∪S.Σ).E, i.e.
we make membership queries on ba, bba and bbb to get the following table:

16

T3 λ
λ 1
a 0
b 0
bb 1
aa 1
ab 0
ba 0
bba 0
bbb 0

This table is closed but not consistent (consider rows a and b, and suc-
cessors aa and ba), so we add an a column (i.e., we add a to E) and make
membership queries on aaa, aba, baa, bbaa, and bbba to get the following
table:

T4 λ a
λ 1 0
a 0 1
b 0 0
bb 1 0
aa 1 0
ab 0 0
ba 0 0
bba 0 1
bbb 0 0

Once again we have a closed and consistent table, and conjecture the
machine described as follows:

a b

<-> 10 01 00

01 10 00

00 00 10

The teacher responds with the counterexample abb. We again add the
counterexample and all its prefixes to S, the top of the table – in this case
the prefixes ab and abb are the only ones not already in the table. To fill out
the augmented table, we make membership queries on abba, abaa, abbaa,
abbb, and abbba, to get table T5:

17

T5 λ a
λ 1 0
a 0 1
b 0 0
bb 1 0
ab 0 0
abb 0 1
aa 1 0
ba 0 0
bba 0 1
bbb 0 0
aba 0 0
abba 1 0
abbb 0 0

T5 is closed but not consistent (consider row b and row ab, and their
successors bb and abb), so we add a b column (i.e., add b to E) and query
the strings aab, bab, bbab, bbbb, abab, abbab, abbbb to get table T6:

T6 λ a b
λ 1 0 0
a 0 1 0
b 0 0 1
bb 1 0 0
ab 0 0 0
abb 0 1 0
aa 1 0 0
ba 0 0 0
bba 0 1 0
bbb 0 0 1
aba 0 0 1
abba 1 0 0
abbb 0 0 0

Since this table is closed and consistent, we conjecture the corresponding
machine, the teacher confirms this conjecture, so we terminate and output
the machine.

The target automaton is described as follows:

18

a b

<-> 100 010 001

010 100 000

001 000 100

000 001 010

2.2 RPNI Algorithm

The regular positive and negative inference algorithm (RPNI) is a polyno-
mial time algorithm for identification of a DFA consistent with a given set
S = S+ ∪ S−.
A labeled sample S = S+ ∪ S− is provided as input to the algorithm. It

constructs a prefix tree automatonM = PTA(S+) and numbers its states in
the standard order. Let n̄ be the number of states of M , Q = {0, . . . , n̄− 1}
be the set of states ofM and π0 = {{0}, . . . , {n̄−1}} be the initial partition
of states. Then Mπ0 = PTA(S

+) is consistent with all positive and negative
training examples contained in S and is treated as the initial hypothesis.
The current hypothesis isMπ and the corresponding partition is denoted

by π. The algorithm is outlined in the following figure.

Algorithm RPNI

Input: A sample S = S+ ∪ S−

Output: A DFA compatible with S

begin
{ Initialization }
π = {{0}, . . . , {n̄ − 1}}
Mπ = PTA(S+)
{ State merging }
for i = 1 to n̄ − 1
for j = 0 to i − 1

{ Merge block containing state i with block containing state j }
ρ = π − {[i]π, [j]π} ∪ {[i]π ∪ [j]π}
{ Obtain the quotient automaton Mρ }
Mρ = derive(M,ρ)
{ Determinize the quotient automaton by state merging }

19

σ = deterministic merge(Mρ)
{ Does Mσ reject all strings in S−? }
if consistent(Mσ, S

−) then
Mπ =Mσ; π = σ; break

end if
end for

end for
return Mπ

end

The function derive obtains the quotient automaton Mρ, corresponding
to the partition ρ. Mρ might be a NFA in which case the function deter-
ministic merge determinizes it by recursively merging the states that cause
non-determinism. For example, if qi, qj and qk are states of Mρ such that
for some a ∈ Σ : δ(qi, a) = {qj, qk} then the states qj and qk are merged
together. The function consistent returns true if Mσ is consistent with all
examples in S− and false otherwise.

We demonstrate the execution of the RPNI algorithm on the task of
learning the DFA in Figure 1.2. For convenience we present the target DFA
in Figure 2.1 without the dead state d0.

aa q2q1q0

a

q3

b

Figure 2.1: Target finite state automaton.

A sample S = S+∪S− where S+ = {b, aa, aaaa} and S− = {λ, a, aaa, baa}
is a characteristic sample for the target DFA. The exact definition of char-
acteristic sample of a regular language is not necessary. We only note that
in this case the RPNI algorithm is guaranteed to return a canonical repre-
sentation of the target DFA.

20

aa q3q1q0

q2

b

q4 q5

a a

Figure 2.2: PTA.

The DFA M = PTA(S+) is depicted in Figure 2.2 where the states
are numbered in the standard order. The initial partition is π = π0 =
{{0}, {1}, {2}, {3}, {4}, {5}}. For simplicity state i always refers to qi.
The algorithm attempts to merge the blocks containing states 1 and 0

of the partition π. The quotient FSA Mρ and the DFA Mσ obtained after
invoking deterministic merge are shown in Figure 2.3.

a

a

q3q0

q2

b

q4 q5

a a

a

q0

q2

b

Figure 2.3: Quotient automaton and the corresponding DFA.

The DFA Mσ accepts the negative example λ ∈ S−. Thus, the current
partition π remains unchanged.
The following table lists different partitions ρ obtained by fusing the

blocks of π0, the partitions σ obtained by deterministic merge of ρ, and
the negative example (belonging to S−), if any, that is accepted by the
quotient DFA Mσ. The partitions marked * denote the partition π for
which Mπ is consistent with all examples in S− and hence is the current

21

hypothesis. It is easy to see that the DFA corresponding to the partition
π = {{0}, {1, 4}, {2}, {3, 5}} is exactly the target DFA we are trying to
learn.

Partition ρ Partition σ Example
{{0, 1}, {2}, {3}, {4}, {5}} {{0, 1, 3, 4, 5}, {2}} a
{{0, 2}, {1}, {3}, {4}, {5}} {{0, 2}, {1}, {3}, {4}, {5}} λ
{{0}, {1, 2}, {3}, {4}, {5}} {{0}, {1, 2}, {3}, {4}, {5}} a
{{0, 3}, {1}, {3}, {4}, {5}} {{0, 3}, {1, 4}, {2}, {5}} λ
{{0}, {1, 3}, {2}, {4}, {5}} {{0}, {1, 3, 4, 5}, {2}} a
{{0}, {1}, {2, 3}, {4}, {5}} {{0}, {1}, {2, 3}, {4}, {5}} baa
{{0, 4}, {1}, {2}, {3}, {5}} {{0, 2}, {1, 5}, {2}, {3}} a
{{0}, {1, 4}, {2}, {3}, {5}} {{0}, {1, 4}, {2}, {3, 5}}∗ -
{{0, 3, 5}, {1, 4}, {2}} {{0, 3, 5}, {1, 4}, {2}} λ
{{0}, {1, 3, 4, 5}, {2}} {{0}, {1, 3, 4, 5}, {2}} a
{{0}, {1, 4}, {2, 3, 5}} {{0}, {1, 4}, {2, 3, 5}} baa
{{0}, {1, 4}, {2}, {3, 5}} {{0}, {1, 4}, {2}, {3, 5}}∗ -
{{0}, {1, 3, 4, 5}, {2}} {{0}, {1, 3, 4, 5}, {2}} a

2.3 SLT Languages

Let Σ be a finite nonempty set of symbols (alphabet), w be a word from Σ∗

and k be a positive integer. We define Pk(w) and Sk(w) to be the prefix and
suffix (or postfix) of a word w of length k, respectively. Further, let Ik(w) be
the set of all substrings of w of length k except the prefix and suffix of w of
length k, that is Ik(w) = {u ∈ Σ∗| |u| = k∧∃x, y ∈ Σ∗ : x, y 6= λ∧w = xuy}.
These are defined only for |w| ≥ k.
Let k be a positive integer. A language L ⊆ Σ∗ is strictly k-testable

if there exist finite sets A,B,C ⊆ Σk such that, for all w ∈ L satisfying
|w| ≥ k we have: w ∈ L ⇔ Pk(w) ∈ A ∧ Sk(w) ∈ B ∧ Ik(w) ⊆ C. In this
case (A,B,C) is called a triple for L. For a triple S = (A,B,C) we denote
the corresponding language as LS.
We say that L is strictly locally testable if it is strictly k-testable for some

k > 0. It can be proved that strictly locally testable languages are a special
subclass of the class of regular languages, so for every strictly k-testable
language L there exists a DFA A, such that L = L(A).
Note that the definition of strictly k-testable says nothing about the

22

strings of length k − 1 or less. Hence, L is strictly k-testable if and only if
L ∩ ΣkΣ∗ = (AΣ∗ ∩ Σ∗B)− Σ+(Σk − C)Σ+.
We will denote the family of strictly k-testable languages by k-SLT and

the class of strictly locally testable languages by SLT.
For a language L, a positive presentation of L is an infinite sequence

{wi}
∞

i=1 of words from L such that every w ∈ L occurs at least once in the
sequence.
Let us briefly recall a learning algorithm for strictly k-testable languages.

Algorithm for learning k-SLT languages

Input: An integer k > 0 and a positive presentation of a target strictly
k-testable language L.
Output: A sequence of triples Si = (Ai, Bi, Ci) for k-testable languages.

begin
let S0 := (∅, ∅, ∅) be the initial triple
repeat (forever)
let Si = (Ai, Bi, Ci) be the current triple
read the next positive sample wi+1

if wi+1 ∈ LSi
then

Si+1 := Si

else
Ai+1 := Ai ∪ Pk(wi+1)
Bi+1 := Bi ∪ Sk(wi+1)
Ci+1 := Ci ∪ Ik(wi+1)
Si+1 := (Ai+1, Bi+1, Ci+1)

end if
i := i+ 1

end repeat
end

We assume that |wi| ≥ k for all i. Otherwise we can for instance move
all the small words w (such that |w| < k) to a special set D. This set D is
always finite.
It can be proven that there exists an index i0 such that for all i ≥ i0:

Si = Si0 = S. Apparently wi ∈ LS for all i.

23

24

Chapter 3

Implementation

In this chapter we will outline the development of a system for design and
testing of restarting automata.
First we capture requirements that define what such system should do.
Then we make a rough analysis and consider which development tools,

language and target platform are most appropriate for developing this sys-
tem.
After that we make a general overview of the system, describe some core

classes and basic design principles behind the system.
We enclose the chapter with description of XML serialization, represen-

tation of languages and representation of restarting automata.
This chapter is not intended to be a comprehensive reference guide of

the system internals. All necessary details can be found in the source code.
After reading this part you should be able to modify or extend the system
with your own modules.

3.1 Requirements

These are the basic requirements of the proposed system:

1. The system is intended for interactive work with restarting automata
with few meta-instructions. The main goal of the system is to allow
an easy investigation of these automata.

2. The system should have a user friendly (graphical) user interface.

25

3. The system should support working in a noninteractive mode where
other processes and applications can communicate with the system.

4. The system should support storing every element of the system (alpha-
bet, DFA, language, meta-instruction, restarting automaton) in XML
representation that can be serialized (deserialized) to (from) a file (or
clipboard). This XML representation is platform-independent.

5. Incremental design of restarting automata by stepwise design of meta-
instructions:

(a) Accepting meta-instruction is defined by its accepting language.

(b) Reducing meta-instruction is defined by its left language, right
language and two words x and y where αxβ can be reduced to
αyβ if α is in the left language and β is in the right language.

6. The system should support different ways of design of languages:

(a) DFA modeler: with this tool you can enter a regular language by
specifying its underlying deterministic finite automaton.

(b) Dana Angluin’s L* algorithm: this is a machine learning algorithm
which learns deterministic finite automaton using membership
and equivalence queries (Section 2.1).

(c) RPNI algorithm: this is a machine learning algorithm which learns
deterministic finite automaton based on a given set of labeled
examples (Section 2.2).

(d) Regex modeler: with this tool it is possible to enter a regular
language by specifying regular expression.

(e) SLT modeler: with this tool it is possible to design a regular
language by specifying a positive integer k and positive examples
using the algorithm for learning k-SLT languages (Section 2.3).

7. The system will support testing of developed finite automata and
restarting automata. In particular, for a restarting automaton, if de-
fined correctly, it should be possible to:

(a) Decide whether a given word w is accepted by some of the ac-
cepting meta-instruction of the automaton.

26

(b) Decide whether a given word w1 can be reduced to another word
w2 and list all possible reduction paths.

(c) For a given word w list all the words that can be reduced from
this word w.

(d) Decide whether a given word w is accepted by the automaton, i.e.
if there exists a word u that is accepted by some of the accepting
meta-instruction of the automaton and w can be reduced to u.

Of course, these procedures can in general generate very long lists of
words. This system is proposed as an interactive tool, so we do not op-
timalize its time complexity, but we concentrate on easy manipulation
with languages and their different representations.

3.2 Architecture

Before we start developing a system we have to choose a target architecture,
programming language and development tools used to build the system.
Concerning architecture we were considering UNIX-like operating sys-

tems and Win32 platform.
For languages there are many possibilities (we mention only the most

popular): C, C++, C♯ and Java.

C compiler without doubt produces the fastest executables, but develop-
ing larger systems can be tedious without using some advanced technologies
such as object-oriented programming.
Because we do not suppose to use the program for long inputs and com-

plex automata we have excluded C language from our consideration.

C++ is an extension of C that allows object-oriented development and
still it is one of the most used programming languages in software engineering
and also in research. But there are many problems of which we mention only
the most important:

1. C++ code is often strongly dependent on the platform and it is very
difficult to transfer this code to another platform.

2. Often you have to choose between various external libraries (for in-
stance for GUI in Win32 there are Win32 API, ATL, MFC, etc.)

27

3. There are many problematic issues connected with globalization, UNI-
CODE characters, COM objects etc.

Because of these problems we have excluded C++ language from our
consideration.

C♯ and Java are very similar languages and from the perspective of de-
veloping a system they represent the equivalent choices.

We have chosen C♯ language because it is more C++ like, it is richer in
syntax, and it has an excellent development environment: Microsoft Visual
Studio 2005 Team Suite.

C♯ has a special relationship to its runtime environment, the .NET
Framework. The .NET Framework defines an environment that supports the
development and execution of highly distributed, component-based applica-
tions. There are few popular versions of .NET Framework. We have chosen
the .NET Framework 2.0 because it supports generic types, XML serializa-
tion and deserialization of classes (with certain restrictions of course) and
other useful technologies like .NET Remoting. There are also some newer
versions of .NET Framework (like the .NET Framework 3.5). However the
.NET Framework 2.0 has the advantage that it is also fully supported on
UNIX-like operating systems (for more information see the website of the
project Mono: http://www.mono-project.com/).

Note: If we speak about XML serialization (deserialization) of classes in
C♯ we mean automatic conversion between C♯ classes and their XML rep-
resentation. Classes can be of course serialized and deserialized manually,
but this is less effective approach. We will return to this topic later in the
Section 3.5.

Architecture summary:

Project name: RestartingAutomaton
Platform: Microsoft Windows
Programming language: C♯ 2.0
Runtime environment: .NET Framework 2.0
Developing tools: Microsoft Visual Studio 2005 Team Suite

28

3.3 General overview

In our system we recognize several layers of abstraction (see Figure 3.1).

Graphical User Interface

Interfaces

Core classes
XML

counterparts

Figure 3.1: Layers of abstraction.

Every system is built up of some basic indivisible atoms. If we exclude
basic data types such as integers, strings, then we are left with several core
classes that are specific for our system.
Before we start enumerating these classes we have to make our first fun-

damental design decision. We have to choose how to represent symbols from
which bigger objects such as alphabets, words and languages are created.

1. Symbols are chars. In C♯ there exists a data type called char that is 2
bytes long and represents a UNICODE character.

2. Symbols are integers. There are several integer data types in C♯, such
as int, uint, long, ulong etc.

3. Symbols are specific structs or classes.

4. Symbols are classes that implement a special interface.

5. Symbols are of general supertype. In C♯ there exists a supertype called
object which is an ancestor for all classes.

6. Symbols are of unspecified generic type T.

29

The first choice is easy to understand, easy to program, even there exists
a class string near to hand that can be used for representing words. But the
classes and algorithms used in our system are more general and can work
with many other types of symbols than chars.
The second choice is nearly the same as the first, it allows many more

symbols, but there is no support for words from the programming language.
The third choice is a bad one because we do not know in advance how

this specific struct or class for symbols should look like. It can be for instance
defined at the beginning of a program, but there are better techniques to
achieve this.
The fourth choice looks good but it can be ineffective when working

with symbols as classes. The instances of classes are stored in a heap so
accessing data members of a class is undoubtedly much more slower than
working with value data types stored on stack. It is also ineffective if we have
many small instances of these classes on the heap because it is demanding
of memory. One solution to this problem could be using Flyweight design
pattern. The idea is that we could have something like a pool of symbols
common for the whole system and the words could have just references to
the symbols of this pool. We have found some problematic issues concerning
the serialization with this approach.
The fifth choice can be regarded as a special case of the fourth choice

with an empty interface. The problem is that we have no control over the
type of the symbols and the serialization can be even more complicated.
The sixth choice means using generic types. It is sufficiently general so-

lution, type safe and it does not have problems with efficiency because we
use value types for symbols. Serialization works well, but there are some
problems with serialization if we use class inheritance. We will return to
this topic later. Of course we put some restrictions to this type T such as
it has to be a value type that is linearly ordered, i.e. every symbol can be
compared with every other symbol.

It is no surprise that we have chosen the sixth possibility. It can seem
strange that in our system we use all generic classes only with the type char.
Our system is intended for an interactive work and symbols as chars is the
most convenient representation for users.
On the other hand many classes and algorithms in our system are quite

useful and can be therefore reused by another more complicated system that
does not work with chars.

30

Now we know what kind of symbols we are going to work with. The
following Code listing 3.1 shows how any class that somehow works with
these symbols should look like.

Listing 3.1: A C♯ generic class template

1 public class Gener icClass<T>
2 where T: struct , IComparable<T>, IEquatable<T>
3 {
4 . . .
5 }

The second row represents all restrictions required for a generic type T.
For T you can substitute all basic ordinal data types, such as char, int etc.
or user defined structs that implement listed interfaces.

3.4 Core classes

In this section we briefly describe the following core classes of our system:

1. GenericString<T>: a string of generic symbols.

2. Alphabet<T>: an alphabet (a finite nonempty set of symbols).

3. DFA<T>: a deterministic finite automaton (Section 1.2)

4. LStar<T>: Dana Angluin’s L* algorithm (Section 2.1).

5. RPNI<T>: RPNI algorithm (Section 2.2).

6. Regex: regular expressions (C♯ class Regex).

7. SLT<T>: class for k-SLT languages (Section 2.3).

3.4.1 GenericString<T>

In our system we often work with words. A word is a string of symbols. If the
symbols were chars we could use string data type for representing words.
The problem is that symbols are of unspecified generic type T.

31

We have to create a special class called GenericString<T> that behaves
like an ordinary string class but is not bound with chars. This class is quite
fundamental because it is used by many classes in our system.

+Create(in tokens : IEnumerable<T>) : GenericString<T>

+Wrap(in token : T) : GenericString<T>

+Wrap(in tokens : T[]) : GenericString<T>

+GetLength() : int

+Indexer(in index : int) : T

+Concat(in genericString : GenericString<T>) : GenericString<T>

+SubString(in length : int) : GenericString<T>

+SubString(in startIndex : int, in length : int) : GenericString<T>

+ToArray() : T[]

+ToString() : string

-data : T[]

GenericString<T>

ICloneable IComparable<GenericString<T>>

IEnumerable<T>

IEquatable<GenericString<T>>

Figure 3.2: GenericString<T> Class Diagram.

There are many ways how to design such class. We have decided to make
this class immutable. It means that this class does not have any methods
(or properties) that can modify the internal state of the class. Note that
ordinary string is also immutable.
The question is what is this decision good for? The problem is that in

C♯ you do not have const modifiers and you cannot have const references.
This can be problem in the case when you for instance pass an instance of

GenericString<T> class as an argument to a method and you want to prevent
modification of this instance inside the method. If the GenericString<T>

class is immutable, it cannot be modified inside any method.
Another approach to this problem is to use Proxy design pattern. For

explanation imagine you have a collection of ints and you want to prevent
this collection to be modified outside. The most common solution to this is
to encapsulate this collection to a class that behaves just like the collection
of ints on the outside, but cannot be modified.

Listing 3.2: Readonly collection

1 int [] a = {1 , 2 , 3 , 4} ;
2 ICo l l e c t i on<int> r eadon ly a =
3 new ReadOnlyCollection<int>(a) ;

32

In the Code listing 3.2 ReadOnlyCollection<int> represents a proxy that
encapsulates the collection of ints.
If we transfer this approach to our GenericString<T> class it would mean

that every time you want to pass the instance of this class as an argument
you should encapsulate this instance to a special read-only proxy class. We
have decided to avoid this approach.
There is also a third approach. You can pass always the clone of the

original string. This works fine but it is a memory-consuming solution.
Although we have chosen an immutable version of GenericString<T>

class, there are some problems connected with immutable classes. First,
they do not have default constructors and therefore cannot be serialized or
deserialized (automatically). Second, every time you ask for instance for a
substring or you try to concatenate two generic strings it will create a new
instance of GenericString<T> class.

3.4.2 Alphabet<T>

Class Alphabet<T> is an immutable class that represents an alphabet (a
finite nonempty set of symbols of generic type T) in our system. It is very
similar to GenericString<T> class, but there are some important differences.
The most important difference is that it plays a different role in our system.
Then the symbols of the alphabet are ordered and no duplicities are allowed.
Therefore you can check whether a given symbol is in the alphabet or not
in time logarithmic to the number of symbols in the alphabet.

+Create(in tokens : IEnumerable<T>) : Alphabet<T>

+GetCount() : int

+Indexer(in index : int) : T

+Contains(in token : T) : bool

+Contains(in tokens : IEnumerable<T>) : bool

+IndexOf(in token : T) : int

+ToArray() : T[]

+ToString() : string

-data : T[]

Alphabet<T>

ICloneable

IEnumerable<T>

IEquatable<Alphabet<T>>

Figure 3.3: Alphabet<T> Class Diagram.

33

3.4.3 DFA<T>

Class DFA<T> represents a deterministic finite automaton in our system.
The instance of DFA<T> class is strongly bound to its alphabet and the
number of states which are passed as the arguments to the constructor.
The alphabet and the number of states of the DFA cannot be changed
after creation of this instance. The states of the DFA are always numbers
0, 1, 2, . . . where 0 always represents the input state.

+Create(in alphabet : Alphabet<T>, in stateCount : int) : DFA<T>

+GetAlphabet() : Alphabet<T>

+GetAlphabetCount() : int

+GetStateCount() : int

+SetAcceptState(in stateIndex : int, in stateAccept : bool)

+SetAcceptStates(in acceptStateList : IEnumerable<int>)

+GetAcceptStates() : int[]

+SetArc(in fromState : int, in toState : int, in token : T)

+GetArc(in fromState : int, in token : T) : int

+Transition(in tokens : IEnumerable<T>) : int

+Decide(in tokens : IEnumerable<T>) : bool

+Normalize() : DFA<T>

+EraseEquivalentStates() : DFA<T>

+ToString() : string

+FindConflictingWord(in dfa1 : DFA<T>, in dfa2 : DFA<T>) : GenericString<T>

-alphabet : Alphabet<T>

-alphabetCount : int

-stateCount : int

-acceptStates : bool[]

-transitionTable : int[,]

DFA<T>

ICloneable IEquatable<DFA<T>>

Figure 3.4: DFA<T> Class Diagram.

How this class works is best illustrated on an example. Suppose that we
want to represent the automaton shown in the Figure 3.5.
In the Code listing 3.3 it is shown how to create such an automaton.

Listing 3.3: How to create deterministic finite automaton.

1 Alphabet<char> alphabet = new Alphabet<char>(”ab”) ;
2 DFA<char> dfa = new DFA<char>(alphabet , 6) ;
3 dfa . SetAcceptStates (new int [] { 1 , 5 , 2 }) ;
4 dfa . SetArc (0 , 1 , ’ a ’) ; dfa . SetArc (0 , 0 , ’b ’) ;
5 dfa . SetArc (1 , 3 , ’ a ’) ; dfa . SetArc (1 , 1 , ’b ’) ;

34

a

0

2

1 3

4

a

a

a

a

a

b b

b b

b5

b

Figure 3.5: Deterministic finite automaton.

6 dfa . SetArc (3 , 5 , ’ a ’) ; dfa . SetArc (3 , 3 , ’b ’) ;
7 dfa . SetArc (5 , 4 , ’ a ’) ; dfa . SetArc (5 , 5 , ’b ’) ;
8 dfa . SetArc (4 , 2 , ’ a ’) ; dfa . SetArc (4 , 4 , ’b ’) ;
9 dfa . SetArc (2 , 0 , ’ a ’) ; dfa . SetArc (2 , 2 , ’b ’) ;

If we call Console.WriteLine(dfa.ToString()); we get the following output.

a b

-> 0 1 0

<- 1 3 1

<- 2 0 2

3 5 3

4 2 4

<- 5 4 5

As you can see in the Code listing 3.3 in the first row we define an al-
phabet of the target automaton. In the second row we create the automaton
with the alphabet and 6 states. In the third row we set which states are
accepting states. The last step (rows 4 – 9) is the definition of the transition
table.
There are few useful methods in DFA<T> class. First method is Normalize()

which returns the same automaton with states relabeled in an unambiguous

35

way. It is useful when you want to find out whether two reduced automata are
equivalent. You just normalize these automata and then compare whether
they are the same.
Another useful method is EraseEquivalentStates() which returns reduced

automaton. It uses the algorithm sketched in Section 1.2.

If we normalize our automaton we get the following automaton:

a b

-> 0 1 0

<- 1 2 1

2 3 2

<- 3 4 3

4 5 4

<- 5 0 5

The corresponding reduced automaton is in the following listing:

a b

-> 0 1 0

<- 1 0 1

Static method FindConflictingWord(dfa1, dfa2) returns the smallest word
(with respect to the standard enumeration of strings) that is accepted in
one automaton and rejected in the other automaton. It returns null if these
automata are equivalent.

3.4.4 LStar<T>

Before we start with LStar<T> class designated for Dana Angluin’s L* algo-
rithm we mention an auxiliary class KnowledgeBase<T> that stores labeled
samples. Every labeled sample is stored in a structure calledWordAccept<T>

that encapsulates a word and its acceptance.
We have separated this class from LStar<T> class, because it is quite

useful and can be reused by another algorithms that work with labeled
samples.
There are two important things to note on KnowledgeBase<T> class.

First it remembers the order of the samples. This is important for instance

36

+word : GenericString<T>

+accept : bool

WordAccept<T>

IComparable<WordAccept<T>>

IEquatable<WordAccept<T>>

+Create(in alphabet : Alphabet<T>) : KnowledgeBase<T>

+Indexer(in index : int) : WordAccept<T>

+Indexer(in word : GenericString<T>) : bool

+GetAlphabet() : Alphabet<T>

+GetCount() : int

+Clear()

+Sort()

+Add(in word : GenericString<T>, in accept : bool)

+Contains(in word : GenericString<T>) : bool

-alphabet : Alphabet<T>

-data : List<WordAccept<T>>

KnowledgeBase<T>

1 *

ICloneable IEnumerable<WordAccept<T>>

Figure 3.6: KnowledgeBase<T> Class Diagram.

for L* algorithm which is sensitive to the order of the words. Another im-
portant feature is that you can register some events with this class that
inform you about changes in the class. For instance if someone changes the
acceptance of some word in the knowledge base, the L* algorithm must be
launched anew on the new samples.

As we have already mentioned, LStar<T> class encapsulates Dana An-
gluin’s L* algorithm. Its main role is to give you a conjecture (DFA) that is
consistent with samples stored in its knowledge base. If it is not possible to
construct a conjecture it will give you a list of words that are to be added
to the knowledge base. This class is quite interactive. You just add words
to the knowledge base until you can ask for a conjecture.

+Create(in alphabet : Alphabet<T>) : LStar<T>

+GetAlphabet() : Alphabet<T>

+GetKnowledgeBase() : KnowledgeBase<T>

+SetKnowledgeBase(in knowledgeBase : KnowledgeBase<T>)

+GetUnknownWords() : ReadOnlyCollection<GenericString<T>>

+CanConjecture() : bool

+GetConjecture() : DFA<T>

LStar<T>

Figure 3.7: LStar<T> Class Diagram.

For explanation how to work with this class we emulate the example

37

illustrated in the Section 2.1. First we have to specify the alphabet and
create an instance of LStar<char> class.

Listing 3.4: Dana Angluin’s L* algorithm.

1 Alphabet<char> alphabet = new Alphabet<char>(”ab”) ;
2 LStar<char> l s t a r = new LStar<char>(a lphabet) ;

Now if we look at the collection lstar .UnknownWords we get the following
words: λ, a, b. We have to add these words to the knowledge base.

3 l s t a r . KnowledgeBase .Add(new Gener icStr ing<char>(””) , true) ;
4 l s t a r . KnowledgeBase .Add(new Gener icStr ing<char>(”a”) , fa l se) ;
5 l s t a r . KnowledgeBase .Add(new Gener icStr ing<char>(”b”) , fa l se) ;

After adding these words the algorithm finds out that it needs also words
aa and ab.

6 l s t a r . KnowledgeBase .Add(new Gener icStr ing<char>(”aa”) , true) ;
7 l s t a r . KnowledgeBase .Add(new Gener icStr ing<char>(”ab”) , fa l se) ;

Now lstar .CanConjecture == true so if we call
Console.WriteLine(lstar.Conjecture.ToString());

we get the following automaton:

a b

<-> 0 1 1

1 0 1

This is not the target automaton, because it rejects bb. We add this word
as a counterexample to the knowledge base.

8 l s t a r . KnowledgeBase .Add(new Gener icStr ing<char>(”bb”) , true) ;

The algorithm responds with unknown words: ba, bba, bbb. If we proceed
this way we finally get the target automaton as shown in the following
output:

38

a b

<-> 0 1 2

1 0 3

2 3 0

3 2 1

This is the list of all words that you need to add to the knowledge base
if you want to get our target automaton:

accept ’’ reject abb

reject a reject abaa

reject b accept abba

accept aa reject abbb

reject ab reject abbaa

accept bb reject abbba

reject ba reject aab

reject bba reject bab

reject bbb accept abab

reject aaa reject bbab

reject aba accept bbbb

reject baa reject abbab

accept bbaa reject abbbb

reject bbba

Note that these words are not set in the standard order. What is even
more surprising is that if we sorted these words then the algorithm would
not be able to give you the conjecture. Instead it would ask you for some
additional membership queries. It is now clear that the order of samples is
important for Dana Angluin’s L* algorithm.

3.4.5 RPNI<T>

The RPNI (regular positive and negative inference algorithm) is a polyno-
mial time algorithm for identification of a DFA consistent with given positive
and negative samples. Class PositiveNegativeSamples<T> encapsulates posi-
tive and negative samples as two lists of GenericString<T>s. You can register
some events with this class that inform you about changes in the class.
The RPNI<T> class encapsulates RPNI algorithm. This class is quite

simple. You set the samples and then you can ask for a conjecture consistent
with these samples.

39

+Create(in alphabet : Alphabet<T>) : RPNI<T>

+GetAlphabet() : Alphabet<T>

+GetSamples() : PositiveNegativeSamples<T>

+SetSamples(in samples : PositiveNegativeSamples<T>)

+GetConjecture() : DFA<T>

+GetPrefixTree() : DFA<T>

RPNI<T>

Figure 3.8: RPNI<T> Class Diagram.

Suppose that we want to find a DFA consistent with S = S+∪S− where
S+ = {b, aa, aaaa} and S− = {λ, a, aaa, baa} as in the Section 2.2.
First we create an instance of RPNI<T> class.

Listing 3.5: RPNI algorithm.
1 Alphabet<char> alphabet = new Alphabet<char>(”ab”) ;
2 RPNI<char> rpn i = new RPNI<char>(a lphabet) ;

Then we add positive and negative samples.

3 rpn i . Samples . AddPositiveSample (new Gener icStr ing<char>(”b”)) ;
4 rpn i . Samples . AddPositiveSample (new Gener icStr ing<char>(”aa”)) ;
5 rpn i . Samples . AddPositiveSample (new Gener icStr ing<char>(”aaaa”)) ;
6 rpn i . Samples . AddNegativeSample (new Gener icStr ing<char>(””)) ;
7 rpn i . Samples . AddNegativeSample (new Gener icStr ing<char>(”a”)) ;
8 rpn i . Samples . AddNegativeSample (new Gener icStr ing<char>(”aaa”)) ;
9 rpn i . Samples . AddNegativeSample (new Gener icStr ing<char>(”baa”)) ;

Now if we call Console.WriteLine(rpni.Conjecture.ToString()); we get the
following output:

a b

-> 0 1 2

1 3 4

<- 2 4 4

<- 3 1 4

4 4 4

It is easy to see that this automaton is isomorphic to a DFA shown in
the Figure 1.2.

40

+Create(in alphabet : Alphabet<T>, in options) : PositiveNegativeSamples<T>

+Indexer(in word : GenericString<T>) : bool

+GetAlphabet() : Alphabet<T>

+GetPositiveSamples() : IEnumerable<GenericString<T>>

+GetNegativeSamples() : IEnumerable<GenericString<T>>

+Clear()

+AddPositiveSample(in positiveSample : GenericString<T>)

+AddNegativeSample(in negativeSample : GenericString<T>)

+Contains(in word : GenericString<T>) : bool

-alphabet : Alphabet<T>

-positiveSamples : List<GenericString<T>>

-negativeSamples : List<GenericString<T>>

PositiveNegativeSamples<T>

ICloneable

Figure 3.9: PositiveNegativeSamples<T> Class Diagram.

3.4.6 Regex

Regular expressions represent a powerful way how to enter a regular lan-
guage. In our system we use C♯ class Regex from System.Text.RegularExpressions
namespace. We do not implement conversions between regular expressions
and deterministic finite automata. Also note that regular expressions can be
used only with chars.

Few useful examples of regular expressions:

Regex Description
a matches words containing character a
^ab matches words starting with ab
ab$ matches words ending with ab
^.$ matches a single character
\w\w matches words with at least two word characters
^\d\d\d$ matches three digit numbers
^[ac]..$ matches words with three characters, starting with a or c
^[a-c]..$ matches words with three characters, starting with a, b or c
^a*$ matches words that contain only character a
^b+$ matches words that contain only character b (at least one)
^c{2,5}$ matches words: cc, ccc, cccc, ccccc
^(ab){2,3}$ matches words: abab and ababab

41

3.4.7 SLT<T>

SLT<T> class is a class designated for strictly locally testable languages. In
the constructor of this class you specify an alphabet and a positive integer k
for k-SLT language. This integer k can be changed at any time after creation
of the instance. You can add positive samples to the instance, but negative
samples are forbidden.

+Create(in alphabet : Alphabet<T>, in k : int) : SLT<T>

+GetAlphabet() : Alphabet<T>

+GetSamples() : PositiveNegativeSamples<T>

+SetSamples(in samples : PositiveNegativeSamples<T>)

+GetK() : int

+SetK(in k : int)

+Decide(in word : GenericString<T>) : bool

SLT<T>

Figure 3.10: SLT<T> Class Diagram.

Although it is possible to construct a DFA equivalent with the instance
of this class, we have not implemented this functionality. Instead we provide
a method Decide which you can use for deciding whether a given word is
accepted or rejected.
We illustrate SLT<T> class on a simple example. First we create an

instance of this class with k = 2.

Listing 3.6: SLT Languages.

1 Alphabet<char> alphabet = new Alphabet<char>(”abc”) ;
2 SLT<char> s l t = new SLT<char>(alphabet , 2) ;

Then we add samples abbba and abcba.

3 s l t . Samples . AddPositiveSample (new Gener icStr ing<char>(”abbba”)) ;
4 s l t . Samples . AddPositiveSample (new Gener icStr ing<char>(”abcba”)) ;

Now slt .Decide(new GenericString<char>(”abbcbba”)) returns true. But
if we change k to slt .K = 3; it will return false. Do you see why?

42

3.5 Introduction to XML Serialization in C♯

The main source for this section is [14]. For more detailed description see
http://agiledeveloper.com/articles/XMLSerialization.pdf
There are many classes in .NET framework designated for processing

XML documents. Class XmlReader provides a fast, read-only, serial access
to an XML document, class XmlWriter can be used for writing XML data.
There are also classes like XmlDocument and XmlNode that are used to

represent DOM (Document Object Model) of XML data and allow construc-
tion of object structure in main memory.
There exists also a class called SoapFormatter that allows you to serialize

(or deserialize) almost any object (or hierarchy of objects) to XML for-
mat. But nowadays using of this class is deprecated. It is recommended to
use BinaryFormatter instead. Unfortunately BinaryFormatter produces binary
data which are unreadable for a human.
While these classes are significant, our focus is on XML Serialization,

and we will not discuss these classes further.
The process of transforming the contents of an object into XML for-

mat is called serialization, and the reverse process of transforming an XML
document into a .NET object is called deserialization.

3.5.1 An example

To create a class that can be serialized by using XML Serialization, you
must perform the following tasks:

1. Specify the class as public.

2. Specify all members that must be serialized as public.

3. Create a parameterless constructor.

If there are private or protected members, they will be skipped during
the serialization. Public properties are also serialized, but you have to specify
both getter and setter methods.
Suppose that we want to serialize the following class. Note that this class

is declared public and contains only public members.

43

Listing 3.7: XML Example Class.

1 public class Example
2 {
3 public int intValue1 ;
4 public int intValue2 ;
5 public string s t r ;
6 public int [] intArray ;
7 public List<string> s t r i n gL i s t ;
8 public DateTime date ;
9 }

The first step is to add the following namespaces:

1 using System . IO ;
2 using System .Xml . S e r i a l i z a t i o n ;

The first namespace is for IO operations and the second one is for XML
Serialization.
Then we create an instance of this class and load it with some data.

1 Example example = new Example () ;
2 example . intValue1 = 5 ;
3 example . intValue2 = 10 ;
4 example . s t r = ”He l lo World” ;
5 example . intArray = new int [] { 2 , 3 , 5 , 7 , 11 } ;
6 example . s t r i n gL i s t = new List<string >() ;
7 example . s t r i n gL i s t .Add(”one”) ;
8 example . s t r i n gL i s t .Add(”two”) ;
9 example . s t r i n gL i s t .Add(” three ”) ;
10 example . date = DateTime .Now;

To serialize this example to an XML file ’Example.xml’ we first create
an instance of XmlSerializer class and then we use this instance to serialize
our example.

Listing 3.8: XML Serialization.

1 XmlSe r i a l i z e r s e r i a l i z e r =
2 new XmlSe r i a l i z e r (typeof (Example)) ;

44

3 Fi leStream f i l eSaveSream =
4 new Fi leStream (”Example . xml” , FileMode . Create) ;
5 s e r i a l i z e r . S e r i a l i z e (f i l eSaveSream , example) ;
6 f i l eSaveSream . Close () ;

The resulting file ’Example.xml’ looks like this:

<?xml version="1.0"?>

<Example xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<intValue1>5</intValue1>

<intValue2>10</intValue2>

<str>Hello World</str>

<intArray>

<int>2</int>

<int>3</int>

<int>5</int>

<int>7</int>

<int>11</int>

</intArray>

<stringList>

<string>one</string>

<string>two</string>

<string>three</string>

</stringList>

<dateTime>2008-05-04T21:34:12.375+02:00</dateTime>

</Example>

Our instance serializer of XmlSerializer class can be also used to deseri-
alize object from an XML file.

Listing 3.9: XML Deserialization.

1 Fi leStream f i l eLoadStream =
2 new Fi leStream (”Example . xml” , FileMode .Open) ;
3 example = s e r i a l i z e r . D e s e r i a l i z e (f i l eLoadStream) as Example ;
4 f i l eLoadStream . Close () ;

45

3.5.2 Controlling XML Serialization

You can control XML Serialization using attributes. By default, an XML
element name is determined by the class or member name. This default
behavior can be changed if you want to give the element a new name.
Let us add some attributes to our example class (see Code listing 3.10).

Listing 3.10: XML Example Class with Attributes.

1 [XmlRoot (”AttrExample”)]
2 public class Example
3 {
4 [XmlElement (ElementName = ” ImportantInteger ”)]
5 public int intValue1 ;
6 [XmlIgnore ()]
7 public int intValue2 ;
8 [XmlAttribute (” S t r i ngAt t r i bu t e ”)]
9 public string s t r ;
10 [XmlArray (”ArrayOfInts ”) ,
11 XmlArrayItem (” intI tem”)]
12 public int [] intArray ;
13 [XmlArray (” L i s tO fS t r i ng s ”) ,
14 XmlArrayItem (” s t r ing I t em ”)]
15 public List<string> s t r i n gL i s t ;
16 [XmlElement (”ActualDate”)]
17 public DateTime date ;
18 }

After serialization we get the following XML output:

<?xml version="1.0"?>

<AttrExample xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

StringAttribute="Hello World">

<ImportantInteger>5</ImportantInteger>

<ArrayOfInts>

<intItem>2</intItem>

<intItem>3</intItem>

<intItem>5</intItem>

<intItem>7</intItem>

46

<intItem>11</intItem>

</ArrayOfInts>

<ListOfStrings>

<stringItem>one</stringItem>

<stringItem>two</stringItem>

<stringItem>three</stringItem>

</ListOfStrings>

<ActualDate>2008-05-05T14:03:28.078125+02:00</ActualDate>

</AttrExample>

3.5.3 Serializing compositions

Suppose that we have two classes where Master class is composed of Slave
classes as in the Code listing 3.11.

Listing 3.11: XML Composition Example.
1 public class Slave
2 {
3 public int s laveID ;
4 public string slaveName ;
5 }
6 public class Master
7 {
8 public string masterName ;
9 public Slave mainSlave ;
10 public Slave [] s l a v eCo l l e c t i o n ;
11 }

Let us create some instances.

1 Master master = new Master () ;
2 master . masterName = ”Master Object ” ;
3 Slave c h i e f S l a v e = new Slave () ;
4 c h i e f S l a v e . s laveID = 1 ;
5 c h i e f S l a v e . slaveName = ”Chie f S lave ” ;
6 master . mainSlave = ch i e f S l a v e ;
7 Slave s l ave1 = new Slave () ;
8 s l ave1 . s laveID = 5 ;
9 s l ave1 . slaveName = ”Obedient Slave ” ;

47

10 Slave s l ave2 = new Slave () ;
11 s l ave2 . s laveID = 10 ;
12 s l ave2 . slaveName = null ;
13 master . s l a v eCo l l e c t i o n = new Slave [] { s lave1 , s l ave2 } ;

If we serialize the master instance, we get the following XML output:

<?xml version="1.0"?>

<Master xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<masterName>Master Object</masterName>

<mainSlave>

<slaveID>1</slaveID>

<slaveName>Chief Slave</slaveName>

</mainSlave>

<slaveCollection>

<Slave>

<slaveID>5</slaveID>

<slaveName>Obedient Slave</slaveName>

</Slave>

<Slave>

<slaveID>10</slaveID>

</Slave>

</slaveCollection>

</Master>

Note that null values are skipped during the serialization.

3.5.4 Serializing derived classes

Now suppose that we want to use a DerivedSlave class that is derived from
a Slave class as is shown in the Code listing 3.12.

Listing 3.12: XML Derived Class Example.

1 public class DerivedSlave : S lave
2 {
3 public int spec ia lParameter ;
4 }

48

Let us modify for instance the slave2 instance to be of DerivedSlave type.

14 Der ivedSlave s l ave2 = new DerivedSlave () ;
15 s l ave2 . s laveID = 10 ;
16 s l ave2 . slaveName = ”Derived Slave ” ;
17 s l ave2 . spec ia lParameter = 666 ;

If we try to serialize our master instance we get InvalidOperationException
exception. This is because the serialization process does not deal with inher-
itance hierarchy in a smooth way. For this to work, we will have to indicate
that the slave reference may refer to an object of Slave or DerivedSlave class
as follows in the Code listing 3.13.

Listing 3.13: XML Derived Class Correction.

1 public class Master
2 {
3 public string masterName ;
4 [XmlElement (Type = typeof (S lave)) ,
5 XmlElement (Type = typeof (Der ivedSlave))]
6 public Slave mainSlave ;
7 [XmlArrayItem (Type = typeof (S lave)) ,
8 XmlArrayItem (Type = typeof (Der ivedSlave))]
9 public Slave [] s l a v eCo l l e c t i o n ;
10 }

After serialization we get the following XML output:

<?xml version="1.0"?>

<Master xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<masterName>Master Object</masterName>

<Slave>

<slaveID>1</slaveID>

<slaveName>Chief Slave</slaveName>

</Slave>

<slaveCollection>

<Slave>

<slaveID>5</slaveID>

49

<slaveName>Obedient Slave</slaveName>

</Slave>

<DerivedSlave>

<slaveID>10</slaveID>

<slaveName>Derived Slave</slaveName>

<specialParameter>666</specialParameter>

</DerivedSlave>

</slaveCollection>

</Master>

While the above fix works, we have completely violated the Open-Closed
Principle. The code is not extensible to adding new types of Slaves. If we
decide to add another class which inherits from Slave or DerivedSlave, we
will have to modify the Master class. This seems to be the only significant
limitation of the XML serialization mechanism.

3.5.5 XML Serialization summary

Now we know that if we want to create a class intended for XML Serialization
it must be declared public and it must have a parameterless constructor. We
also know that only public data members and properties are serialized and
that we can control the serialization by using attributes.
But there are some problems. One of them is that not every data type can

be serialized. Only few chosen are supported. For instance two-dimensional
arrays (int [,]) can not be serialized this way.
Collections and compositions are supported but if we use class inheri-

tance we have to specify for each data member or property exactly what
classes can it refer to. This completely violates the Open-Closed Principle.
It means that if we add a new derived class we have to update all the places
in the code that can hold a reference to this new class. This significantly
reduces modularity of our system. In other words it is not possible for in-
stance to add new modules to our system only by copying some dlls to some
directory. You have to change the code.
We have not mentioned generic classes yet. The XML Serialization works

fine with generic classes too, but there is one problem. If we work with
derived classes there is no way how to specify what generic classes can a
data member or a property refer to. It is possible to specify this only if we
fix the unknown parameter T in these classes. This is not a big problem in
our system, because we have restricted us only to chars.

50

3.6 XML counterparts of core classes

In this section we describe how the XML serialization is used in our sys-
tem to serialize and (or) deserialize core classes, languages and restarting
automata. We suppose that the reader has basic understanding of XML se-
rialization in C♯ 2.0 (otherwise see the Section 3.5).

The first idea is to make all mentioned classes serializable.
This approach has some significant flaws. First the serializable class must

be specified as public and it must have a parameterless constructor. This is
a problem especially for immutable classes. An immutable class should not
have a parameterless constructor, but what is more important, it must not
have setter methods (in properties) and public attributes, because otherwise
we could modify the internal state of the class. In other words it is impossible
to have an immutable class that is serializable.
Then there are classes such as DFA<T> that are not immutable, but also

can be serialized (deserialized) only with difficulties. First problem is that
some data types cannot be serialized (for instance two-dimensional arrays).
The second problem is that this approach violates one of the basic design
principles called KISS (Keep It Simple Stupid). Classes such as DFA<T>

are designed to fulfill one specific purpose or task. If we made such a class
serializable, the complexity of the class would necessarily grow. It would be
more difficult to modify or extend such a class.

We have decided to separate XML serialization from core classes in our
system by creating XML counterparts of core classes.

The basic idea is illustrated in the Figure 3.11.
Suppose that we want to serialize (or deserialize) a class Widget. First

step is to specify a special IWidgetData interface. This interface contains all
necessary methods that give us all data sufficient to create an instance of the
Widget class. (This explains the postfix Data in the name of the interface).
The Widget class must implement this interface and also there must be a
constructor in theWidget class that allows us to create an instance ofWidget
class from IWidgetData interface.
Second step is to define an XML counterpart WidgetXML class. This is

a simple public serializable class which only purpose is to serialize and de-
serialize all data provided by IWidgetData interface. Again this class must

51

+GetWidgetData1()

+GetWidgetData2()

«interface»

IWidgetData

+Create(in widgetData : IWidgetData)

Widget

+Create()

+Create(in widgetData : IWidgetData)

WidgetXML

Figure 3.11: Widget Class Diagram.

implement IWidgetData interface and also there must be a constructor in
this class that allows us to create an instance of this class from IWidgetData
interface.

Now we illustrate how this all works. Suppose that we have an instance
widget of Widget class and we want to serialize this instance. This can be
done only with few lines of code as is shown in the Code listing 3.14.

Listing 3.14: Widget class serialization.

1 XmlSe r i a l i z e r w i d g e t S e r i a l i z e r =
2 new XmlSe r i a l i z e r (typeof (WidgetXML)) ;
3 WidgetXML widgetXML = new WidgetXML(widget) ;
4 w i d g e t S e r i a l i z e r . S e r i a l i z e (stream , widgetXML) ;
5 stream . Close () ;

The most important is the third line where we transform the original
Widget class into its XML counterpart WidgetXML class.
The deserialization is as easy as the serialization because the transfor-

mation can be done also in the other way, i.e. from the WidgetXML class to
the Widget class (see Code listing 3.15).

Listing 3.15: Widget class deserialization.

1 XmlSe r i a l i z e r w i d g e t S e r i a l i z e r =
2 new XmlSe r i a l i z e r (typeof (WidgetXML)) ;

52

3 WidgetXML widgetXML =
4 w i d g e t S e r i a l i z e r . D e s e r i a l i z e (stream) as WidgetXML ;
5 Widget widget = new Widget (widgetXML) ;
6 stream . Close () ;

There are few important things to note:
First it is recommended to choose the return data types of methods of

IWidgetData interface as simple as possible (the best are the data types that
can be easily serialized/deserialized).
Second if we implement IWidgetData interface it is advisable not to re-

turn references to internal data of the class. It is recommended to return
deep copies of internal data. For instance suppose thatWidget class contains
an array of ints and suppose that GetWidgetData1() method of IWidgetData
interface returns a reference to this array. Then it would be possible to
change internal data of Widget class through this method.

In spite of these two limitations this approach works great in practice. It
allows us to change an XML representation of classes without touching the
code of these classes. We only modify the code of their XML counterparts.
Also inheritance in XML serialization is implemented easier with simple

XML classes rather than with complex multipurpose serializable classes.
Another useful feature of this approach is that we can create the whole

hierarchy of IData interfaces. For instance in our system IDFAData<T> inter-
face extends IAlphabetData<T> interface. It means that whenever we have
an instance of a DFA<T> class we can create (for example) an instance of
AlphabetXML class. This feature is also widely used in our system.

For better explanation of this idea we give two examples. The first ex-
ample is an AlphabetXML<T> class that represents an XML counterpart
of the Alphabet<T> class and the second example is a DFAXML<T> class
that represents an XML counterpart of the DFA<T> class.

3.6.1 AlphabetXML<T>

Class AlphabetXML<T> represents an XML counterpart of the Alphabet<T>

class. Both of these classes implement IAlphabetData<T> interface as is
shown in the Figure 3.12.
Note that in the method GetAlphabetData() of the IAlphabetData<T>

53

+GetAlphabetData() : T[]

«interface»

IAlphabetData<T>

+Create(in tokens : IEnumerable<T>) : Alphabet<T>

+Create(in alphabetData : IAlphabetData<T>) : Alphabet<T>

-data : T[]

Alphabet<T>

+Create() : Alphabet<T>

+Create(in alphabetData : IAlphabetData<T>) : Alphabet<T>

+GetTokens() : T[]

+SetTokens(in value : T[])

-alphabetData : T[]

AlphabetXML<T>

Figure 3.12: AlphabetXML<T> Class Diagram.

interface we always return a copy of the internal array of tokens. The im-
plementation of this method in the AlphabetXML<T> class is shown in the
Code listing 3.16.

Listing 3.16: GetAlphabetData().

1 public T [] GetAlphabetData ()
2 {
3 return this . alphabetData . Clone () as T [] ;
4 }

3.6.2 DFAXML<T>

Class DFAXML<T> represents an XML counterpart of the DFA<T> class.
Both of these classes implement IDFAData<T> interface as is shown in the
Figure 3.13.
First note that the IDFAData<T> interface extends the IAlphabetData<T>

interface. This allows us to create alphabetXML private member in the

54

+GetDFAStateCountData() : int

+GetDFAAcceptStatesData() : string

+GetDFATransitionTableData() : string

«interface»

IDFAData<T>

+Create(in alphabet : Alphabet<T>, in stateCount : int) : DFA<T>

+Create(in dfaData : IDFAData<T>) : DFA<T>

-alphabet : Alphabet<T>

-alphabetCount : int

-stateCount : int

-acceptStates : bool[]

-transitionTable : int[,]

DFA<T>

IAlphabetData<T>

+Create() : DFA<T>

+Create(in dfaData : IDFAData<T>) : DFA<T>

+GetAlphabet() : AlphabetXML<T>

+SetAlphabet(in value : AlphabetXML<T>)

+GetStateCount() : int

+SetStateCount(in value : int)

+GetAcceptStates() : string

+SetAcceptStates(in value : string)

+GetTransitionTable() : string

+SetTransitionTable(in value : string)

-alphabetXML : AlphabetXML<T>

-stateCount : int

-acceptStatesString : string

-transitionTableString : string

DFAXML<T>

Figure 3.13: DFAXML<T> Class Diagram.

55

DFAXML<T> constructor by using IDFAData<T> interface dfaData as is
shown in the Code listing 3.17:

Listing 3.17: DFAXML<T> constructor.

1 public DFAXML(IDFAData<T> dfaData)
2 {
3 this . alphabetXML = new AlphabetXML<T>(dfaData) ;
4 this . stateCount = dfaData . GetDFAStateCountData () ;
5 this . a c c ep tS ta t e sS t r i ng =
6 dfaData . GetDFAAcceptStatesData () ;
7 this . t r an s i t i onTab l eS t r i n g =
8 dfaData . GetDFATransitionTableData () ;
9 }

The same holds also for the DFA<T> class.

Also note that the return value data types of Get. . .Data() methods of
the IDFAData<T> interface are simple data types that can be serialized (or
deserialized).
For instance GetDFATransitionTableData() returns the transition table

as a string. This is because we are not able to serialize (deserialize) two-
dimensional arrays. The transformation to and from the string representa-
tion are of course implemented only in the DFA<T> class.

3.7 Restarting automata

In this section we describe one of the most important classes of our system,
the RestartingAutomaton<T> class. We use representation of these automata
adapted from the Section 1.4. In this representation the restarting automa-
ton consists of the set of accepting meta-instructions and the set of reducing
(or rewriting) meta-instructions.
Every accepting meta-instruction is defined by its accepting language

and every reducing meta-instruction is defined by its left language, right
language and two words: from-word and to-word.
The first part of this section is devoted to languages. The second part

describes accepting and reducing meta-instructions and the last third part
describes the RestartingAutomaton<T> class.

56

3.7.1 Languages

A language L is a subset of Σ∗ where Σ is a finite nonempty set of symbols
called the alphabet (see Section 1.1). In our system a language is an im-
mutable class that implements ILanguage<T> interface as is shown in the
Figure 3.14.

+GetAlphabet() : Alphabet<T>

+Decide(in word : IEnumerable<T>) : bool

«interface»

ILanguage

Figure 3.14: ILanguage<T> Class Diagram.

In other words a language is an immutable class that can decide whether
a given word is accepted or rejected and that can give you its own alphabet.
There are some core classes in our system (such as DFA<T> or SLT<T>)

that can decide whether a given word is accepted or rejected and also
can give you the alphabet, however none of these classes implements the
ILanguage<T> interface. This is because these classes are not languages.
They are designed for other purposes.
On the other hand behind every language class in our system there is one

of these core classes hidden that actually realizes these decisions whether to
accept or reject a given word. For instance behind LanguageDFA<T> class
there is a DFA<T> class.
You can easily recognize the Adapter design pattern behind this schema.

Language classes are adapters that adapts core classes to ILanguage<T>

interface. Core classes are in the role of adaptees.
These language classes also have their own XML counterparts and the

important thing to note is that every such XML language class is inherited
from the ILanguageXML<T> base class. This allows us to serialize and de-
serialize language classes without knowing the exact type of the language.
It is not as easy as it seems at first glance. For this to work we have created
two static classes. The first one is LanguageFactory<T> class and the second
one is LanguageXMLFactory<T> class (see Figure 3.15).
The ILanguageData<T> interface is the common ancestor of all interfaces

connecting language classes with their XML counterparts.
If we have an instance that implements ILanguageData<T> interface then

by using LanguageFactory<T> we can create the corresponding language and

57

by using LanguageXMLFactory<T> we can create the corresponding XML
counterpart to this language.

+GetLanguageInstance(in languageData : ILanguageData<T>) : ILanguage<T>

LanguageFactory<T>

+GetLanguageXMLInstance(in languageData : ILanguageData<T>) : ILanguageXML<T>

LanguageXMLFactory<T>

Figure 3.15: Language Factory.

In the Code listing 3.18 you can see the LanguageFactory<T> static class
implementation. (LanguageXMLFactory<T> looks similarly).

Listing 3.18: LanguageFactory<T> implementation.
1 public stat ic ILanguage<T> GetLanguageInstance (
2 ILanguageData<T> languageData)
3 {
4 i f (languageData == null)
5 return null ;
6 else i f (languageData i s ILanguageDFALStarData<T>)
7 return new LanguageDFALStar<T>(
8 languageData as ILanguageDFALStarData<T>);
9 else i f (languageData i s ILanguageDFARPNIData<T>)
10 return new LanguageDFARPNI<T>(
11 languageData as ILanguageDFARPNIData<T>);
12 else i f (languageData i s ILanguageDFAData<T>)
13 return new LanguageDFA<T>(
14 languageData as ILanguageDFAData<T>);
15 else i f (languageData i s ILanguageRegexData<T>)
16 return new LanguageRegex<T>(
17 languageData as ILanguageRegexData<T>);
18 else i f (languageData i s ILanguageSLTData<T>)
19 return new LanguageSLT<T>(
20 languageData as ILanguageSLTData<T>);
21 else throw new Inval idProgramException (
22 ”LanguageFactory : Unrecognized ILanguageData i n t e r f a c e . ”) ;
23 }

58

3.7.2 Metainstructions

In the Figure 3.16 you can see the class diagrams of accepting and reducing
meta-instructions. Note that their members are immutable classes.

-alphabet : Alphabet<T>

-acceptingLanguage : ILanguage<T>

AcceptingMetainstruction<T>

-alphabet : Alphabet<T>

-leftLanguage : ILanguage<T>

-rightLanguage : ILanguage<T>

-fromWord : GenericString<T>

-toWord : GenericString<T>

ReducingMetainstruction<T>

Figure 3.16: Accepting and reducing meta-instructions.

These classes do not have any special functionalities. They serve only as
a package that encapsulates their own attributes.
These classes also have their XML counterparts. The only interesting

thing to note is that if we want to serialize (or deserialize) languages we
have to specify all descendants of ILanguageXML<T> base class as is shown
in the Code listing 3.19.

Listing 3.19: AcceptingMetainstructionXML<T> language property.

1 [XmlElement (”AccLngFA” , typeof (LanguageDFAXML<char>)) ,
2 XmlElement (”AccLngDFALStar” , typeof (LanguageDFALStarXML<char>)) ,
3 XmlElement (”AccLngDFARPNI” , typeof (LanguageDFARPNIXML<char>)) ,
4 XmlElement (”AccLngRegex” , typeof (LanguageRegexXML<char>)) ,
5 XmlElement (”AccLngSLT” , typeof (LanguageSLTXML<char>))]
6 public ILanguageXML<T> AcceptingLanguage
7 {
8 get { return this . acceptingLanguageXML ; }
9 s e t { this . acceptingLanguageXML = value ; }
10 }

59

3.7.3 RestartingAutomaton<T>

In the Figure 3.17 you can see the class diagram of RestartingAutomaton<T>

class. This class represents a package that contains the list of accepting
meta-instructions and the list of reducing meta-instructions.

+Create(in alphabet : Alphabet<T>) : RestartingAutomaton<T>

+GetAlphabet() : Alphabet<T>

+AddAcceptingMetainstruction(in acceptingMetainstruction : AcceptingMetainstruction<T>)

+AddReducingMetainstruction(in reducingMetainstruction : ReducingMetainstruction<T>)

+WordToWordPaths(in fromWord : GenericString<T>, in toWord : GenericString<T>) : List

+WordToAll(in fromWord : GenericString<T>) : List

-alphabet : Alphabet<T>

-acceptingMetainstructionList : List<AcceptingMetainstruction<T>>

-reducingMetainstructionList : List<ReducingMetainstruction<T>>

RestartingAutomaton<T>

Figure 3.17: RestartingAutomaton<T> Class Diagram.

The most important methods areWordToWordPaths andWordToAllmeth-
ods. The first one returns the list of all reducing paths from the fromWord
to the toWord and the second one returns the list of all words that can be
reduced from the fromWord.
This class is the place where it is possible to add new functionalities of

the restarting automaton.

3.8 How to add new learning protocols

In this section we describe how to add new learning protocols to the system.
Learning protocols are protocols that are used to produce languages. The
best way how to describe this process is by using an example. We have
decided to describe adding k-SLT languages to the system.

1. We define SLT<T> class that encapsulates the learning protocol.

2. Sometimes this step is unnecessary but in this case we define an XML
counterpart: SLTXML<T> class and the corresponding ISLTData<T>

interface that connects these two classes.

In the Code listing 3.20 you can see a small fraction of the implemen-
tation of these SLT core classes.

60

Listing 3.20: SLT core classes.

1 public interface ISLTData<T> :
2 IPos i t iveNegat iveSamplesData<T>
3 where T : struct , IComparable<T>, IEquatable<T>
4 {
5 /// Returns k f o r k−SLT languages .
6 int GetSLTK () ;
7 }
8
9 public sealed class SLT<T> :
10 ISLTData<T>,
11 ICloneab le
12 where T : struct , IComparable<T>, IEquatable<T>
13 {
14 #region Constructors
15 public SLT(Alphabet<T> alphabet , int k) { . . . }
16 public SLT(ISLTData<T> s l tData) { . . . }
17 #endregion
18
19 #region ISLTData I n t e r f a c e
20 /// Returns data d e s c r i b i n g the a l phabe t .
21 public T [] GetAlphabetData () { . . . }
22 . . .
23 /// Returns k f o r k−SLT languages .
24 public int GetSLTK() { . . . }
25 #endregion
26
27 #region IC loneab le I n t e r f a c e
28 #region Prope r t i e s
29 #region Event Handlers
30 #region Methods
31 #region Pr ivate Methods
32 #region Pr ivate Data Members
33 }
34
35 [XmlRoot (”SLT”)]
36 public sealed class SLTXML<T> :
37 ISLTData<T>
38 where T : struct , IComparable<T>, IEquatable<T>
39 {

61

40 #region Constructors
41 public SLTXML() { . . . }
42 public SLTXML(ISLTData<T> s l tData) { . . . }
43 #endregion
44
45 #region ISLTData I n t e r f a c e
46 #region Prope r t i e s
47 [XmlElement (”Pos i t iveNegat iveSamples ”)]
48 public PositiveNegativeSamplesXML<T>
49 Pos i t iveNegat iveSamples { get ; s e t ; }
50 [XmlElement (”K”)]
51 public int K { get ; s e t ; }
52 #endregion
53
54 #region Pr ivate Data Members
55 }

As you can see in the Code listing 3.20 the ISLTData<T> interface
extends the IPositiveNegativeSamplesData<T> interface (which extends
the IAlphabetData<T> interface).

It means that the positive and negative samples (including the alpha-
bet) together with the positive integer k represent all data necessary
to initialize an instance of the SLT<T> class (or the SLTXML<T>

class).

3. We define an immutable LanguageSLT<T> class that adapts SLT<T>

class to the ILanguage<T> interface.

4. We define an XML counterpart: LanguageSLTXML<T> class to the
LanguageSLT<T> class and the corresponding ILanguageSLTData<T>

interconnecting interface. The LanguageSLTXML<T> class must be in-
herited from ILanguageXML<T> class and the ILanguageSLTData<T>

interface must extend ILanguageData<T> interface.

In the Code listing 3.21 you can see a small fraction of the implemen-
tation of these SLT language classes.

Listing 3.21: SLT language classes.

1 public interface ILanguageSLTData<T> :

62

2 ISLTData<T>,
3 ILanguageData<T>
4 where T : struct , IComparable<T>, IEquatable<T>
5 {
6
7 }
8
9 public sealed class LanguageSLT<T> :
10 ILanguage<T>,
11 ILanguageSLTData<T>
12 where T : struct , IComparable<T>, IEquatable<T>
13 {
14 #region Constructors
15 public LanguageSLT(SLT<T> s l t) { . . . }
16 public LanguageSLT(ILanguageSLTData<T>
17 languageSLTData) { . . . }
18 #endregion
19
20 #region ILanguage I n t e r f a c e
21 public Alphabet<T> Alphabet { get ; }
22 public bool Decide (IEnumerable<T> word) { . . . }
23 #endregion
24
25 #region ILanguageSLTData I n t e r f a c e
26 #region Methods
27 #region Pr ivate Data Members
28 }
29
30 [XmlRoot (”LanguageSLT”)]
31 public class LanguageSLTXML<T> :
32 ILanguageXML<T>,
33 ILanguageSLTData<T>
34 where T : struct , IComparable<T>, IEquatable<T>
35 {
36 #region Constructors
37 public LanguageSLTXML() { . . . }
38 public LanguageSLTXML(ILanguageSLTData<T>
39 languageSLTData) { . . . }
40 #endregion
41

63

42 #region ILanguageSLTData I n t e r f a c e
43
44 #region Prope r t i e s
45 [XmlElement (”SLT”)]
46 public SLTXML<T> SLT { get ; s e t ; }
47 #endregion
48
49 #region Pr ivate Data Members
50 }

5. We extend the LanguageFactory<T> and the LanguageXMLFactory<T>

to be able to recognize ILanguageSLTData<T> interface. You can see
the extension of the LanguageFactory<T> in the Code listing 3.18 (the
rows 18, 19 and 20).

6. As we have seen in the Section 3.7.2 we must add some code to the
accepting and reducing meta-instruction XML classes so that they
are able to recognize this new language during the process of XML
serialization and deserialization. You can see the extension for the
accepting meta-instruction in the Code listing 3.19 (the row 5).

7. The last step is to install this learning protocol into the GUI of the
application. This step is out of scope of this thesis so we are not going
to describe the process.

3.9 How to add new functionality

In this section we describe how to add a new functionality of the restarting
automaton to the system.

1. Add a new method (or methods) with the desired functionality into
the RestartingAutomaton<T> class.

2. Make this new functionality accessible from the GUI of the application.

64

Chapter 4

User guide

In this chapter we describe how to work with RestartingAutomaton appli-
cation that is attached to this thesis on a CD (see Figure 4.1).

Figure 4.1: RestartingAutomaton application.

We first introduce the main purpose of the RestartingAutomaton appli-

65

cation and mention all the things you can do with the application.
Then we describe the installation process of the application and show

how to run this application on your own computer.
Finally we introduce language tools that are used to define formal lan-

guages and after this we show how to design and test restarting automaton.

4.1 Purpose

RestartingAutomaton application allows you to do the following things:

1. Design a restarting automaton. The design of restarting automaton
consists of stepwise design of accepting and reducing meta-instructions.
You can save (load) restarting automaton to (from) an XML file.

2. Test correctly defined restarting automaton.

(a) The system is able to give you a list of all words that can be
obtained by reductions from a given word w. It also gives you a
list of all accepting meta-instructions to every reduced word that
accept this word. The input word w is accepted by a restarting
automaton if and only if a word w can be reduced to a word that
is accepted by at least one accepting meta-instruction.

(b) The system is able to give you a list of all reduction paths from
one given word to another given word.

3. Start a server if the restarting automaton is defined correctly. In the
server mode the client applications can use services provided by the
server application.

4. You can use specialized tools to define formal languages. Each tool
enables you to test the correctly defined language. You can also save,
load, copy, paste and view an XML representation of the actual state
of the tool.

Note that the application allows you only to design simple restarting
automata recognizing only simple formal languages with small alphabets
consisting of few letters. On large inputs the computation can take a long
time and it can produce a huge output.

66

4.2 Installation

For Win32 platform you need to have .NET Framework 2.0 installed on your
computer. You can download this framework from the Microsoft web site:
http://www.microsoft.com/. If the .NET Framework is installed correctly,
just copy the file:
<CD Drive>\RestartingAutomaton\RestartingAutomaton.exe
from a CD attached to this thesis to a local drive. To run the application
just double-click on the RestartingAutomaton.exe file.

For UNIX platform you need to have Mono project installed on your com-
puter. For more information see the web page: http://www.mono-project.com/.
If the Mono project is installed correctly, just copy the file:
<CD Drive>\RestartingAutomaton\RestartingAutomaton.exe
from a CD attached to this thesis to a local drive. To run the application
just enter the command:

> mono RestartingAutomaton.exe

The source code of the application is packed in the file:
<CD Drive>\RestartingAutomaton\RestartingAutomaton.zip
on a CD attached to this thesis. If you want to do modifications to the
code we recommend to use Microsoft Visual Studio 2005 as a development
environment.

4.3 Language tools

In this section we introduce language tools that are used to define formal
languages. In the menu Tools there are following language tools:

1. DFA Modeler

2. LStar Algorithm

3. RPNI Algorithm

4. Regular Expression

5. SLT Language

67

These tools are graphical user tools used to work with learning protocols
as defined in the requirements of the system.
You can use them to try how these learning protocols work and of course

you can save the results of your work for later use either to a file or to a
clipboard.
You can also use these tools for defining languages of meta-instructions

during the design of restarting automaton.
All these tools have a lot of functionalities in common. The work with

every tool usually starts with defining an alphabet. If you use these tools
during the process of creation of the restarting automaton the alphabet is
automatically inherited from the restarting automaton.
The alphabet in our system always consists of finite number of UNI-

CODE characters. All characters are supported but we recommend to avoid
strange characters like whitespaces or quotation marks.

4.3.1 DFA Modeler Tool

DFA Modeler tool allows you to enter a regular language by specifying its
underlying deterministic finite automaton. To open this tool just click on
the DFA Modeler menu item in the Tools menu.
You can see the corresponding window in the Figure 4.2.
The largest text box is a place where you can enter the transition table

of the DFA. The transition table contains all necessary information about
the DFA including the alphabet, the number of states and the transitions
between the states.
Here is an example of a transition table of a DFA that accepts the words

with even number of as and even number of bs:

a b

<-> 0 1 2

1 0 3

2 3 0

3 2 1

The first row of the transition table is the alphabet. In our case the
alphabet consists of two symbols: a and b.
The first column contains the numbers 0, 1, . . . , n − 1 (in this order),

where n is the total number of states of the DFA.

68

Figure 4.2: DFA Modeler tool.

69

The start state of the DFA is always the state with the number 0. We
express this fact with an arrow -> to the left of this state. In our case the
start state is also an output state, so we write an arrow <-> to the left of
this state.
If we want to express that a state (other than the start state) is an output

state we write an arrow <- to the left of this state.
Transitions are written to the right side of the state. For instance in our

example if we are in the state with the number 2 and we read a symbol a
we get to the state with the number 3. If we read a symbol b we get to the
state with the number 0.
There is also a Comment TextBox where you can enter a comment to

the DFA. The comment is an auxiliary information that does not have an
influence on the DFA.
After entering the transition table you can click on the Test button to

test the corresponding DFA. If something is wrong with the transition table
the message box will tell you what you have to fix. If the transition table is
correct the DFA Preview form will show up as in the Figure 4.3.
To test the DFA just enter some word to the white TextBox and click on

the Decide button. You will get a message telling you whether the entered
word is accepted or rejected by the DFA. If you enter a word that is not
from the alphabet of the DFA you will get a message telling you that all
letters of the word must be from the alphabet.
You can also save (copy) an XML representation of the DFA into a file

(clipboard) by clicking on the Save (Copy XML) button. You can later load
(paste) this XML representation from a file (clipboard) in the DFA Modeler
tool.

4.3.2 LStar Algorithm Tool

LStar Algorithm tool encapsulates Dana Angluin’s L* algorithm that is
a machine learning algorithm which learns deterministic finite automaton
using membership and equivalence queries (see Section 2.1). To open this
tool just click on the LStar Algorithm menu item in the Tools menu.
You can see the corresponding window in the Figure 4.4.
First thing you have to do is to define an alphabet. Just click on the

Alphabet button and then enter the alphabet into the white TextBox of the
Alphabet form (see Figure 4.5).
As we have said the alphabet always consists of finite number of UNI-

70

Figure 4.3: DFA Preview form.

71

Figure 4.4: LStar Algorithm tool.

Figure 4.5: Alphabet form.

72

CODE characters. We recommend to avoid strange characters like whites-
paces or quotation marks although these characters are also supported.
For example enter the alphabet ab consisting of two symbols: a and b,

and then click on the Ok button.
After defining the alphabet some of the controls of the LStar Algorithm

tool will be enabled. The TextBox under the Alphabet button is a command
TextBox. Here you can enter commands to express what words should be
accepted and what words should be rejected. Each command has one of the
following forms:

1. accept word

2. acc word

3. reject word

4. rej word

where word is a word from the entered alphabet (in our case from the
alphabet {a, b}).
If the command starts with accept or acc then the entered word is

considered to be accepted. On the other hand if the command starts with
reject or rej then the entered word is considered to be rejected.
If the alphabet contains special symbols like whitespaces or quotation

marks you can use single or double quotation marks to enclose the word.
These enclosing quotation marks are of course ignored. For instance aabb is
the same as ’aabb’ or "aabb", and "abcd ’bb" is the same as ’abcd ’’bb’.
As a consequence if you want to enter a command to accept (or reject)

an empty word just enter the command accept ’’ (or reject ’’).
The ListView under the command TextBox is a command ListView.

It shows you the list of all entered commands. This list of commands is
also called a knowledge base. You can delete or rearrange the items in this
ListView, but after doing this you have to click on the Rebuild button. This
Rebuild button causes that the LStar algorithm is run anew on this new
modified knowledge base.
In the second ListView under the command ListView you can see the

set of unknown words. You have to decide whether to accept or reject these
words by entering the corresponding command into the command TextBox.
If this ListView does not contain any unknown words then the L* algorithm
has enough information to produce a conjecture. It means that you can click

73

on the Conjecture button to see a DFA that is consistent with the knowledge
base. If this conjecture is your target DFA then you are done. If it is not you
have to enter the counterexample command into the command TextBox.
After doing this new unknown words will arise.
As in the DFA Modeler tool (see Section 4.3.1) there is a Comment

TextBox where you can enter a comment to the knowledge base.
The Save and Load button are used to save or load the XML repre-

sentation of the knowledge base. The Copy XML button copies the XML
representation of the knowledge base into the clipboard, the Paste XML
button pastes the knowledge base from the clipboard into the form (if it is
possible) and the View XML button shows you the dialog with the XML
representation of the knowledge base.

4.3.3 RPNI Algorithm Tool

RPNI Algorithm tool encapsulates a machine learning algorithm which learns
deterministic finite automaton based on a given set of labeled examples (see
Section 2.2). To open this tool just click on the RPNI Algorithm menu item
in the Tools menu.
You can see the corresponding window in the Figure 4.6.
First click on the Alphabet button and then enter the alphabet into the

white TextBox of the Alphabet form (see Figure 4.5). After defining the
alphabet some of the controls of the RPNI Algorithm tool will be enabled.
Into the Accept TextBox enter all the words that should be accepted and

into the Reject TextBox enter all the words that should be rejected. These
two sets of words must be disjunctive.
If the alphabet contains special symbols like whitespaces or quotation

marks you can use single or double quotation marks to enclose words as was
described in the Section 4.3.2.
After defining all positive and negative samples you can click on the

Conjecture button to get a DFA consistent with all these samples.
The Save, Load, Copy XML, Paste XML and View XML buttons work

in the same way as the corresponding buttons of the LStar Algorithm tool
described in the Section 4.3.2. The only difference is that you can load (or
paste) not only the XML representation of positive and negative samples
from the RPNI Algorithm tool, but also the XML representation of the
knowledge base from the LStar Algorithm tool.

74

Figure 4.6: RPNI Algorithm tool.

75

4.3.4 Regular Expression Tool

With Regular Expression tool it is possible to enter a regular language
by specifying the regular expression (extended regular expressions are sup-
ported). To open this tool just click on the Regular Expression menu item
in the Tools menu.
You can see the corresponding window in the Figure 4.7.

Figure 4.7: Regular Expression tool.

First click on the Alphabet button and then enter the alphabet into the
white TextBox of the Alphabet form (see Figure 4.5). After defining the
alphabet some of the controls of the RPNI Algorithm tool will be enabled.
Into the first Regex Pattern TextBox enter the regular expressions. If

you want to see some examples of regular expressions just click on the Help
button. After entering the regular expression you can check the correctness
of the regex pattern by clicking on the Validate button.
To test the regular expression you can use the second Regex Test TextBox.

Here you can enter a word and then test whether this word is accepted or
rejected by the regular expression by clicking on the Decide button.
As you can see there are no buttons for saving or loading (copying or

pasting) an XML representation of the regular expression. This is because
regular expressions are defined only by their pattern so it is useless to have
a special XML representation only for the regex pattern.

4.3.5 SLT Language Tool

With SLT Language tool it is possible to design a regular language by spec-
ifying a positive integer k and positive examples using the algorithm for

76

learning k-SLT languages (see Section 2.3) To open this tool just click on
the SLT Language menu item in the Tools menu.
You can see the corresponding window in the Figure 4.8.

Figure 4.8: SLT Language tool.

First enter a positive integer k into the K TextBox and then click on
the Alphabet button and enter the alphabet into the white TextBox of the
Alphabet form (see Figure 4.5).
For example enter the positive integer k = 3 and then enter e.g. the

alphabet ab consisting of two symbols: a and b.
After defining the positive integer k and the alphabet some of the controls

of the SLT Language tool will be enabled.
Into the largest Positive Samples TextBox you can enter positive samples.

In our case enter e.g. the samples: ab, ba, aabbbbbb and abababab.

77

To test the inferred k-SLT language just click on the Test button and
the SLT Preview form will show up as in the Figure 4.9.

Figure 4.9: SLT Preview form.

For testing just enter some word to the white TextBox and then click on
the Decide button.You will get a message telling you whether the entered
word is accepted or rejected by the k-SLT language. If you enter a word that
is not from the alphabet you will get a message telling you that all letters
of the word must be from the alphabet.

78

4.4 Construction of restarting automaton

The incremental design of restarting automaton consists of stepwise design
of meta-instructions. There are two kinds of meta-instructions: accepting
and reducing meta-instructions.
Accepting meta-instruction is defined by its accepting language. Reduc-

ing meta-instruction is defined by its left language, right language and two
words x and y where αxβ can be reduced to αyβ if α is in the left language
and β is in the right language.
For more information on restarting automata see the Section 1.4.
In this section we describe how to create a restarting automaton that

recognizes the language L = {aibicjdj|i, j > 0}.
For simplicity we use regular expressions to define languages.
This automaton will have only one accepting meta-instruction A00 with

the following accepting language:

Name Accepting Language
A00 ^abcd$

and two reducing meta-instructions R00 and R01:

Name Left Language From Word To Word Right Language
R00 ^a*$ ab λ ^b*c*d*$

R01 ^a*b*c*$ cd λ ^d*$

You can easily see that this restarting automaton recognizes exactly the
language L.
To transfer this restarting automaton into our system you have to start

the RestartingAutomaton application. You can see the corresponding win-
dow in the Figure 4.1. Click on the New menu item in the File menu. The
Alphabet form will show up as in the Figure 4.5. Into the white TextBox of
the Alphabet form enter the alphabet for the restarting automaton.
In our case enter e.g. the alphabet abcd consisting of letters: a, b, c and

d.
After defining the alphabet you can add accepting and reducing meta-

instructions into this automaton.
Click on the Add button in the Accepting Metainstruction GroupBox to

add one accepting meta-instruction.

79

Click twice on the Add button in the Reducing Metainstruction Group-
Box to add two reducing meta-instructions.
Now you have to define languages for these meta-instructions. For the

accepting meta-instruction just double-click on the subitem under the col-
umn Accepting Language and the Language Wizard will show up as in the
Figure 4.10.

Figure 4.10: Language Wizard.

You can use any of the language tools described in the Section 4.3 to
define a language. In our case select the Regular Expression RadioButton
and then click on the Next button. The Regular Expression tool for entering
regular expressions will show up as in the Figure 4.11.

Figure 4.11: Regular Expression tool.

As you can see the Alphabet button is disabled. This is because the
alphabet is automatically inherited from the restarting automaton and you

80

cannot change it. Also note that the Ok and Cancel buttons are enabled.
You can use these buttons to confirm or reject entered language.
In our case just enter the pattern ^abcd$ and click on the Ok button.
The same procedure can be also applied for languages of the reducing

meta-instructions.
To enter a from-word or a to-word just double-click on the proper subitem

and the focus will be automatically redirected to the TextBox where you can
enter the word. You confirm the text by pressing the enter key.
After defining all languages you should get restarting automaton as in

the Figure 4.12.

Figure 4.12: Restarting Automaton.

Now you can save the XML representation of this restarting automaton
into a file. Just click on the Save menu item in the File menu. Later you can

81

load this automaton by clicking on the Load menu item in the File menu.

4.5 Using restarting automaton

If the restarting automaton is defined correctly you can do the following
things:

1. Compute the list of all words that can be reduced from a given word.
This computation also gives you an information about whether the
entered word is accepted or rejected by the restarting automaton.

2. Compute the list of all reducing paths from one given word to the
other given word.

In this section we use the restarting automaton defined in the previous
Section 4.4.
Note that in the main form of the RestartingAutomaton application

there is a CheckBox next to every meta-instruction (see Figure 4.12). This
CheckBox decides whether the corresponding meta-instruction will be con-
sidered during the computation. These CheckBoxes are useful when you
want to observe what happens if some meta-instructions are not allowed.

4.5.1 Word To All

If you click on the Word To All menu item in the Action menu then the
Word To All dialog will show up as in the Figure 4.13.

Figure 4.13: Word To All dialog.

Into the From Word TextBox enter a word from which you want to
compute all its reductions.
In this case enter e.g. the word aaabbbccdd and click on the Compute

button. The computation itself is done in another thread so if this compu-
tation takes a long time you can cancel the computation with the Cancel

82

button. The output will contain only the words computed until the cancel-
lation.

After finishing of the computation you should get the Word To All Filter
dialog shown in the Figure 4.14.

Figure 4.14: Word To All Filter dialog.

If you look at the top right part of the dialog you can see that the dialog
tells you that the input word is accepted. This is because there exists a
reduction of the entered word that is accepted by at least one accepting
metainstruction.

The top part of the dialog is used to filter the output. You can use regular
expression to filter the words matching this regular expression and also you
can use RadioButtons to filter only the accepted (or rejected) words.

If you double-click on any row in the ListView in the Word To All Filter
dialog you will get a dialog that shows you all reducing paths to the word
on this clicked row. In the Figure 4.15 you can see this dialog after double-
clicking on the word abcd.

83

Figure 4.15: Filter dialog.

4.5.2 Word To Word

If you click on the Word To Word menu item in the Action menu then the
Word To Word dialog will show up as in the Figure 4.16.
Into the From Word TextBox you enter a word from which every re-

duction path will start and into the To Word TextBox you enter a word to
which every reduction path will end.
For instance if we enter the word aaabbbccdd as a from-word and abcd

as a to-word then after clicking on the Compute button we get the Filter
dialog as in the Figure 4.15.

Figure 4.16: Word To Word dialog.

84

4.6 Remoting

RestartingAutomaton application also supports a server mode where other
applications (in the role of clients) can use services provided by the server
application. The communication between the client and the server appli-
cation is based on the .NET Remoting technology. The description of this
technology is out of scope of this thesis. On the other hand the using of this
technology is quite easy and it is not difficult to build applications that use
the services provided by the RestartingAutomaton application.
Suppose that we have the restarting automaton defined in the previous

Section 4.4.
To start the server mode click on the Start Server menu item in the

Action menu. The Server dialog will show as in the Figure 4.17.

Figure 4.17: Server Dialog.

If you click on the Run button then the server will start. It is recom-
mended not to change the channel port and the service name. If you want
to change the channel port then enter the number between 8001 and 8999.
Service name should contain only simple letters with no whitespaces or any
other special characters.
After starting the server look at the web page:

http://localhost:8001/restarting automaton service?WSDL
there you will see an XML description of the provided service.
For demonstration how the remoting works we have created a special

client application, the RestratingAutomatonClient application. This appli-
cation is distributed together with the RestartingAutomaton application. If
you run this application you should get a form as in the Figure 4.18.
If you click on the Run button while the server is running you can use

the services provided by the server application.
If you want to make your own client application that uses the services of

85

Figure 4.18: RestartingAutomatonClient application.

86

the RestartingAutomaton application then you need to add the RAServer.dll
file into the references of your project. This assembly provides you with the
interface through which you can invoke the services of the RestartingAu-
tomaton application. The RAServer.dll file is distributed together with the
RestartingAutomaton application. All details can be found in the source
code of the RestratingAutomatonClient application.

87

88

Conclusion

The main goal of this thesis was to develop a specialized program with a
simple user-friendly interface enabling to design and to test restarting au-
tomata. Up to now there was no such system for design restarting automata.
The goal of the thesis was achieved and the system satisfies all of the pro-
posed requirements.
The system allows interactive work with restarting automata and by

using the system it is easy to do experiments, verify hypotheses or even
discover new properties of restarting automata. The system also offers you
some useful tools with simple user-friendly interface that you can use to
investigate properties of some learning protocols like Dana Angluin’s L*
algorithm, RPNI algorithm etc.
The application is able to run in server mode where other client appli-

cations can use services provided by the server. This is profitable when you
want to work with restarting automata, but you do not want to bother with
all trivialities that can be solved on the server side.
The project is written in C♯ and runs in .NET Framework 2.0 runtime

environment, so the source code is platform independent. The .NET Frame-
work 2.0 is also supported on UNIX-like operating systems.
The system is open to adding new modules, learning protocols or new

functionalities of restarting automata. The source code of the application is
well readable so it is not difficult to do modifications. The whole application
is build out of some useful components and classes that can be easily reused
in other systems.
There are many ways how to extend and improve the existing project.

It is possible to introduce more effective algorithms into the system. The
whole system could be rewritten to a system used for batch processing large
inputs within the frame of large experiments. An interesting possibility is to
use genetic algorithms together with new learning protocols for automated
design of restarting automata based on examples.

89

We hope that this thesis will give an impulse to broaden the notion
of restarting automata in the community of linguistic researchers and that
some new interesting projects will reuse the components of this project.

90

Bibliography

[1] R. Barták: Presentations and lectures from:
http://kti.ms.mff.cuni.cz/∼bartak/automaty/prednaska.html, 2007.

[2] J. E. Hopcroft, R. Motwani, J. D. Ullman: Introduction to Automata
Theory, Languages, and Computation. Addison Wesley, 2006.

[3] P. Jančar, F. Mráz, M. Plátek, J. Vogel: On Monotonic Automata with
a Restart Operation. Journal of Automata, Languages and Combina-
torics, 1999, 4(4):287–311.

[4] F. Mráz, F. Otto, M. Plátek: Learning Analysis by Reduction from Pos-
itive Data. In: Y. Sakakibara, S. Kobayashi, K. Sato, T. Nishino, E.
Tomita (Eds.): Proceedings ICGI 2006, LNCS 4201, Springer, Berlin,
2006, 125–136.

[5] G. Niemann and F. Otto: On the power of RRWW-automata. In: M.
Ito, G. Paun, and S. Yu, eds., Words, Semigroups, and Transductions.
World Scientific, Singapore, 341–355, 2001.

[6] R. G. Parekh and V. G. Honavar: Learning dfa from simple examples.
In: Proceedings of the Eighth International Workshop on Algorithmic
Learning Theory (ALT’97), Lecture Notes in Artificial Intelligence 1316,
pages 116–131, Sendai, Japan, 1997. Springer.

[7] Ron Rivest, David Baggett: Machine Learning, Lecture 23: December
5, 1994 (1994), University of Wollongong.

[8] Sinan Si Alhir: Learning UML, O’Reilly Media, Inc., 2003.

[9] Jay Hilyard, Stephen Teilhet: C♯ Cookbook, 2nd Edition, O’Reilly Me-
dia, Inc., 2006.

91

[10] Jesse Liberty: Programming C♯, 4th Edition, O’Reilly Media, Inc., 2005.

[11] Herbert Schildt: C♯ 2.0: The Complete Reference, 2nd Edition, O’Reilly
Media, Inc., 2006.

[12] V. Subramaniam: .NET Gotchas., O’Reilly Media, Inc., 2005.

[13] E. Gamma, R. Helm, R. Johnson, J. Vlissides:Design Patterns, Addison
Wesley Longman, Inc., 1994.

[14] Articles and presentations from: http://agiledeveloper.com/download.aspx.

Other resources
I have used articles and presentations from the following web-sites:

http://agiledeveloper.com/download.aspx
http://www.c-sharpcorner.com/
http://www.codeproject.com/
http://www.developerfusion.co.uk/
http://msdn.microsoft.com/en-us/default.aspx
http://www.mono-project.com/

DragAndDropListView component (made by Matt Hawley) from:
http://www.codeproject.com/KB/list/DragAndDropListView.aspx

Used software
Corel Graphics Suite 11
Microsoft Office Visio 2007
Microsoft Visual Studio 2005 Team Suite
TeXnicCenter 1 Beta 7.50 with MikTeX 2.7

92

Register

alphabet, 1
automaton
automaton congruency, 6
automaton reduction, 7
deterministic finite automaton,
1

equivalence, 5
finite state automaton, 3
nondeterministic finite automa-
ton, 3

quotient automaton, 7
reduced automaton, 7

characteristic language, 10
Chomsky hierarchy, 9
concatenation, 1
conjecture, 14, 16
consistent with a sample, 4
constraint, 10
left, 10
right, 10

counterexample, 14

Dana Angluin, 13
L* algorithm, 14

derivation, 8
minimal derivation, 8

DFA, 1

error preserving property, 10

grammar, 8
equivalence, 9

homomorphism, 5

input language, 10
isomorphism, 5

knowledge base, 14

labeled example, 4
language, 1
context-free, 9
context-sensitive, 9
language of a DFA, 2
language of a grammar, 9
recursively enumerable, 9
regular, 2, 9
right linear, 9
strictly k-testable, 22
strictly locally testable, 22

learning of DFA, 13

meta-instruction, 10
accepting meta-instruction, 11
rewriting meta-instruction, 10

negative example, 4
NFA, 3

positive example, 4
positive presentation, 23

93

postfix, 1, 14, 22
prefix, 1, 14, 22
prefix tree acceptor, 4
production rule, 8
production system, 8
PTA, 4

query
equivalence query, 14
membership query, 14

reduction relation, 9
restarting automaton, 10
rewriting, 8
direct rewriting, 8

RPNI, 19

sample, 4
characteristic, 20

sentential form, 10
simple sentential form, 9
SLT, 22
standard order, 1
state, 1, 3
accepting states, 2, 3
dead state, 2
final states, 3
reachable state, 5
start state, 2, 3
state i-equivalence, 5
state equivalence, 5
unreachable state, 5

string, 1
null string, 1
string length, 1

structurally complete set, 4
suffix, 1, 22
symbol
nonterminal, 8

terminal, 8
syntactic reduction system, 9
length-reducing, 10
locally reducing, 10

tabular form, 2
transition function, 2, 3
extended transition function, 2

working alphabet, 9, 10

94

