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Part I: Introduction 

• Restarting Automata: 

• Model for the linguistic technique of analysis by reduction. 

• Many different types have been defined and studied intensively. 

• Analysis by Reduction: 

• Method for checking [non-]correctness of a sentence. 

• Iterative application of simplifications. 

• Until the input cannot be simplified anymore. 

• Restricted Models: 

• Clearing, Δ-Clearing and Δ*-Clearing Restarting Automata, 

• Subword-Clearing Restarting Automata. 

• Our method is similar to the delimited string-rewriting systems 

[Eyraud et al. (2007)]. 



Context Rewriting Systems 

• Let k  be a nonnegative integer. 

• k – Context Rewriting System (k-CRS )  

• Is a triple M = (Σ, Γ, I) : 

• Σ  … input alphabet, ¢, $ ∉ Σ,  

• Γ  … working alphabet, Γ ⊇ Σ, 

• I  … finite set of instructions (x, z → t, y) : 

• x ∊ Γ k   ∪   {¢}.Γ ≤ k - 1   (left context) 

• y ∊ Γ k   ∪   Γ ≤ k - 1.{$}   (right context) 

• z ∊ Γ+, z ≠ t ∊ Γ*. 

• ¢  and $  … sentinels. 

• The width of instruction i = (x, z → t, y)  is |i| = |xzty| . 

• In case k = 0  we use x = y = λ . 



Rewriting 

• uzv ⊢M  utv   iff  ∃ (x, z → t, y) ∊ I : 

• x  is a suffix of ¢.u   and  y  is a prefix of v.$ . 

 

 

 

 

 

• L(M) = {w ∊ Σ* | w ⊢*
M  λ}. 

• LC (M) = {w ∊ Γ* | w ⊢*
M  λ}.  



Empty Word 

• Note: For every k-CRS M: λ ⊢*
M  λ, hence λ ∊ L(M). 

• Whenever we say that a  k-CRS M   recognizes a 

language L, we always mean that L(M) = L ∪ {λ}. 

• We simply ignore the empty word in this setting. 

 



Clearing Restarting Automata 

• k – Clearing Restarting Automaton (k-cl-RA ) 
• Is a k-CRS  M = (Σ, Σ, I)  such that: 

• For each (x, z → t, y) ∊ I : z ∊ Σ+, t = λ. 

• k – Subword-Clearing Rest. Automaton (k-scl-RA ) 
• Is a k-CRS  M = (Σ, Σ, I)  such that:  

• For each (x, z → t, y) ∊ I :  

• z ∊ Γ+, t  is a proper subword of z. 

 



Example 1 

• L1 = {anbn | n > 0} ∪ {λ} : 

• 1-cl-RA M = ({a, b}, I) , 

• Instructions I  are: 
• R1 = (a, ab → λ, b) , 

• R2 = (¢, ab → λ, $) . 



Example 2 

• L2 = {ancbn | n > 0} ∪ {λ} : 

• 1-scl-RA M = ({a, b, c}, I) , 

• Instructions I  are: 
• R1 = (a, acb → c, b) , 

• R2 = (¢, acb → λ, $) . 

 

 

 

 

• Note: 

• The language L2  cannot  

• be recognized by any cl-RA. 



Clearing Restarting Automata 

• Clearing Restarting Automata: 

• Accept all regular and even some non-context-free languages. 

• They do not accept all context-free languages ({ancbn | n > 0} ). 

• Subword-Clearing Restarting Automata: 

• Are strictly more powerful than Clearing Restarting Automata. 

• They do not accept all context-free languages ({w wR | w ∊ Σ*} ). 

• Upper bound:  

• Subword-Clearing Restarting Automata only accept languages 

that are growing context-sensitive [Dahlhaus, Warmuth]. 



Hierarchy of Language Classes 



Part II: Learning Schema 

• Goal: Identify any hidden target automaton in the limit 

from positive and negative samples. 

• Input: 

• Set of positive samples S+, 

• Set of negative samples S-, 

• We assume that S+∩ S- = ⍉, and λ ∊ S+. 

• Output: 

• Automaton M  such that: L(M) ⊆ S+  and L(M) ∩ S- = ⍉. 

• The term automaton = Clearing or Subword-Clearing Restarting 

Automaton, or any other similar model. 



Learning Schema – Restrictions 

• Without further restrictions: 

• The task becomes trivial even for Clearing Rest. Aut.. 

• Just consider: I = { (¢, w, $) | w ∊ S+ , w ≠ λ }. 

• Apparently: L(M) = S+, where M = (Σ, Σ, I). 

• Therefore, we impose: 

• An upper limit l ≥ 1 on the width of instructions, 

• A specific length of contexts k ≥ 0. 

• Note: 

• We can effectively enumerate all automata satisfying these 

restrictions, thus the identification in the limit can be easily 

deduced from the classical result of Gold … 

• Nevertheless, we propose an algorithm, which, under certain 

conditions, works in a polynomial time. 



Learning Schema – Algorithm 

• Input: 
• Positive samples S+, negative samples S-, S+∩ S- = ⍉, λ ∊ S+. 

• Upper limit l ≥ 1 on the width of instructions, 

• A specific length of contexts k ≥ 0. 

• Output: 
• Automaton M  such that: L(M) ⊆ S+  and L(M) ∩ S- = ⍉, or Fail. 

 



Learning Schema – Step 1/4 

• Step 1: 

 

• We obtain some set of instruction candidates. 

• Note: We use only the positive samples to obtain the instructions. 

• Let us assume, for a moment, that this set 𝛷 already contains all 

instructions of the hidden target automaton. 

• Later we will show how to define the function Assumptions  in such 

a way that the above assumption can be always satisfied. 



Learning Schema – Step 2/4 

• Step 2: 

 

 

• We gradually remove all instructions that allow a single-step 

reduction from a negative sample to a positive sample. 

• Such instructions violate the so-called error-preserving property. 

• It is easy to see, that such instructions cannot be in our hidden 

target automaton. 

• Note: Here we use also the negative samples. 



Learning Schema – Step 3/4 

• Step 3: 

 

• We remove the redundant instructions. 

• This step is optional and can be omitted – it does not affect the 

properties or the correctness of the Learning Schema. 

• Possible implementation: 

 



Learning Schema – Step 4/4 

• Step 4: 

 

 

 

• We check the consistency of the remaining set of instructions 

with the given input set of positive and negative samples. 

• Concerning the identification in the limit, we can omit the 

consistency check – it does not affect the correctness of the 

Learning Schema. In the limit, we always get a correct solution. 

 



Learning Schema – Complexity 

• Time complexity of the Algorithm depends on: 

• Time complexity of the function Assumptions, 

• Time complexity of the simplification, 

• Time complexity of the consistency check. 

• There are correct implementations of the function 

Assumptions  that run in a polynomial time. 

• If the function Assumptions runs in a polynomial time 

(Step 1) then also the size of the set 𝛷 is polynomial and 

then also the cycle (Step 2) runs in a polynomial time. 

• It is an open problem, whether the simplification and the 

consistency check can be done in a polynomial time. 

Fortunately, we can omit these steps. 



Learning Schema – Assumptions 

• We call the function Assumptions  correct, if it is possible 

to obtain instructions of any hidden target automaton in 

the limit by using this function. 

• To be more precise: 

• For every k-cl-RA M  (or k-scl-RA M ) with the maximal width of 

instructions bounded from above by l ≥ 1  there exists a finite set 

S0
+ ⊆ L(M)  such that for every S+ ⊇ S0

+  the Assumptions(S+, l, k) 

contains all instructions of some automaton N  equivalent to M. 



Example – Assumptionsweak 

• Assumptionsweak(S+, l, k) :=  all instructions (x, z → t, y)  : 

• The length of contexts is k : 

• x ∊ Σ k   ∪   {¢}. Σ ≤ k - 1   (left context) 

• y ∊ Σ k   ∪   Σ ≤ k - 1.{$}   (right context) 

• Our model is a Subword-Clearing Rest. Aut.: 

• z ∊ Σ+, t  is a proper subword of z. 

• The width is bounded by l : 
• |xzty| ≤ l. 

• There are two words w1 , w2 ∊ S+  such that: 

• xzy  is a subword of ¢ w1 $, 

• xty  is a subword of ¢ w2 $. 

 

• This function is correct and runs in a polynomial time. 



Example – Assumptionsweak 



Example – Assumptionsweak 



Example – Assumptionsweak 



Example – Assumptionsweak 



Example – Assumptionsweak 



Part III: Active Learning Example 

• Our goal: 

• Infer a model of scl-RA  recognizing the language of simplified 

arithmetical expressions over the alphabet Σ = {a, +, (, )}. 

• Correct arithmetical expressions: 

• a + (a + a) , 

• (a + a) , 

• ((a)) , etc. 

• Incorrect arithmetical expressions: 

• a + , 

• ) a , 

• (a + a , etc. 

• We fix maximal width l  to 6, length of context k  to 1. 



Active Learning Example 

• Initial set of positive (S1
+) and negative (S1

-) samples. 



Active Learning Example 

• Assumptionsweak(S1
+, l, k)  gives us 64  instructions. 

• After filtering bad instructions and after simplification 

we get a consistent automaton M1  with 21  instructions: 



Active Learning Example 

• All expressions recognized by M1  up to length 5 : 

 

 

 

 

 

 

• There are both correct and incorrect arithmetical 

expressions. Note that (a) + a  was never seen before. 

• Next step: Add all incorrect arithmetical expressions to 

the set of negative samples. (We get: S2
+ = S1

+  and S2
- ). 



Active Learning Example 

• We get a consistent automaton M2  with 16  instructions. 

• Up to length 5, the automaton M2  recognizes only 

correct arithmetical expressions. 

• However, it recognizes also some incorrect arithmetical 

expressions beyond this length, e.g.: 

• ((a + a) , 

• (a + a)) , 

• a + (a + a , 

• a + a) + a . 

• Add also these incorrect arithmetical expressions to the 

set of negative samples. (We get: S3
+ = S2

+  and S3
- ). 



Active Learning Example 

• Now we get a consistent automaton M3  with 12  

instructions recognizing only correct expressions. 

 

 

 

 

 

• The automaton is not complete yet. 

• It does not recognize e.g. a + (a + (a)). 

• This time we would need to extend the positive samples. 

 



Part III: Hardness Results 

• In general, the task of finding a consistent Clearing 

Rest. Aut. with the given set of positive and negative 

samples is NP-hard, provided that we impose an upper 

bound on the width of instructions. 

• This resembles a famous result of Gold who showed 

that the question of whether there is a finite automaton 

with at most n states consistent with a given list of 

input/output pairs is NP-complete. 

• Indeed, for every n-state finite automaton, there is an 

equivalent Clearing Restarting Automaton that has the 

width of instructions bounded from above by O(n). 



Hardness Results 

• Let l ≥ 2  be a fixed integer. Consider the following task: 

• Input: 

• Set of positive samples S+, 

• Set of negative samples S-, 

• We assume that S+∩ S- = ⍉, and λ ∊ S+. 

• Output: 

• 0-cl-RA M  such that: 

1. The width of instructions of M  is at most l. 

2. L(M) ⊆ S+  and L(M) ∩ S- = ⍉. 

• Theorem: 

• This task is NP-complete. 



Hardness Results – Generalization 

• Let k ≥ 1  and l ≥ 4k + 4  be fixed integers. Consider: 

• Input: 

• Set of positive samples S+, 

• Set of negative samples S-, 

• We assume that S+∩ S- = ⍉, and λ ∊ S+. 

• Output: 

• k-cl-RA M  such that: 

1. The width of instructions of M  is at most l. 

2. L(M) ⊆ S+  and L(M) ∩ S- = ⍉. 

• Theorem: 

• This task is NP-complete for k = 1  and NP-hard for k > 1. 



Part V: Concluding Remarks 

• We have shown that it is possible to infer any hidden 

target Clearing (Subword-Clearing) Rest. Aut. in the 

limit from positive and negative samples. 

• However, the task of finding a consistent Clearing 

Rest. Aut. with the given set of positive and negative 

samples is NP-hard, provided that we impose an upper 

bound on the width of instructions. 

• If we do not impose any upper bound on the maximal 

width of instructions, then the task is trivially decidable 

in a polynomial time for any k ≥ 0. 



Open Problems 

• Do similar hardness results hold also for other (more 

powerful) models like Subword-Clearing Rest. Aut.? 

• What is the time complexity of the membership and 

equivalence queries for these models? 
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Thank You! 

• The technical report is available on: 
http://popelka.ms.mff.cuni.cz/cerno/files/cerno_clra_and_gi.pdf 

• This presentation is available on: 
http://popelka.ms.mff.cuni.cz/cerno/files/cerno_clra_and_gi_presentation.pdf 

• An implementation of the algorithms can be found on: 
http://code.google.com/p/clearing-restarting-automata/ 


