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Part I: Introduction

- Restarting Automata:
- Model for the linguistic technique of analysis by reduction.
- Many different types have been defined and studied intensively.

- Analysis by Reduction:
- Method for checking [nhon-]correctness of a sentence.
- Iterative application of simplifications.
- Until the input cannot be simplified anymore.

- Restricted Models:
- Clearing, A-Clearing and A*-Clearing Restarting Automata,
- Subword-Clearing Restarting Automata.

- Our method is similar to the delimited string-rewriting systems
[Eyraud et al. (2007)].




Context Rewriting Systems

- Let & be a nonnegative integer.
- k-Context Rewriting System (k-CRS')

-lsatripleM=, 1)
- X ...input alphabet, ¢ $ &2,

- I' ... working alphabet, ’'22 'eﬁ°°”te’:itghtcontext
- I ... finite set of instructions (x,z—=¢ y): X z y J
- xel* U {¢pIrsk1 (left context) l
- yeI's v Isk-1f8} (right context) x [t] v

- zel*,z#tel*
- ¢ and § ... sentinels.
- The width of instruction i=(xz-=t y) Is [il = [xzty] .
Incase k=0 weuse x=y=A1.



Rewriting

cuzviy, utv iff I3(xz->ty)el:
- x is a suffix of ¢u and y is a prefix of ©§.

v left sentinel right sentinel
¢ u X z y \ $
left context = ¢ = right context
¢ u X t y v $

cL(M) ={wel*|wFr, A}
Le(M)={wel*|wry A}



L
Empty Word

- Note: For every k-CRSM: A *,, A, hence A € L(M).

- Whenever we say thata k-CRSM recognizes a
language L, we always mean that L(M) =L U {A}.

- We simply ignore the empty word in this setting.




Clearing Restarting Automata

- k-Clearing Restarting Automaton (k-c/-RA)
- Isa k-CRS M = (2, 2, ]) such that:

- Foreach (x,z=t y)el. zelt, t=A

- k-Subword-Clearing Rest. Automaton (k-sc]—RA)

- Isa k-CRS M = (2, 2, 1) such that: :

- Foreach (x,z—=t y)€el: v v

- zel% t is aproper subword of z 5

v




Example 1 input word
¢la ' a'ala b|lb b b|$
- L, ={a"b" [n>0} U {A)}: ¢R1
.J-CI-RAI,Wz({a’b}’I)’ ¢la ala b|lb b|s$
- Instructions 7 are:
- R1=(3,ab- A, b), ¢R1
- R2=(¢ab-139). ¢lala b|b|$
¢R1
¢la b|$
¢R2
AR ACCEPT




Example 2 input word
¢lal/a'ala c bl{b b b|$

-« L,={a"cb" [n> 0} U {A}: ¢R1

« 1-scl-RAM=({a b c} 1),

¢lafala ¢ b|lb b|$

- Instructions 7 are;

“Rl=(sach~cb), i *
- R2=(¢,acb 24 9%). ¢lala ¢ b|b]|s$
¢R1
¢la c b|$
Note: ¢R2
- The language L, cannot CLALS =

- be recognized by any c/-RA.



Clearing Restarting Automata

- Clearing Restarting Automata:
- Accept all regular and even some non-context-free languages.
- They do not accept all context-free languages ({a’cb” [n > 0}).
- Subword-Clearing Restarting Automata:
- Are strictly more powerful than Clearing Restarting Automata.
- They do not accept all context-free languages ({w w” [/ w € 2*}).
- Upper bound:

- Subword-Clearing Restarting Automata only accept languages
that are growing context-sensitive [Dahlhaus, Warmuth].



Hierarchy of Language Classes
/GCSL \




Part Il: Learning Schema

- Goal: Identify any hidden target automaton in the limit
from positive and negative samples.

- Input:

- Set of positive samples 57,
- Set of negative samples S,
- We assume that $*n.$ = (), and 1 € §*.

- Qutput:
- Automaton M such that: L(M) € S* and L(M)n S = (9.

- The term automaton = Clearing or Subword-Clearing Restarting
Automaton, or any other similar model.




Learning Schema — Restrictions

- Without further restrictions:
- The task becomes trivial even for Clearing Rest. Aut..
- Just consider: I={ (¢, w; 3) [weSt, w#A].
- Apparently: L(M) = 5%, where M = (2, 2, ]).
- Therefore, we impose:
- An upper limit /= 1 on the width of instructions,
- A specific length of contexts k= 0.
- Note:

- We can effectively enumerate all automata satisfying these
restrictions, thus the identification in the limit can be easily
deduced from the classical result of Gold ...

- Nevertheless, we propose an algorithm, which, under certain
conditions, works in a polynomial time.



Learning Schema — Algorithm

- Input:

- Positive samples $*, negative samples §, $*tnS = ®, 1€ 5*.
- Upper limit /= 1 on the width of instructions,
- A specific length of contexts k= 0.

- Qutput:
- Automaton M such that: L(M) € S* and L(M) N S = (), or Fail.

® + Assumptions(ST, 1, k);
while Jw_€ S~ w, € ST, 0 € ®:w_ P w, do

| @« @\ {o}:

end
& «— Simplify (P);
if Consistent(®, ST, S7) then
‘ return Automaton with the set of instructions ®;
end

Fail;

=T v T N = = - -



Learning Schema — Step 1/4

- Step 1.
® + Assumptions(ST, 1, k);

- We obtain some set of instruction candidates.

- Note: We use only the positive samples to obtain the instructions.

- Let us assume, for a moment, that this set @ already contains all
Instructions of the hidden target automaton.

- Later we will show how to define the function Assumptions in such
a way that the above assumption can be always satisfied.



Learning Schema — Step 2/4

- Step 2:
while Jw_ € S~ w, € ST, ¢ € ®:w_ % w, do
| 2@\ {o}:
end

- We gradually remove all instructions that allow a single-step
reduction from a negative sample to a positive sample.

- Such instructions violate the so-called error-preserving property.

- It Is easy to see, that such instructions cannot be in our hidden
target automaton.

- Note: Here we use also the negative samples.



L
Learning Schema — Step 3/4

- Step 3:
& «— Simplify(P);
- We remove the redundant instructions.

- This step is optional and can be omitted — it does not affect the
properties or the correctness of the Learning Schema.

- Possible implementation:

Input: The set of instructions .

Output: The simplified set of instructions W,

1 U+ 0

2 foreach ¢ = (z,2 — t,y) € ® in some fized order do
3 if 2 175 t in the context (z,y) then

4 ‘ U Vu{(z,z—=ty}k
5
6
7

end

end
return V;



Learning Schema — Step 4/4

- Step 4:

if Consistent(®, ST, 57) then

‘ return Automaton with the set of instructions ®;
end

Fail;

- We check the consistency of the remaining set of instructions
with the given input set of positive and negative samples.
- Concerning the identification in the limit, we can omit the

consistency check — it does not affect the correctness of the
Learning Schema. In the limit, we always get a correct solution.



Learning Schema — Complexity

- Time complexity of the Algorithm depends on:
- Time complexity of the function Assumptions,
- Time complexity of the simplification,
- Time complexity of the consistency check.

- There are correct implementations of the function
Assumptions that run in a polynomial time.

- If the function Assumptions runs in a polynomial time
(Step 1) then also the size of the set @ is polynomial and
then also the cycle (Step 2) runs in a polynomial time.

- It is an open problem, whether the simplification and the
consistency check can be done in a polynomial time.
Fortunately, we can omit these steps.



Learning Schema — Assumptions

- We call the function Assumptions correct, if it is possible
to obtain instructions of any hidden target automaton in
the limit by using this function.

- To be more precise:

- For every k-cl-RAM (or k-scl-RA M) with the maximal width of
Instructions bounded from above by /= 1 there exists a finite set
S,7 € L(M) such that for every $* 25,* the Assumptions(S%, | k)
contains all instructions of some automaton N equivalent to M.



Example — Assumptions

weak

- Assumptions,,..(S%, ], k) := all instructions (x,z—=¢t y) :
- The length of contexts is k:
- xeXk U {¢) X<k-1 (left context)
- yeXk v Xsk-1r4) (right context)
- Our model is a Subword-Clearing Rest. Aut.:
- z€X* tisaproper subword of z
- The width is bounded by /:
© [xzty/ <1
- There are two words w,, w, €S* such that:
- xzy is a subword of ¢w, $,
- xty is a subword of ¢w, $.

- This function is correct and runs in a polynomial time.



Example — Assumptions, ...
4 R

Positive Samples

@D

G
Gom?

‘annn}




Example — Assumptions

weak

4 )

Positive Samples

$
(¢, a+ — A, a)

(a+ $

Gom?

‘annn}




Example — Assumptions

weak

4 )

Positive Samples

$
(¢, a+ — A, a)

(a+ $

'€ © DE
(+ @ —a +)
¢ aE$




Example — Assumptions, ...
4 R

Positive Samples

@D

G

(fPta)s

(+, (— A, a) BAD Instruction

‘(atfra)s




Example — Assumptions, ...
4 R

Positive Samples

@D




Part lll: Active Learning Example

- Our goal:

- Infer a model of sc/-RA recognizing the language of simplified
arithmetical expressions over the alphabet 2= {a, + ()}

- Correct arithmetical expressions:
ca+@+a),
- (a+a),
- ((@)), etc.
- Incorrect arithmetical expressions:
- a+t,
- )a,
- (a+a, etc.
- We fix maximal width / to 6, length of context & to 1.



Active Learning Example

- Initial set of positive (5,7) and negative (5,) samples.

Table 1: The Initial Set of Positive and Negative Samples.

Positive Samples ST

Negative Samples S|

a (@)  ((a+a))
ata  ((a))
a+a+a (a+a)

a—+ (a+a)
(@ +a)+a

+ at+ -+

(
)

(+ )+ +a
a(  +( (C )( (a
a) +) () ) )a




Active Learning Example

- Assumptions,,_.(S;7, ], k) dgives us 64 instructions.

- After filtering bad instructions and after simplification
we get a consistent automaton M, with 27 instructions:

Table 2: The Instructions of the Resulting Automaton M; After Simplification.

(s (;al ¢ G +Gal 1,8 la))]l  a,), 4] (¢, a, 3]
¢, (Ga]  e.(a—=a,+] [a,)),8] [),+a,3] [a,+a,8] [a,+a,)]  [o,+a,+]

)
[+,0) = a,8]  [(a+,a]  [¢a+,(] [¢.a4,a] [+,a+,0] ¢ (a),8] [¢(a) = a,9]




Active Learning Example

- All expressions recognized by M, up to length 5':

Table 3: The Set of Expressions Recognized by Mj.

A ata a+(a) a)  (at+a  ((((a
a  ((a  (((e a)+a atata a)))
(a) (o)) (@) a+a) a+a) a)+(a
(e (a)+a ((e+a a+(a  (((a) (a+(a
a)) (a+a) a+((a a)+a  (a) a)+a)

- There are both correct and incorrect arithmetical
expressions. Note that (a) +a was never seen before.

- Next step: Add all incorrect arithmetical expressions to
the set of negative samples. (We get: S, =5, and S,).



Active Learning Example

- We get a consistent automaton M, with 76 instructions.

- Up to length 5, the automaton M, recognizes only
correct arithmetical expressions.

- However, it recognizes also some incorrect arithmetical
expressions beyond this length, e.g.:
- ((a+a),

- (a+a)),
ca+@+a,
ca+a)+ta.

- Add also these incorrect arithmetical expressions to the
set of negative samples. (We get: 5, =S5, and S, ).



Active Learning Example

- Now we get a consistent automaton M, with 12
Instructions recognizing only correct expressions.

Table 4: The Instructions of the Resulting Automaton M3 After Simplification.

¢, a, 9] D, +a, 8] o, +a, 9] la,+a,)]
la,+a,+]  [(,a+,4] (¢, a+, (] ¢, a+, al
[+ at+,a] [(s(a) = a,)] [¢(a),8] [¢(a) = a,$]

- The automaton is not complete yet.
- It does not recognize e.qg. a + (a + (a)).
- This time we would need to extend the positive samples.



Part Ill: Hardness Results

- In general, the task of finding a consistent Clearing
Rest. Aut. with the given set of positive and negative
samples is NP-hard, provided that we impose an upper
bound on the width of instructions.

- This resembles a famous result of Gold who showed
that the question of whether there is a finite automaton
with at most n states consistent with a given list of
iInput/output pairs is NP-complete.

- Indeed, for every n-state finite automaton, there is an

equivalent Clearing Restarting Automaton that has the
width of instructions bounded from above by O(n).



Hardness Results

- Let /=2 be afixed integer. Consider the following task:
- Input:

- Set of positive samples 57,
- Set of negative samples S,
- We assume that $*n.$ = (D, and 1 € §*.

- Qutput:
- 0-cl-RA M such that:
1. The width of instructions of M Is at most /.
2 LM)cS* and L(M)n S = (V.
- Theorem:
- This task is NP-complete.




L
Hardness Results — Generalization

- Let k=1 and /= 4k + 4 be fixed integers. Consider:
- Input:

- Set of positive samples 57,
- Set of negative samples S,
- We assume that $*n.$ = (D, and 1 € §*.

- Qutput:
- k-c/-RA M such that:
1. The width of instructions of M is at most /.

2 LM)cS* and L(M)n S = (V.
- Theorem:
- This task is NP-complete for k=1 and NP-hard for k> 1.




Part V: Concluding Remarks

- We have shown that it is possible to infer any hidden
target Clearing (Subword-Clearing) Rest. Aut. in the
limit from positive and negative samples.

- However, the task of finding a consistent Clearing
Rest. Aut. with the given set of positive and negative

samples is NP-hard, provided that we impose an upper
bound on the width of instructions.

- If we do not impose any upper bound on the maximal
width of instructions, then the task is trivially decidable
In a polynomial time for any &= 0.



Open Problems

- Do similar hardness results hold also for other (more
powerful) models like Subword-Clearing Rest. Aut.?

- What is the time complexity of the membership and
equivalence queries for these models?
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Thank You!

- The technical report is available on:
http://popelka.ms.mff.cuni.cz/cerno/files/cerno_clra_and_gi.pdf

- This presentation is available on:
http://popelka.ms.mff.cuni.cz/cerno/files/cerno_clra_and_gi_presentation.pdf

- An implementation of the algorithms can be found on:
http://code.google.com/p/clearing-restarting-automata/



