CLEARING RESTARTING AUTOMATA AND GRAMMATICAL INFERENCE

Peter Černo
Department of Computer Science
Charles University in Prague, Faculty of Mathematics and Physics
Table of Contents

• Part I: Introduction,
• Part II: Learning Schema,
• Part III: Active Learning Example,
• Part IV: Hardness Results,
• Part V: Concluding Remarks.
Part I: Introduction

- **Restarting Automata:**
 - Model for the linguistic technique of *analysis by reduction*.
 - Many different types have been defined and studied intensively.

- **Analysis by Reduction:**
 - Method for checking [non-]correctness of a sentence.
 - Iterative application of simplifications.
 - Until the input cannot be simplified anymore.

- **Restricted Models:**
 - *Clearing*, Δ-Clearing and Δ*-Clearing Restarting Automata,
 - *Subword-Clearing* Restarting Automata.
 - Our method is similar to the *delimited string-rewriting systems* [Eyraud et al. (2007)].
Context Rewriting Systems

- Let k be a nonnegative integer.
- **k–Context Rewriting System (k-CRS)**
- Is a triple $M = (\Sigma, \Gamma, I)$:
 - Σ … input alphabet, \notin, $\notin \notin \Sigma$,
 - Γ … working alphabet, $\Gamma \supseteq \Sigma$,
 - I … finite set of instructions $(x, z \rightarrow t, y)$:
 - $x \in \Gamma^k \cup \{\notin\}.\Gamma^{\leq k-1}$ (left context)
 - $y \in \Gamma^k \cup \Gamma^{\leq k-1}.\{\notin\} \{\notin\}$ (right context)
 - $z \in \Gamma^+, z \neq t \in \Gamma^*$.
 - \notin and \notin … sentinels.
 - The width of instruction $i = (x, z \rightarrow t, y)$ is $|i| = |xzty|$.
 - In case $k = 0$ we use $x = y = \lambda$.
Rewriting

• $u z v \vdash_M u t v$ iff $\exists (x, z \to t, y) \in I$:
• x is a **suffix** of $\textit{.u}$ and y is a **prefix** of v.

• $L(M) = \{w \in \Sigma^* / w \vdash^*_M \lambda\}$.
• $L_C(M) = \{w \in \Gamma^* / w \vdash^*_M \lambda\}$.
Empty Word

• **Note**: For every \(k\text{-CRS } M : \lambda \vdash^*_M \lambda \), hence \(\lambda \in L(M) \).
• Whenever we say that a \(k\text{-CRS } M \) recognizes a **language** \(L \), we always mean that \(L(M) = L \cup \{\lambda\} \).
• We simply **ignore the empty word** in this setting.
Clearing Restarting Automata

- **k–Clearing Restarting Automaton (k-cl-RA)**
 - Is a k-CRS $M = (\Sigma, \Sigma, I)$ such that:
 - For each $(x, z \rightarrow t, y) \in I$: $z \in \Sigma^+$, $t = \lambda$.

- **k–Subword-Clearing Rest. Automaton (k-scl-RA)**
 - Is a k-CRS $M = (\Sigma, \Sigma, I)$ such that:
 - For each $(x, z \rightarrow t, y) \in I$:
 - $z \in \Gamma^+$, t is a *proper subword* of z.

Example 1

- \(L_1 = \{a^n b^n \mid n > 0\} \cup \{\lambda\}\):
- 1-cl-RA \(M = (\{a, b\}, I)\),
- Instructions \(I\) are:
 - \(R1 = (a, ab \rightarrow \lambda, b)\),
 - \(R2 = (\$, ab \rightarrow \lambda, \$)\).
Example 2

- \(L_2 = \{a^n cb^n \mid n > 0\} \cup \{\lambda\} \):
- \(1\)-scl-RA \(M = (\{a, b, c\}, I) \),
- Instructions \(I \) are:
 - \(R1 = (a, acb \rightarrow c, b) \),
 - \(R2 = (\$, acb \rightarrow \lambda, \$) \).

- Note:
 - The language \(L_2 \) cannot
 - be recognized by any \(cl\)-RA.
Clearing Restarting Automata

- **Clearing Restarting Automata:**
 - Accept all regular and even some non-context-free languages.
 - They do not accept all context-free languages ($\{a^n b^n \mid n > 0\}$).

- **Subword-Clearing Restarting Automata:**
 - Are strictly more powerful than Clearing Restarting Automata.
 - They do not accept all context-free languages ($\{ww^R \mid w \in \Sigma^*\}$).

- **Upper bound:**
 - Subword-Clearing Restarting Automata only accept languages that are growing context-sensitive [Dahlhaus, Warmuth].
Hierarchy of Language Classes

- GCSSL
- CFL
- REG
- cl-RA
- scl-RA
Part II: Learning Schema

- **Goal**: Identify any *hidden target* automaton *in the limit* from *positive* and *negative* samples.

- **Input**:
 - Set of *positive samples* S^+,
 - Set of *negative samples* S^-,
 - We assume that $S^+ \cap S^- = \emptyset$, and $\lambda \in S^+$.

- **Output**:
 - Automaton M such that: $L(M) \subseteq S^+$ and $L(M) \cap S^- = \emptyset$.
 - The term *automaton = Clearing* or *Subword-Clearing* Restarting Automaton, or any other *similar model*.
Learning Schema – Restrictions

• Without further restrictions:
 • The task becomes trivial even for Clearing Rest. Aut..
 • Just consider: \(I = \{ (\$, w, \$) \mid w \in S^+, w \neq \lambda \} \).
 • Apparently: \(L(M) = S^+ \), where \(M = (\Sigma, \Sigma, I) \).

• Therefore, we impose:
 • An upper limit \(l \geq 1 \) on the width of instructions,
 • A specific length of contexts \(k \geq 0 \).

• Note:
 • We can effectively enumerate all automata satisfying these restrictions, thus the identification in the limit can be easily deduced from the classical result of Gold …
 • Nevertheless, we propose an algorithm, which, under certain conditions, works in a polynomial time.
Learning Schema – Algorithm

Input:
- Positive samples S^+, negative samples S^-, $S^+ \cap S^- = \emptyset$, $\lambda \in S^+$.
- Upper limit $l \geq 1$ on the width of instructions,
- A specific length of contexts $k \geq 0$.

Output:
- Automaton M such that: $L(M) \subseteq S^+$ and $L(M) \cap S^- = \emptyset$, or Fail.

```plaintext
1. $\Phi \leftarrow$ Assumptions($S^+, l, k$);
2. while $\exists w_-, w_+ \in S^-, S^+$, $\phi \in \Phi : w_- \vdash (\phi) w_+$ do
   3. $\Phi \leftarrow \Phi \setminus \{\phi\}$;
3. end
4. $\Phi \leftarrow$ Simplify($\Phi$);
5. if Consistent($\Phi, S^+, S^-$) then
   6. return Automaton with the set of instructions $\Phi$;
9. Fail;
```
Learning Schema – Step 1/4

• **Step 1:**

\[\Phi \leftarrow \text{Assumptions}(S^+, l, k); \]

• We obtain some set of *instruction candidates*.

• *Note:* We use *only the positive samples* to obtain the instructions.

• Let us *assume*, for a moment, that this set \(\Phi \) already *contains all instructions* of the *hidden target automaton*.

• Later we will show how to define the function *Assumptions* in such a way that the above assumption can be always satisfied.
Learning Schema – Step 2/4

Step 2:

```latex
\text{while } \exists w_- \in S^-, w_+ \in S^+, \phi \in \Phi : w_- \vdash (\phi) \ w_+ \ \text{do}
| \quad \Phi \leftarrow \Phi \setminus \{\phi\};
```

- We gradually **remove all instructions** that allow a single-step reduction **from a negative sample to a positive sample**.
- Such instructions **violate** the so-called **error-preserving property**.
- It is easy to see, that such instructions **cannot be in our hidden target automaton**.
- **Note:** Here we use **also the negative samples**.
Learning Schema – Step 3/4

- **Step 3:**

 $\Phi \leftarrow \text{Simplify}(\Phi)$;

 - We **remove the redundant instructions**.

 - This step is **optional** and **can be omitted** – it does not affect the properties or the correctness of the **Learning Schema**.

- **Possible implementation:**

 Input: The set of instructions Φ.

 Output: The simplified set of instructions Ψ.

 1. $\Psi \leftarrow \emptyset$;
 2. foreach $\phi = (x, z \rightarrow t, y) \in \Phi$ in some fixed order do
 3. if $z \not\vdash^*_{\Psi} t$ in the context (x, y) then
 4. $\Psi \leftarrow \Psi \cup \{(x, z \rightarrow t, y)\}$;
 5. end
 6. end
 7. return Ψ;
Step 4:

```
if Consistent(Φ, S⁺, S⁻) then
    return Automaton with the set of instructions Φ;
end
Fail;
```

- We **check the consistency** of the remaining set of instructions with the given input set of positive and negative samples.
- Concerning the identification in the limit, we can **omit the consistency check** – it does not affect the correctness of the *Learning Schema*. In the limit, we always get a correct solution.
Learning Schema – Complexity

- Time complexity of the *Algorithm* depends on:
 - Time complexity of the *function Assumptions*,
 - Time complexity of the *simplification*,
 - Time complexity of the *consistency check*.

- There are *correct* implementations of the function *Assumptions* that run in a polynomial time.

- If the function Assumptions runs in a polynomial time (Step 1) then also the size of the set Φ is polynomial and then also the cycle (Step 2) runs in a polynomial time.

- It is an open problem, whether the *simplification* and the *consistency check* can be done in a polynomial time. Fortunately, we can omit these steps.
Learning Schema – Assumptions

• We call the function *Assumptions* **correct**, if it is possible to obtain instructions of **any hidden target automaton in the limit** by using this function.

• To be more **precise**:
 • For every **k-cl-RA M** (or **k-scl-RA M**) with the maximal width of instructions bounded from above by \(l \geq 1 \) there exists a finite set \(S_0^+ \subseteq L(M) \) such that for every \(S^+ \supseteq S_0^+ \) the *Assumptions*(\(S^+, l, k \)) contains **all instructions** of some automaton \(N \) equivalent to \(M \).
Example – Assumptions\textsubscript{{weak}}

- **Assumptions\textsubscript{{weak}}(S^+, l, k) :=** all instructions \((x, z \rightarrow t, y)\):
 - The length of contexts is \(k\):
 - \(x \in \Sigma^k \cup \{\varepsilon\}, \Sigma^{\leq k-1}\) (left context)
 - \(y \in \Sigma^k \cup \Sigma^{\leq k-1}.\{\}$ (right context)
 - Our model is a Subword-Clearing Rest. Aut.:
 - \(z \in \Sigma^+, t\) is a *proper subword* of \(z\).
 - The width is bounded by \(l\):
 - \(|xzty| \leq l\).
 - There are two words \(w_1, w_2 \in S^+\) such that:
 - \(xzy\) is a *subword* of \(\varepsilon w_1\$,
 - \(xty\) is a *subword* of \(\varepsilon w_2\$.

- This function is *correct* and runs in a *polynomial time*.
Example – Assumptions$_{\text{weak}}$

Positive Samples

$\vdash a+a$

$\vdash a+a+a$

$\vdash a+(a)+a$

$\vdash a+a+a+a$
Example – Assumptions \(\text{weak} \)

Positive Samples

\[\mathcal{A} \quad a + a \]

\[(\mathcal{A}, a + \rightarrow \lambda, a) \]

\[\mathcal{A} \quad a + a + a \]

\[\mathcal{A} \quad a + (a) + a \]

\[\mathcal{A} \quad a + a + a + a \]
Example – Assumptions

Positive Samples

$(\$, a+ \rightarrow \lambda, a)$

$(\$, a+a+a)$

$(\$, a+(a)+a)$

$(\$, a+a+a+a)$

$(+, (a) \rightarrow a, +)$
Example – Assumptions_{\text{weak}}

Positive Samples

\(a + a \)

\(a + a + a \)

\(a + (a) + a \) BAD Instruction

\(a + a + a + a \)
Example – Assumptions \(_{\text{weak}}\)

Positive Samples

\[a + a \]

\[a + a + a \]

\[a + (a) + a \]

\[a + a + a + a \]
Part III: Active Learning Example

• Our goal:
 • Infer a model of scl-RA recognizing the language of simplified arithmetical expressions over the alphabet $\Sigma = \{a, +, (,)\}$.

• Correct arithmetical expressions:
 • $a + (a + a)$,
 • $(a + a)$,
 • $((a))$, etc.

• Incorrect arithmetical expressions:
 • $a +$,
 • $)a$,
 • $(a + a)$, etc.

• We fix maximal width l to 6, length of context k to 1.
Active Learning Example

- **Initial set** of *positive* \(S_{1^+}\) and *negative* \(S_{1^-}\) samples.

<table>
<thead>
<tr>
<th>Positive Samples (S_{1^+})</th>
<th>Negative Samples (S_{1^-})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) ((a)) (((a + a)))</td>
<td>(+) (a+) (++) ((+)+) (+a)</td>
</tr>
</tbody>
</table>
| \(a + a\) \(((a))\) \(a + (a + a)\) | (\(a\) +((())((a(a) |}
| \(a + a + a\) \((a + a)\) \((a + a) + a\) |) \(a\) +) ())) a)a |
Active Learning Example

- Assumptions\textsubscript{weak}(S+, l, k) gives us 64 instructions.
- After filtering bad instructions and after simplification we get a consistent automaton M_1 with 21 instructions:

Table 2: The Instructions of the Resulting Automaton M_1 After Simplification.

<table>
<thead>
<tr>
<th>Instruction</th>
<th>Instruction</th>
<th>Instruction</th>
<th>Instruction</th>
<th>Instruction</th>
<th>Instruction</th>
<th>Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>[(, (, a)]</td>
<td>[(!, (,])]</td>
<td>[(+, (, a)]</td>
<td>[(,), $)]</td>
<td>[(a,),))]</td>
<td>[(a,), +)]</td>
<td>[(!, a, $)]</td>
</tr>
<tr>
<td>[(!, (, a)]</td>
<td>[(!, a \rightarrow a, +)]</td>
<td>[(a,))]</td>
<td>[(a, +a, $)]</td>
<td>[(a, +a, $)]</td>
<td>[(a, +a,))]</td>
<td>[(a, +a, +)]</td>
</tr>
<tr>
<td>[(+, a) \rightarrow a, $)]</td>
<td>[(a+, a)]</td>
<td>[(!, a+,])]</td>
<td>[(a+, a)]</td>
<td>[(+, a+, a)]</td>
<td>[(!, (a, $)]</td>
<td>[(!, (a) \rightarrow a, $)]</td>
</tr>
</tbody>
</table>
Active Learning Example

- All expressions recognized by M_1 up to length 5:

<table>
<thead>
<tr>
<th>λ</th>
<th>$a + a$</th>
<th>$a + (a)$</th>
<th>$a + (a + a)$</th>
<th>$(a + a)$</th>
<th>$(((a + a) + a)$</th>
<th>$a + (a + a)$</th>
<th>$(a + a)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>(a)</td>
<td>$((a + a)) + a$</td>
<td>$a + a + a$</td>
<td>$(((a + a) + a)$)</td>
<td>$(a + a)$</td>
<td>$a + (a + a)$</td>
<td>$a + (a)$</td>
</tr>
<tr>
<td>(a)</td>
<td>(a)</td>
<td>$((a + a) + a)$</td>
<td>$a + a$</td>
<td>$(a + a)$</td>
<td>$a + (a)$</td>
<td>$a + (a)$</td>
<td>$a + (a)$</td>
</tr>
<tr>
<td>(a)</td>
<td>(a)</td>
<td>$(a + a)$</td>
<td>$a + (a)$</td>
<td>$(a + a)$</td>
<td>$a + (a)$</td>
<td>$a + (a)$</td>
<td>$a + (a)$</td>
</tr>
<tr>
<td>(a)</td>
<td>(a)</td>
<td>$a + (a + a)$</td>
<td>$(a + a)$</td>
<td>$a + (a)$</td>
<td>$a + (a)$</td>
<td>$a + (a)$</td>
<td>$a + (a)$</td>
</tr>
</tbody>
</table>

- There are both correct and incorrect arithmetical expressions. Note that $(a) + a$ was never seen before.

- Next step: Add all incorrect arithmetical expressions to the set of negative samples. (We get: $S_2^+ = S_1^+$ and S_2^-).
Active Learning Example

• We get a consistent automaton M_2 with 16 instructions.

• **Up to length 5**, the automaton M_2 recognizes only correct arithmetical expressions.

• **However**, it recognizes also some incorrect arithmetical expressions **beyond this length**, e.g.:
 • $((a + a),$
 • $(a + a),$
 • $a + (a + a,$
 • $a + a) + a.$

• Add also these incorrect arithmetical expressions to the set of negative samples. (We get: $S_3^+ = S_2^+$ and S_3^-).
Active Learning Example

- Now we get a consistent automaton M_3 with 12 instructions recognizing only correct expressions.

The automaton is not complete yet.
- It does not recognize e.g. $a + (a + (a))$.
- This time we would need to extend the positive samples.

Table 4: The Instructions of the Resulting Automaton M_3 After Simplification.

<table>
<thead>
<tr>
<th>Instruction</th>
<th>Instruction</th>
<th>Instruction</th>
<th>Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>$[\zeta, a, $]$</td>
<td>$[], +a, $]$</td>
<td>$[a, +a, $]$</td>
<td>$[a, +a,)]$</td>
</tr>
<tr>
<td>$[a, +a, +]$</td>
<td>$[(, a+, a]$</td>
<td>$[\zeta, a+, ()]$</td>
<td>$[\zeta, a+, a]$</td>
</tr>
<tr>
<td>$[+, a+, a]$</td>
<td>$[(, (a) \rightarrow a,)]$</td>
<td>$[\zeta, (a), $]$</td>
<td>$[\zeta, (a) \rightarrow a, $]$</td>
</tr>
</tbody>
</table>
Part III: Hardness Results

• In general, the task of finding a consistent Clearing Rest. Aut. with the given set of positive and negative samples is **NP-hard**, provided that we impose an upper bound on the width of instructions.

• This resembles a famous result of Gold who showed that the question of whether there is a finite automaton with at most \(n \) states consistent with a given list of input/output pairs is **NP-complete**.

• Indeed, for every \(n \)-state finite automaton, there is an equivalent Clearing Restarting Automaton that has the width of instructions bounded from above by \(O(n) \).
Hardness Results

• Let $l \geq 2$ be a fixed integer. Consider the following task:

• **Input:**
 • Set of *positive samples* S^+,
 • Set of *negative samples* S,
 • We assume that $S^+ \cap S = \emptyset$, and $\lambda \in S^+$.

• **Output:**
 • 0-cl-RA M such that:
 1. The *width of instructions* of M is at most l.
 2. $L(M) \subseteq S^+$ and $L(M) \cap S = \emptyset$.

• **Theorem:**
 • This task is NP-complete.
Hardness Results – Generalization

• Let $k \geq 1$ and $l \geq 4k + 4$ be fixed integers. Consider:

- **Input:**
 - Set of *positive samples* S^+,
 - Set of *negative samples* S,
 - We assume that $S^+ \cap S = \emptyset$, and $\lambda \in S^+$.

- **Output:**
 - k-cl-RA M such that:
 1. The *width of instructions* of M is at most l.
 2. $L(M) \subseteq S^+$ and $L(M) \cap S = \emptyset$.

- **Theorem:**
 - This task is NP-complete for $k = 1$ and NP-hard for $k > 1$.
Part V: Concluding Remarks

• We have shown that it is possible to infer any hidden target Clearing (Subword-Clearing) Rest. Aut. in the limit from positive and negative samples.

• However, the task of finding a consistent Clearing Rest. Aut. with the given set of positive and negative samples is NP-hard, provided that we impose an upper bound on the width of instructions.

• If we do not impose any upper bound on the maximal width of instructions, then the task is trivially decidable in a polynomial time for any $k \geq 0$.
Open Problems

• Do similar *hardness results* hold also for *other* (more powerful) *models* like *Subword-Clearing Rest. Aut.*?
• What is the *time complexity* of the *membership* and *equivalence* queries for these models?
References

 - Springer-Verlag, New York, NY, USA, 1993.
- Peter Černo. Clearing restarting automata and grammatical inference.
- Peter Černo and František Mráz. Clearing restarting automata.
- C. de la Higuera. Grammatical Inference: Learning Automata and Grammars.
- E. Mark Gold. Complexity of automaton identification from given data.
 - Information and Control, 37, 1978.
- John E. Hopcroft and J. D. Ullman. Formal Languages and their Relation to Automata.
 - Addison-Wesley, Reading, 1969.
- S. Lange, T. Zeugmann, and S. Zilles. Learning indexed families of recursive languages from positive data: A survey.
- R. McNaughton. Algebraic decision procedures for local testability.
- Y. Zalcstein. Locally testable languages.
Thank You!

- The *technical report* is available on:
- This *presentation* is available on:
- An *implementation* of the algorithms can be found on:
 http://code.google.com/p/clearing-restarting-automata/