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Motivation 



Part I: Motivation 

• Let’s say that we have the following sentence: 

 

Andrej, Monika and Peter like kitesurfing. 

 

• We would like to verify the syntactical correctness of 

this sentence. 

• One way to do this is to use Analysis by Reduction. 



Part I: Motivation 

• Analysis by Reduction – Step-wise simplifications. 

 

Andrej, Monika and Peter like kitesurfing. 

 

 

Andrej and Peter like kitesurfing. 

 

 

They like kitesurfing. 



Part I: Motivation 

• But how can we learn these reductions? 



Part I: Motivation 

• Let’s say that we are lucky and have the following two 

sentences in our database: 

 

Andrej, Monika and Peter like kitesurfing. 

 

 

Andrej and Peter like kitesurfing. 

 



Part I: Motivation 

• From these two samples we can, for instance, infer the 

following instruction: 

 

Andrej, Monika and Peter like kitesurfing. 

 

 

Andrej and Peter like kitesurfing. 

 

• Instruction:  

, Monika → λ 

 



Part I: Motivation 

• But is the instruction ( ,Monika → λ ) correct? 

 



Part I: Motivation 

• But is the instruction ( ,Monika → λ ) correct? 

• Probably not: 

 

Peter goes with Andrej, Monika stays at home, and … 

 

 

Peter goes with Andrej stays at home, and … 

 



Part I: Motivation 

¢  Andrej and Peter 

• What we need to do is to capture a context in which the 

instruction ( ,Monika → λ ) is applicable: 

 

Andrej, Monika and Peter like kitesurfing. 

 

 

Andrej and Peter like kitesurfing. 

 

  

, Monika → λ 
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Part II: Definitions 

• Context Rewriting System (CRS )  

• Is a triple M = (Σ, Γ, I) : 

• Σ  … input alphabet, 

• Γ  … working alphabet, Γ ⊇ Σ, 

• ¢  and $  … sentinels, ¢, $ ∉ Γ, 

• I  … finite set of instructions (x, z → t, y) : 

• x ∊ {λ , ¢}.Γ  * (left context) 

• y ∊ Γ  *.{λ , $} (right context) 

• z ∊ Γ+, z ≠ t ∊ Γ*. 

• The width of instruction φ = (x, z → t, y)  is |φ| = |xzty| . 



Part II: Definitions – Rewriting 

• uzv ⊢M  utv   iff  ∃ (x, z → t, y) ∊ I : 

• x  is a suffix of ¢.u   and  y  is a prefix of v.$ . 

 

 

 

 

 

 

L(M) = {w ∊ Σ* | w ⊢*
M  λ}. 



Part II: Definitions – Empty Word 

• Note: For every CRS M: λ ⊢*
M  λ, hence λ ∊ L(M). 

• Whenever we say that a CRS M   recognizes a language 

L, we always mean that L(M) = L ∪ {λ}. 

• We simply ignore the empty word in this setting. 

 



Part II: Definitions – Example  

• L = {ancbn | n > 0} ∪ {λ} : 

• CRS M = ({a, b, c}, I) , 

• Instructions I  are: 
• R1 = (a, acb → c, b) , 

• R2 = (¢, acb → λ, $) . 



Part II: Definitions – Restrictions 

• Context Rewriting Systems are too powerful. 

• We consider the following restrictions: 

1.  Length of contexts = constant k. 
• All instructions φ = (x, z → t, y)  satisfy: 

• x ∊ LCk := Γ k ∪ {¢}.Γ ≤ k - 1   (left context) 

• y ∊ RCk := Γ k ∪ Γ ≤ k - 1.{$}   (right context) 

• In case k = 0  we use LCk = RCk = {λ} . 

• We use the notation: k-CRS. 

2.  Width of instructions ≤ constant l. 
• All instructions φ = (x, z → t, y)  satisfy: 

• |φ| = |xzty| ≤ l . 

• We use the notation: (k, l)-CRS. 



Part II: Definitions – Restrictions 

• Context Rewriting Systems are too powerful. 

• We consider the following restrictions: 

3.  Restrict instruction-rules z → t . 
• There are too many possibilities: 

• All instructions φ = (x, z → t, y)  satisfy: 

a)  t = λ ,   (Clearing Restarting Automata) 

b)  t  is a subword of z, (Subword-Clearing Restarting Automata) 

c)  |t| ≤ 1 . 

4.  Lambda-confluence. 
• We restrict the whole model to be lambda-confluent. 

• Fast membership queries, undecidable verification. 

• In addition, we assume no auxiliary symbols: Γ = Σ. 
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Learning Algorithm 



Part III: Learning Algorithm 

• Consider a class ℳ  of restricted CRS. 

• Goal: Learning ℒ(ℳ)  from informant. 

• Identify any hidden target CRS  from ℳ  in the limit from positive 

and negative samples. 

• Input: 

• Set of positive samples S+, 

• Set of negative samples S-, 

• We assume that S+∩ S- = ⍉, and λ ∊ S+. 

• Output: 

• CRS M  from ℳ  such that: L(M) ⊆ S+  and L(M) ∩ S- = ⍉. 



Part III: Learning Restrictions 

• Without restrictions: 

• Trivial even for Clearing Restarting Automata. 

• Consider: I = { (¢, w → λ, $) | w ∊ S+ , w ≠ λ }. 

• Apparently: L(M) = S+, where M = (Σ, Σ, I). 

• Therefore, we impose: 

• An upper limit l ≥ 1 on the width of instructions. 



Part III: Learning Algorithm 

   

Look at Positive Samples and 

Infer Instruction Candidates 

Look also at Negative Samples and 

Remove Bad Instructions 

Simplify and Check Consistency 



Part III: Learning Algorithm Inferℳ 

• Input: 

• Positive samples S+, negative samples S-, S+∩ S- = ⍉, λ ∊ S+. 

• Maximal width of instructions l ≥ 1 , 

• Specific length of contexts k ≥ 0. 



Part III: Learning Algorithm – Step 1/5 

• Input: 

• Positive samples S+, negative samples S-, S+∩ S- = ⍉, λ ∊ S+. 

• Maximal width of instructions l ≥ 1 , 

• Specific length of contexts k ≥ 0. 



Part III: Learning Algorithm – Step 1/5 

• Step 1: 

 

 

• First, we obtain some set of instruction candidates. 

• Let us assume, for a moment, that this set 𝛷 already contains all 

instructions of the hidden target CRS. 



Part III: Learning Algorithm – Step 2/5 

• Input: 

• Positive samples S+, negative samples S-, S+∩ S- = ⍉, λ ∊ S+. 

• Maximal width of instructions l ≥ 1 , 

• Specific length of contexts k ≥ 0. 



Part III: Learning Algorithm – Step 2/5 

• Step 2: 

 

 

 

• We gradually remove all instructions that allow a single-step 

reduction from a negative sample to a positive sample. 

• Such instructions violate the so-called error-preserving property. 



Part III: Learning Algorithm – Step 3/5 

• Input: 

• Positive samples S+, negative samples S-, S+∩ S- = ⍉, λ ∊ S+. 

• Maximal width of instructions l ≥ 1 , 

• Specific length of contexts k ≥ 0. 



Part III: Learning Algorithm – Step 3/5 

• Step 3: 

 

 

 

 

• If the target class ℳ  consists of lambda-confluent CRS : 

• We gradually remove all instructions that allow a single-step 

reduction from a positive sample to a negative sample. 

• Such instructions violate the so-called correctness-preserving 

property. 



Part III: Learning Algorithm – Step 4/5 

• Input: 

• Positive samples S+, negative samples S-, S+∩ S- = ⍉, λ ∊ S+. 

• Maximal width of instructions l ≥ 1 , 

• Specific length of contexts k ≥ 0. 



Part III: Learning Algorithm – Step 4/5 

• Step 4: 

 

 

• We remove the redundant instructions. 

• This step is optional and can be omitted – it does not affect the 

properties or the correctness of the Learning Algorithm. 



Part III: Learning Algorithm – Step 5/5 

• Input: 

• Positive samples S+, negative samples S-, S+∩ S- = ⍉, λ ∊ S+. 

• Maximal width of instructions l ≥ 1 , 

• Specific length of contexts k ≥ 0. 



Part III: Learning Algorithm – Step 5/5 

• Step 5: 

 

 

 

 

 

• We check the consistency of the remaining set of instructions 

with the given input set of positive and negative samples. 



Part III: Complexity 

• Time complexity of the Algorithm depends on: 

• Time complexity of the function Assumptions, 

• Time complexity of the simplification, 

• Time complexity of the consistency check. 

• There are correct implementations of the function 

Assumptions  that run in polynomial time. 

• The simplification and the consistency check can be 

done in polynomial time when using lambda-confluent 

CRS. Otherwise, it is an open problem. 



Part III: Assumptions 

• We call the function Assumptions  correct, if it is possible 

to obtain all instructions of any hidden target CRS  in the 

limit by using this function. 

• To be more precise: 

• For every minimal (k, l)-CRS M  there exists a finite set S0
+ ⊆ L(M)  

such that for every S+ ⊇ S0
+  the Assumptions(S+, l, k)  contains all 

instructions of M. 



Part III: Example – Assumptionsweak 

• Assumptionsweak(S+, l, k) :=  all instructions (x, z → t, y)  : 

• The length of contexts is k : 

• x ∊ Σ k   ∪   {¢}. Σ ≤ k - 1   (left context) 

• y ∊ Σ k   ∪   Σ ≤ k - 1.{$}   (right context) 

• The width is bounded by l : 
• |xzty| ≤ l. 

• The rule z → t  satisfies all rule restrictions. 

• There are two words w1 , w2 ∊ S+  such that: 

• xzy  is a subword of ¢ w1 $, 

• xty  is a subword of ¢ w2 $. 

 

• This function is correct and runs in a polynomial time. 



Part III: Example – Assumptionsweak 



Part III: Example – Assumptionsweak 



Part III: Example – Assumptionsweak 



Part III: Example – Assumptionsweak 



Part III: Example – Assumptionsweak 
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Results 



Part IV: Results 

• ℳ – class of restricted (k, l)-CRS, 

• M – a model from ℳ, 

• Then there exist: 

• Finite sets S0
+, S0

-  of positive, negative samples: 

• For every S+ ⊇ S0
+, S- ⊇ S0

-  consistent with M : 

• Inferℳ(S+, S-, k, l) = N   :   L(N) = L(M). 

• Positive side: 

• The class ℒ(ℳ)  is learnable in the limit from informant. 

• Negative side: 

• size(S0
+, S0

-)  can be exponentially large w.r.t. size(M). 

• We do not know k, l. 

• If l  is specified, ℒ(ℳ)  is finite! 



Part IV: Unconstrained Learning 

• Input: 

• Positive samples S+, negative samples S-, S+∩ S- = ⍉, λ ∊ S+. 

• Specific length of contexts k ≥ 0. 



Part IV: Results 

• ℳ – class of restricted k-CRS, 

• M – a model from ℳ, 

• Then there exist: 

• Finite sets S0
+, S0

-  of positive, negative samples: 

• For every S+ ⊇ S0
+, S- ⊇ S0

-  consistent with M : 

• UnconstrainedInferℳ(S+, S-, k) = N   :   L(N) = L(M). 

• N  has minimal width! 

• Positive side: 

• The infinite class ℒ(ℳ)  is learnable in the limit from informant. 

• Negative side: 

• size(S0
+, S0

-)  can be exponentially large w.r.t. size(M). 

• We do not know k. 
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Part V: Concluding Remarks 

• Remarks: 

• We have shown that ℒ(ℳ)  is learnable in the limit from 

informant for any class ℳ  of restricted k-CRS. 

• UnconstrainedInferℳ(S+, S-, k)  always returns a model consistent 

with the given input S+, S-. In the worst case it returns: 

I = { (¢, w → λ, $) | w ∊ S+ , w ≠ λ } . 

• This is not true for Inferℳ(S+, S-, k, l) , (it can Fail). In some cases, 

finding a consistent model with maximal width l  is NP-hard. 

• If ℳ  is a class of lambda-confluent k-CRS,  then 

UnconstrainedInfer  runs in polynomial time w.r.t. size(S+, S-) . 

• But in most cases, it is not possible to verify lambda-

confluence. It is often not even recursively enumerable. 

• If ℳ  is a class of ordinary k-CRS,  the time complexity of 

UnconstrainedInfer   is an open problem. 
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Thank You! 

• This presentation is available on: 
http://popelka.ms.mff.cuni.cz/cerno/files/cerno_gi_of_crs.pdf 

• An implementation of the algorithms can be found on: 
http://code.google.com/p/clearing-restarting-automata/ 


