GRAMMATICAL INFERENCE
OF LAMBDA-CONFLUENT
CONTEXT REWRITING
SYSTEMS

Peter Cerno

Department of Computer Science
Charles University in Prague, Faculty of Mathematics and Physics

Table of Contents

- Part I Motivation,
- Part II: Definitions,
- Part I Learning Algorithm,

- Part IV: Results,
- Part V: Concluding Remarks.

=l

Motivation

Part |: Motivation

- Let's say that we have the following sentence:
Andrej, Monika and Peter like kitesurfing.

- We would like to verify the syntactical correctness of
this sentence.

- One way to do this is to use Analysis by Reduction.

Part |: Motivation

- Analysis by Reduction — Step-wise simplifications.

Andrej, Monika and Peter like kitesurfing.

$

Andre| and Peter like kitesurfing.

$

They like kitesurfing. ©

Part |: Motivation

- But how can we learn these reductions?

Part |: Motivation

- Let’s say that we are lucky and have the following two
sentences in our database:

Andrej, Monika and Peter like kitesurfing.

Andrej and Peter like kitesurfing.

Part |: Motivation

- From these two samples we can, for instance, infer the
following instruction:

Andrej, Monikaland Peter like kitesurfing.

Andrejland Peter like kitesurfing.

- Instruction:

. Monika|—|A

Part |: Motivation

- But is the instruction (,Monika — A) correct?

Part |: Motivation

- But is the instruction (,Monika — A) correct?
- Probably not:

Peter goes with Andrej‘, Monika| stays at home, and ...

Peter goes with Andrej|stays at home, and ...

Part |: Motivation

- What we need to do Is to capture a context in which the
Instruction (,Monika — A) is applicable:

| Andrej, Monikaland Peter|like kitesurfing.

like kitesurfing.

. Monika|—|A -

Part Il

Definitions

Part Il: Definitions

- Context Rewriting System (CRS)

-lsatripleM=211]):
- 2 ... Input alphabet,
- I' ... working alphabet, '22,

- ¢ and § ... sentinels, ¢ $&T. [left context
right context
- I ... finite set of instructions (xz—=¢ y): X 2 =
. xefl, ¢pI'" (left context) l
- yel' {4, 8} (right context) x [t] v

- zel*,z#tel*
- The width of instruction ¢ =(xz-=t y) Is Jo/ = [xzty] .

Part II: Definitions — Rewriting

cuzviky, utv iff I(x,z->ty)el:
- x iIsasuffix of ¢u and y is a prefix of v§.

v left sentinel right sentinel
¢ u X z y \ $
left context = ¢ = right context
¢ u X t y v $

LM) = {weZ*|wr, A}

L
Part Il Definitions — Empty Word

- Note: For every CRSM: A ",, 4, hence A € L(M).

- Whenever we say that a CRS M recognizes a language
L, we always mean that L(M) =L U {A}.

- We simply ignore the empty word in this setting.

Part Il: Definitions — Example

: input word
- L={ach" [n> 0} U{A)}: TR :’C T .
- CRSM=({a b cl]),
- Instructions 7 are: im
- R1=(3acb—-c¢ch), ¢lajala ¢ b|lb b|$
- R2=(tach~1, %). ¢ »

N Accept

Part Il: Definitions — Restrictions

- Context Rewriting Systems are too powerful.
- We consider the following restrictions:

1. Length of contexts = constant k&
- All instructions ¢ = (x,z—t y) satisfy:
- x€LC, :=TkU{¢)Isk1 (left context)
- yERC =T ur<k-1{$} (right context)
* Incase k=0 we use LC,=RC, = {A}.
- We use the notation: k-CRS.

2. Width of instructions < constant /.

- Allinstructions @ = (x, z—t y) satisfy:

ol = [xzty/ <.
- We use the notation: (% /)-CRS.

L
Part Il: Definitions — Restrictions

- Context Rewriting Systems are too powerful.
- We consider the following restrictions:

3. Restrict instruction-rules z—-t.
- There are too many possibilities:
- Allinstructions @ = (x, z—t y) satisfy:

a) t=A4, (Clearing Restarting Automata)
b) tisasubword of z (Subword-Clearing Restarting Automata)
c) [t/<1.

4. Lambda-confluence.
- We restrict the whole model to be lambda-confluent.
- Fast membership queries, undecidable verification.

- In addition, we assume no auxiliary symbols: I'=2.

Part |l

Learning Algorithm

L
Part Ill: Learning Algorithm

- Consider a class A7 of restricted CRS.

- Goal: Learning £(A7) from informant.

- ldentify any hidden target CRS from A7 in the limit from positive
and negative samples.

- Input:

- Set of positive samples 57,
- Set of negative samples S,
- We assume that $*n.$ = (), and 1 € §*.

- Qutput:
- CRS M from M such that: L(M) €S* and L(M) N S = (V.

Part Ill: Learning Restrictions

- Without restrictions:
- Trivial even for Clearing Restarting Automata.
- Consider: I=f(¢w—-A8)/weS*, w#A1}.
- Apparently: L(M) =S*, where M= (2,2,]).
- Therefore, we impose:
- An upper limit /= 1 on the width of instructions.

L
Part Ill: Learning Algorithm

Look at Positive Samples and
Infer Instruction Candidates

Look also at Negative Samples and
Remove Bad Instructions

Simplify and Check Consistency

Part Ill: Learning Algorithm Infer,,

- Input:
- Positive samples §*, negative samples §, $*tnS = ®, 1€ S5*.

- Maximal width of instructions /> 1,
- Specific length of contexts k= 0.

1 O + Assumptions(S™, k., [);

2 while Jw_ € S~ ,w,. € ST, ¢ € ®:w_ 9 w, do

3 | 0\ {0}

a 1f M is a class of A-confluent models then

while 3w, € St,w_e€ S7, 6 € ®:wy F9 w_ do

ﬂ__L¢%@Hﬂ;

¢ < Simplify(®P);
8 if Consistent(®, ST, S7) then
9 L return Model M with the set of instructions ®;

q

10 Fail;

L
Part Ill: Learning Algorithm — Step 1/5

- Input:
- Positive samples §*, negative samples §, $*tnS = ®, 1€ S5*.

- Maximal width of instructions /> 1,
- Specific length of contexts k= 0.

1 ® + Assumptions(S™, k. [);

2 while Jw_ € S~ ,w,. € ST, ¢ € ®:w_ 9 w, do

3 | 0\ {0}

a 1f M is a class of A-confluent models then

while 3w, € St,w_e€ S7, 6 € ®:wy F9 w_ do

ﬂ__L¢%@Hﬂ;

¢ < Simplify(®P);
8 if Consistent(®, ST, S7) then
9 L return Model M with the set of instructions ®;

q

10 Fail;

L
Part Ill: Learning Algorithm — Step 1/5

- Step 1:

1 ® « Assumptions(S™, k, [);

- First, we obtain some set of instruction candidates.

- Let us assume, for a moment, that this set @ already contains all
Instructions of the hidden target CRS.

L
Part Ill: Learning Algorithm — Step 2/5

- Input:
- Positive samples §*, negative samples §, $*tnS = ®, 1€ S5*.

- Maximal width of instructions /> 1,
- Specific length of contexts k= 0.

1 O + Assumptions(S™, k., [);

> while Jw_ € S~ w, € ST, ¢ € ®:w_ 9 w, do

3 | ©« @\ {0}

a 1f M is a class of A-confluent models then

while 3w, € St,w_e€ S7, 6 € ®:wy F9 w_ do

ﬂ__L¢%@Hﬂ;

¢ < Simplify(®P);
8 if Consistent(®, ST, S7) then
9 L return Model M with the set of instructions ®;

q

10 Fail;

L
Part Ill: Learning Algorithm — Step 2/5

- Step 2:

> while Jw_e€ S—,w, € ST, 0 c ®:w_FH9 w, do

3 | @+ @\ {o};

- We gradually remove all instructions that allow a single-step
reduction from a negative sample to a positive sample.

- Such instructions violate the so-called error-preserving property.

L
Part Ill: Learning Algorithm — Step 3/5

- Input:
- Positive samples §*, negative samples §, $*tnS = ®, 1€ S5*.

- Maximal width of instructions /> 1,
- Specific length of contexts k= 0.

1 O + Assumptions(S™, k., [);

2 while Jw_ € S~ ,w,. € ST, ¢ € ®:w_ 9 w, do

3 | 0\ {0}

a 1f M is a class of A-confluent models then

while 3w, € St,w_e€ S7, 6 € ®:wy F9 w_ do

6 _Likéﬂﬂ;

¢ < Simplify(®P);
8 if Consistent(®, ST, S7) then
9 L return Model M with the set of instructions ®;

q

10 Fail;

L
Part Ill: Learning Algorithm — Step 3/5

- Step 3:

a4 1f M is a class of A-confluent models then
5 while 3w, € ST,w_€ S™,0 € ®:wy F9 w_ do
6 | | 2«2\ {o}

- If the target class A7 consists of lambda-confluent CRS:

- We gradually remove all instructions that allow a single-step
reduction from a positive sample to a negative sample.

- Such instructions violate the so-called correctness-preserving
property.

L
Part Ill: Learning Algorithm — Step 4/5

- Input:
- Positive samples §*, negative samples §, $*tnS = ®, 1€ S5*.

- Maximal width of instructions /> 1,
- Specific length of contexts k= 0.

1 O + Assumptions(S™, k., [);

2 while Jw_ € S~ ,w,. € ST, ¢ € ®:w_ 9 w, do

3 | 0\ {0}

a 1f M is a class of A-confluent models then

while 3w, € St,w_e€ S7, 6 € ®:wy F9 w_ do

ﬂ__L¢%@Hﬂ;

7 ® + Simplify(®);
8 if Consistent(®, ST, S7) then
9 L return Model M with the set of instructions ®;

10 Fail;

L
Part Ill: Learning Algorithm — Step 4/5

- Step 4:

7 & « Simplify(®);

- We remove the redundant instructions.

- This step is optional and can be omitted — it does not affect the
properties or the correctness of the Learning Algorithm.

L
Part Ill: Learning Algorithm — Step 5/5

- Input:
- Positive samples §*, negative samples §, $*tnS = ®, 1€ S5*.

- Maximal width of instructions /> 1,
- Specific length of contexts k= 0.

1 O + Assumptions(S™, k., [);

2 while Jw_ € S~ ,w,. € ST, ¢ € ®:w_ 9 w, do

3 | 0\ {0}

a 1f M is a class of A-confluent models then

while 3w, € St,w_e€ S7, 6 € ®:wy F9 w_ do

ﬂ__L¢%@Hﬂ;

7 & < Simplify(®);
g8 if Consistent(®, S*,57) then
9 L return Model M with the set of instructions ®;

10 Fail;

L
Part Ill: Learning Algorithm — Step 5/5

- Step b:

7 & « Simplify(P);
8 if Consistent(®, ST, S™) then
9 L return Model M with the set of instructions ®;

10 Fail;

- We check the consistency of the remaining set of instructions
with the given input set of positive and negative samples.

L
Part Ill: Complexity

- Time complexity of the Algorithm depends on:
- Time complexity of the function Assumptions,
- Time complexity of the simplification,
- Time complexity of the consistency check.

- There are correct implementations of the function
Assumptions that run in polynomial time.

- The simplification and the consistency check can be
done in polynomial time when using lambda-confluent
CRS. Otherwise, it is an open problem.

Part Ill: Assumptions

- We call the function Assumptions correct, if it is possible
to obtain all instructions of any hidden target CRS in the
limit by using this function.

- To be more precise:

- For every minimal (k% [)-CRS M there exists a finite set S,” € L(M)

such that for every §* 25," the Assumptions(57, I, k) contains all
Instructions of M.

Part lll: Example — Assumptions

weak

- Assumptions,,..(S%,], k) := all instructions (x,z—=>¢t y) :
- The length of contexts is k:
- xeXk U {¢) X<k-1 (left context)
- yeXk v Xsk-1r4) (right context)
- The width is bounded by /:
- [xzty[<1
- The rule z— t satisfies all rule restrictions.

- There are two words w,, w, €S* such that:
- xzy is a subword of ¢w, $,
- xty is a subword of ¢w, $.

- This function is correct and runs in a polynomial time.

Part lll: Example — Assumptions
~ N

Positive Samples

@D

weak

G
Gom?

‘annn}

Part lll: Example — Assumptions

weak

4)

Positive Samples

$
(¢, a+ — A, a)

(a+ $

Gom?

‘annn}

Part lll: Example — Assumptions

weak

4)

Positive Samples

$
(¢, a+ — A, a)

(a+ $

'€ © DE
(+, (@ —a +)
¢ aE$

Part lll: Example — Assumptions
~ N

Positive Samples

@D

weak

G

(fPta)s

(+, (— A, a) BAD Instruction

‘(atfra)s

Part lll: Example — Assumptions
~ N

Positive Samples

@D

weak

Part |V

Results

L
Part IV: Results

- M — class of restricted (% 1)-CRS,
- M— a model from Az,

- Then there exist:

- Finite sets S,*, 5, of positive, negative samples:

- For every §* 25,*, $ 25, consistent with M:

- Infer, (57,5, k1)=N : L(N)=L(M).
- Positive side:

- The class £(AM) is learnable in the limit from informant.
- Negative side:

- size(S,”, S,) can be exponentially large w.r.t. size(M).
- We do not know k& /.
- If 1 is specified, £(A7) is finite!

L
Part IV: Unconstrained Learning

- Input:
- Positive samples §*, negative samples §, $*tnS = ®, 1€ S5*.

- Specific length of contexts k= 0.

fori=1...00do
M « Infer p (57,57, k,1);
if M # Fail then
L return M;

e 0 b2 =

L
Part IV: Results

- M — class of restricted £-CRS,
- M—a model from A,

- Then there exist:

- Finite sets S,*, 5, of positive, negative samples:

- For every §* 25,*, $ 25, consistent with M:

- Unconstrainedinfer, (5%, S, k) =N : L(N)=L(M).

- N has minimal width!
- Positive side:

- The infinite class £(A) is learnable in the limit from informant.
- Negative side:

- size(S,", S,) can be exponentially large w.r.t. size(M).
- We do not know k.

Part V

Concluding Remarks

Part V: Concluding Remarks

- Remarks:

- We have shown that £(A7) is learnable in the limit from
iInformant for any class A7 of restricted k-CRS.

- Unconstrainedlnfer, (57, S, k) always returns a model consistent
with the given input 87, $*. In the worst case it returns:
I={(Gw—-A3)/weS", w#A].
- This is not true for Infer,(S%, S, k 1), (it can Fail). In some cases,
finding a consistent model with maximal width / is NP-hard.

- If M is a class of lambda-confluent k-CRS, then
Unconstrainedinfer runs in polynomial time w.r.t. size(5*, S*) .

- But in most cases, it is not possible to verify lambda-
confluence. It is often not even recursively enumerable.

- If M is a class of ordinary k-CRS, the time complexity of
Unconstrainedinfer is an open problem.

Selected References

M. Beaudry, M. Holzer, G. Niemann, and F. Otto. Mcnaughton families of languages.
Theoretical Computer Science, 290(3):1581-1628, 2003.
- Ronald V Book and Friedrich Otto. String-rewriting systems.
Springer-Verlag, New York, NY, USA, 1993.
- Peter Cerno. Clearing restarting automata and grammatical inference.

In: J. HEINZ, C. DE LA HIGUERA, T. OATES (eds.), Proceedings of the Eleventh International Conference on
Grammatical Inference. JIMLR Workshop and Conference Proceedings 21, 2012, 54-68.

- Peter Cerno and Frantisek Mraz. Clearing restarting automata.
Fundamenta Informaticae, 104(1):17-54, 2010.
- C. de la Higuera. Grammatical Inference: Learning Automata and Grammars.
Cambridge University Press, New York, NY, USA, 2010.
- R. Eyraud, C. de la Higuera, and J.-C. Janodet. Lars: A learning algorithm for rewriting systems.
Machine Learning, 66:7-31, 2007.
- E. Mark Gold. Complexity of automaton identification from given data.
Information and Control, 37, 1978.
- John E. Hopcroft and J. D. Uliman. Formal Languages and their Relation to Automata.
Addison-Wesley, Reading, 1969.
- S. Lange, T. Zeugmann, and S. Zilles. Learning indexed families of recursive languages from positive
data: A survey.
Theor. Comput. Sci., 397(1-3):194-232, May 2008.
R. McNaughton. Algebraic decision procedures for local testability.
Theory of Computing Systems, 8:60-76, 1974.
F. Otto. Restarting automata.

In Zoltan Esik, Carlos Martin-Vide, and Victor Mitrana, editors, Recent Advances in Formal Languages and Applications,
volume 25 of Studies in Computational Intelligence, pages 269-303. Springer, Berlin, 2006.

F. OTTO, F. MRAZ, Lambda-Conuence is Undecidable for Clearing Restarting Automata.
In: CIAA 2013, Proceedings. LNCS 7982, Berlin, 2013, 256-267.

D
Thank You!

- This presentation is available on:
http://popelka.ms.mff.cuni.cz/cerno/files/cerno_gi_of crs.pdf

- An implementation of the algorithms can be found on:
http://code.google.com/p/clearing-restarting-automata/

