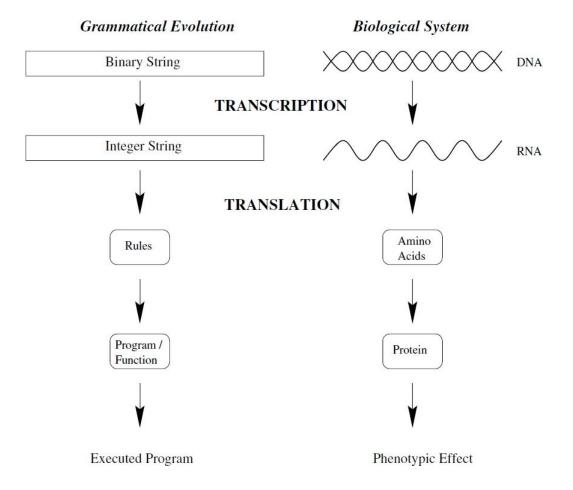
GRAMMATICAL EVOLUTION

Peter Černo


Grammatical Evolution (GE)

- Is an evolutionary algorithm that can evolve programs.
- Representation: **linear genome** + predefined **grammar**.
- Each individual: variable-length binary string.

Biological Analogy:

- Inspired by the biological process of generating a protein.
- **DNA** contains the information to produce specific proteins.
- **DNA** = string of **nucleotides** (A, C, G, T).
- Codon = group of 3 nucleotides, specifies amino acids.
- Amino acids = basic building blocks of proteins.
- In order to generate a protein from the sequence of nucleotides in the DNA, the nucleotide sequence is first transcribed into an RNA.

Biological Analogy

Mapping Process

- In order to use GE a suitable grammar in BNF (Backus-Naur form) must initially be defined.
- Example: Grammar for Boolean expressions:

<pre>(A) <expr> ::= (<expr> <biop> <expr>)</expr></biop></expr></expr></pre>	(0) (1) (2)			
<pre>(B) <biop> ::= and (0)</biop></pre>				
(C) <uop> ::= not</uop>				
(D) <bool> ::= true (0) false (1)</bool>				

Mapping Process

- The genotype is used to select the production rules:
 Rule := C mod R
- C is the codon integer value,
- R is the number of choices for the current non-terminal.

• Example:

(B)	<biop></biop>	::=	and	(0)
		I	or	(1)
			xor	(2)
		- 1	nand	(3)

 If we assume that the codon C = 6, then 6 mod 4 = 2, i.e. we would select the rule (2).

Wrapping

- During the genotype-to-phenotype mapping process, it is possible for individuals to run out of codons.
- In this case the wrap operator is applied which results in returning the codon reading head back to first codon.
- This technique of wrapping the individual draws inspiration from the gene-overlapping phenomenon that has been observed in many organisms.

Simplified Trading System

```
<S> ::= <tradingrule>
```

```
<tradingrule> ::= if(<signal>) {<trade>;} else {<trade>;}
<signal> ::= <value> <relop> <var>
           | (<signal>) AND (<signal>)
           | (<signal>) OR (<signal>)
<value> ::= <int-const> | <real-const>
<relop> ::= <= | >=
<trade> ::= buy
          | sell
          | do-nothing
<int-const> ::= <int-const><int-const>
              | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
<real-const> ::= 0.<int-const>
<var> ::= var0 | var1 | var2 | var3 | var4
        | var5 | var6 | var7 | var8 | var9
```

Mapping Example

Consider the following genome:

42 22 6 104 70 31 13 4 25 9 3 86 44 48 3 27 4 111 56 2

- The first codon C = 42.
- The initial non-terminal is <tradingrule>.
- As there is only one production rule $(42 \mod 1 = 0)$:

```
<tradingrule> ::= if(<signal>) {<trade>;} else {<trade>;}
```

• It is automatically replaced with the right-hand side:

```
if(<signal>) {<trade>;} else {<trade>;}
```

 Taking the left-most non-terminal <signal> there are three possible replacements.

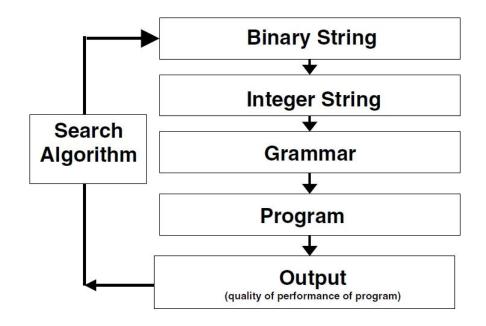
Mapping Example (Continued)

• The codon reading head moves one codon to the right:

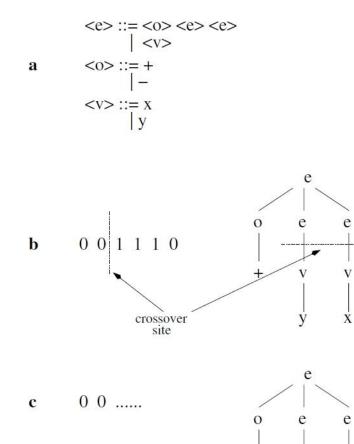
 $42 \ \ 22 \ \ 6 \ \ 104 \ \ 70 \ \ 31 \ \ 13 \ \ 4 \ \ 25 \ \ 9 \ \ 3 \ \ 86 \ \ 44 \ \ 48 \ \ 3 \ \ 27 \ \ 4 \ \ 111 \ \ 56 \ \ 2$

• The second production rule is $22 \mod 3 = 1$, thus we get:

if((<signal>) AND (<signal>)) {<trade>;} else {<trade>;}


• After reading genome we get the **final trading system**:

```
if((13 <= var5) AND (0.64 <= var3)) {buy();}
else {sell();}</pre>
```


- The variables (*var0* to *var9*) could represent a selection of elements of information drawn from fundamental analysis.
- For instance, var5 could be a P/E ratio and var3 could represent a sales growth over the past 3 years.

Mutation and Crossover

- Standard genetic operators such as crossover, mutation and duplication can be applied on genotype.
- Therefore an unconstrained evolutionary search works!

Ripple Crossover

9

ripple sites

+

9

Recent Developments in GE

- Alternative Search Engines:
 - Particle Swarm + Differential Evolution Algorithms.
- Meta-Grammars (GE²):
 - Grammar that describes the construction of another grammar.
- **πGE**:
 - Replaces the translation process to allow evolution to specify the order in which production rules are mapped.
 - Each codon corresponds to the pair (nont, rule).
 - πGE has shown significant performance gains over the standard GE algorithm on a number of benchmark problem instances.

Case Study

Corporate Failure Prediction Using GE

- How to uncover useful rules which can assist in the prediction of corporate failure.
- Management decisions are not directly observable, but their consequent effect on the financial health of the firm can be observed through the firm's financial ratios.

Corporate Failure:

- No unique definition exists.
- Possible definitions range from failure to earn an economic rate of return on invested capital, to legal bankruptcy followed by liquidation of the firm's assets.
- Two firms may show a similar financial trajectory towards failure, but one firm may be acquired whilst the other may fail.

Methodology

• A sample of 178 (89 failed and 89 non-failed) publicly quoted US firms was drawn from the period 1991 to 2000 in order to train and test the model.

Explanatory Variables:

- A subset of 22 of the most commonly used financial ratios:
 - i. EBIT/Sales
 - ii. EBITDA/Sales
 - iii. EBIT/Total Assets
 - iv. Gross Profit/Sales
 - v. Net Income/Total Assets
 - vi. Net Income/Sales
 - vii. Return on Assets
 - viii. Return on Equity
 - ix. Return on Investment
 - x. Cash/Sales
 - xi. Sales/Total Assets
 - xii. Inventory/Cost of Goods Sold

- xiii. Inventory/Working Capital
- xiv. Fixed Assets/Total Assets
- xv. Retained Earnings/Total Assets
- xvi. Cash from Operators/Sales
- xvii. Cash from Operations/Total Liabilities
- xviii. Working Capital/Total Assets
 - xix. Quick Assets/Total Assets
 - xx. Total Liabilities/Total Assets
- xxi. Leverage
- xxii. EBIT/Interest

Methodology

• GE System Setup:

The construction of classifier system consists of two components:
 valuation rule and cut-off value (> 0.5 = fail, < 0.5 = non-fail).

• Grammar:

```
<lc> ::= output = <expr> ;
<expr> :: ( <expr> ) + ( <expr> )
      <coeff> * <var>
<var> ::= var1[index] | var2[index] | var3[index]
       | var4[index] | var5[index] | var6[index]
         var7[index] | var8[index] | var9[index]
         var10[index] | var11[index] | var12[index]
         var13[index] | var14[index] | var15[index]
         var16[index] | var17[index] | var18[index]
         var19[index] | var20[index] | var21[index]
       | var22[index]
<coeff> ::= ( <coeff> ) <op> ( <coeff> )
         <float>
<op> ::= + | - | *
<float> ::= 20 | -20 | 10 | -10 | 5 | -5 | 4 | -4
```

Methodology

• The above grammar generates classifiers of the **form**:

output = (<some expression>*varX) + (<some expression>*varY) + ...

- The generated rules have a linear form.
- The grammar definition could be easily altered to allow the construction of non-linear models.

• LDA Method:

- Results obtained from the GE classifier are benchmarked against rules arising from *Linear Discriminant Analysis* (LDA).
- LDA derives a linear combination of characteristics (variables) which best discriminates between a series of predefined classes.

Results

• Three series of models were constructed:

- Using explanatory variables drawn from one, two, three years (T1, T2, T3) prior to failure.
- For each set of models:
 - 30 runs, population size of 500, 100 generations, one-point crossover (90% prob.), one bit mutation (1% prob.), along with roulette selection.

• The classification results show promise:

Years Prior to	In-Sample	Out-Of-Sample
Failure	Accuracy	Accuracy
1	85.9%	80%
2	82.8%	80%
3	75.8%	70%

Evolved Classifiers

The best classifiers evolved for each period:

One Year Prior to Failure:

Output = -3*Financial leverage -5*Return on Assets +3*Inventory/Working Capital-20*Retained Earnings/Total Assets +4*Total Liabilities/Total Assets

Two Years Prior to Failure:

Output = -2*Return on Assets+10*Sales/Total Assets-10*Fixed Assets/Total Assets-2*varEBIT/Interest

Three Years Prior to Failure:

Output= -4*Return on Assets+20*Sales/ Total Assets-72.9*Cash from Operations/Sales-10*EBIT/Interest

 It is notable that each model employed only a small subset of 22 potential explanatory variables.

Other uses of GE

Index Trading

- Design of simple trading systems based on technical indicators.
- GE can simultaneously evolve both a good selection of model inputs and a good model form.
- Moreover, GE produces human-readable rules that have the potential to enhance understanding of the problem domain.

Adaptive Trading

- Rather than employing a single fixed training period, the trading system continues to retrain as new data becomes available using a variant of the moving window approach.
- This permits the system to adapt to dynamic market conditions, while maintaining a memory of good solutions that worked well in past market environments.

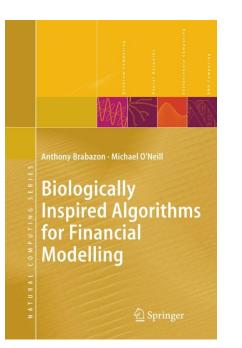
Other uses of GE

Intra-day Trading

- Financial markets generate a huge quantity of tick data each day. An actively-traded share on a major exchange may trade multiple times per minute.
- Traders can see this data in real time and can use it in making trading decisions.

Foreign Exchange Trading Rules

- The prediction of foreign exchange rates is a difficult task. Many interconnected political and macroeconomic factors impact on the fundamental value of a currency.
- GE can be used to uncover a series of useful technical trading rules which can be used to trade spot foreign exchange markets.


Other uses of GE

Bond Rating

- Many large firms use both share and debt capital to provide longterm finance for their operations.
- The debt capital may be raised from a bank loan, or may be obtained by selling bonds directly to investors.
- When a company wants to issue traded debt (bonds), it must obtain a credit rating for the issue at least from one recognized rating agency (Standard & Poor's, Moody's, etc.).
- GE could be used to construct a model which can predict the bond rating of a firm.

References

- Anthony Brabazon, Michael O'Neill:
- Biologically Inspired Algorithms for Financial Modelling

