CLEARING RESTARTING
AUTOMATAAND
GRAMMATICAL INFERENCE

Peter Cerno

Department of Computer Science
Charles University in Prague, Faculty of Mathematics and Physics

Table of Contents

- Part I Introduction,

- Part Il Learning Schema,

- Part I Active Learning Example,
- Part IV: Hardness Results,

- Part V: Concluding Remarks.

Part I: Introduction

- Restarting Automata:
- Model for the linguistic technique of analysis by reduction.
- Many different types have been defined and studied intensively.

- Analysis by Reduction:
- Method for checking [nhon-]correctness of a sentence.
- Iterative application of simplifications.
- Until the input cannot be simplified anymore.

- Restricted Models:
- Clearing, A-Clearing and A*-Clearing Restarting Automata,
- Subword-Clearing Restarting Automata.

- Our method is similar to the delimited string-rewriting systems
[Eyraud et al. (2007)].

Context Rewriting Systems

- Let & be a nonnegative integer.
- k-Context Rewriting System (k-CRS')

-lsatripleM=, 1)
- X ...input alphabet, ¢ $ &2,

- I' ... working alphabet, ’'22 'eﬁ°°”te’:itghtcontext
- I ... finite set of instructions (x,z—=¢ y): X z y J
- xel* U {¢pIrsk1 (left context) l
- yeI's v Isk-1f8} (right context) x [t] v

- zel*,z#tel*
- ¢ and § ... sentinels.
- The width of instruction i=(xz-=t y) Is [il = [xzty] .
Incase k=0 weuse x=y=A1.

Rewriting

cuzviy, utv iff I3(xz->ty)el:
- x is a suffix of ¢u and y is a prefix of ©§.

v left sentinel right sentinel
¢ u X z y \ $
left context = ¢ = right context
¢ u X t y v $

cL(M) ={wel*|wFr, A}
Le(M)={wel*|wry A}

L
Empty Word

- Note: For every k-CRSM: A *,, A, hence A € L(M).

- Whenever we say thata k-CRSM recognizes a
language L, we always mean that L(M) =L U {A}.

- We simply ignore the empty word in this setting.

Clearing Restarting Automata

- k-Clearing Restarting Automaton (k-c/-RA)
- Isa k-CRS M = (2, 2,]) such that:

- Foreach (x,z=t y)el. zelt, t=A

- k-Subword-Clearing Rest. Automaton (k-sc]—RA)

- Isa k-CRS M = (2, 2, 1) such that: :

- Foreach (x,z—=t y)€el: v v

- zel% t is aproper subword of z 5

v

Example 1 input word
¢la ' a'ala b|lb b b|$
- L, ={a"b" [n>0} U {A)}: ¢R1
.J-CI-RAI,Wz({a’b}’I)’ ¢la ala b|lb b|s$
- Instructions 7 are:
- R1=(3,ab- A, b), ¢R1
- R2=(¢ab-139). ¢lala b|b|$
¢R1
¢la b|$
¢R2
AR ACCEPT

Example 2 input word
¢lal/a'ala c bl{b b b|$

-« L,={a"cb" [n> 0} U {A}: ¢R1

« 1-scl-RAM=({a b c} 1),

¢lafala ¢ b|lb b|$

- Instructions 7 are;

“Rl=(sach~cb), i *
- R2=(¢,acb 24 9%). ¢lala ¢ b|b]|s$
¢R1
¢la c b|$
Note: ¢R2
- The language L, cannot CLALS =

- be recognized by any c/-RA.

Clearing Restarting Automata

- Clearing Restarting Automata:
- Accept all regular and even some non-context-free languages.
- They do not accept all context-free languages ({a’cb” [n > 0}).
- Subword-Clearing Restarting Automata:
- Are strictly more powerful than Clearing Restarting Automata.
- They do not accept all context-free languages ({w w” [/ w € 2*}).
- Upper bound:

- Subword-Clearing Restarting Automata only accept languages
that are growing context-sensitive [Dahlhaus, Warmuth].

Hierarchy of Language Classes
/GCSL \

Part Il: Learning Schema

- Goal: Identify any hidden target automaton in the limit
from positive and negative samples.

- Input:

- Set of positive samples 57,
- Set of negative samples S,
- We assume that $*n.$ = (), and 1 € §*.

- Qutput:
- Automaton M such that: L(M) € S* and L(M)n S = (9.

- The term automaton = Clearing or Subword-Clearing Restarting
Automaton, or any other similar model.

Learning Schema — Restrictions

- Without further restrictions:
- The task becomes trivial even for Clearing Rest. Aut..
- Just consider: I={ (¢, w; 3) [weSt, w#A].
- Apparently: L(M) = 5%, where M = (2, 2,]).
- Therefore, we impose:
- An upper limit /= 1 on the width of instructions,
- A specific length of contexts k= 0.
- Note:

- We can effectively enumerate all automata satisfying these
restrictions, thus the identification in the limit can be easily
deduced from the classical result of Gold ...

- Nevertheless, we propose an algorithm, which, under certain
conditions, works in a polynomial time.

Learning Schema — Algorithm

- Input:

- Positive samples $*, negative samples §, $*tnS = ®, 1€ 5*.
- Upper limit /= 1 on the width of instructions,
- A specific length of contexts k= 0.

- Qutput:
- Automaton M such that: L(M) € S* and L(M) N S = (), or Fail.

® + Assumptions(ST, 1, k);
while Jw_€ S~ w, € ST, 0 € ®:w_ P w, do

| @« @\ {o}:

end
& «— Simplify (P);
if Consistent(®, ST, S7) then
‘ return Automaton with the set of instructions ®;
end

Fail;

=T v T N = = - -

Learning Schema — Step 1/4

- Step 1.
® + Assumptions(ST, 1, k);

- We obtain some set of instruction candidates.

- Note: We use only the positive samples to obtain the instructions.

- Let us assume, for a moment, that this set @ already contains all
Instructions of the hidden target automaton.

- Later we will show how to define the function Assumptions in such
a way that the above assumption can be always satisfied.

Learning Schema — Step 2/4

- Step 2:
while Jw_ € S~ w, € ST, ¢ € ®:w_ % w, do
| 2@\ {o}:
end

- We gradually remove all instructions that allow a single-step
reduction from a negative sample to a positive sample.

- Such instructions violate the so-called error-preserving property.

- It Is easy to see, that such instructions cannot be in our hidden
target automaton.

- Note: Here we use also the negative samples.

L
Learning Schema — Step 3/4

- Step 3:
& «— Simplify(P);
- We remove the redundant instructions.

- This step is optional and can be omitted — it does not affect the
properties or the correctness of the Learning Schema.

- Possible implementation:

Input: The set of instructions .

Output: The simplified set of instructions W,

1 U+ 0

2 foreach ¢ = (z,2 — t,y) € ® in some fized order do
3 if 2 175 t in the context (z,y) then

4 ‘ U Vu{(z,z—=ty}k
5
6
7

end

end
return V;

Learning Schema — Step 4/4

- Step 4:

if Consistent(®, ST, 57) then

‘ return Automaton with the set of instructions ®;
end

Fail;

- We check the consistency of the remaining set of instructions
with the given input set of positive and negative samples.
- Concerning the identification in the limit, we can omit the

consistency check — it does not affect the correctness of the
Learning Schema. In the limit, we always get a correct solution.

Learning Schema — Complexity

- Time complexity of the Algorithm depends on:
- Time complexity of the function Assumptions,
- Time complexity of the simplification,
- Time complexity of the consistency check.

- There are correct implementations of the function
Assumptions that run in a polynomial time.

- If the function Assumptions runs in a polynomial time
(Step 1) then also the size of the set @ is polynomial and
then also the cycle (Step 2) runs in a polynomial time.

- It is an open problem, whether the simplification and the
consistency check can be done in a polynomial time.
Fortunately, we can omit these steps.

Learning Schema — Assumptions

- We call the function Assumptions correct, if it is possible
to obtain instructions of any hidden target automaton in
the limit by using this function.

- To be more precise:

- For every k-cl-RAM (or k-scl-RA M) with the maximal width of
Instructions bounded from above by /= 1 there exists a finite set
S,7 € L(M) such that for every $* 25,* the Assumptions(S%, | k)
contains all instructions of some automaton N equivalent to M.

Example — Assumptions

weak

- Assumptions,,..(S%,], k) := all instructions (x,z—=¢t y) :
- The length of contexts is k:
- xeXk U {¢) X<k-1 (left context)
- yeXk v Xsk-1r4) (right context)
- Our model is a Subword-Clearing Rest. Aut.:
- z€X* tisaproper subword of z
- The width is bounded by /:
© [xzty/ <1
- There are two words w,, w, €S* such that:
- xzy is a subword of ¢w, $,
- xty is a subword of ¢w, $.

- This function is correct and runs in a polynomial time.

Example — Assumptions, ...
4 R

Positive Samples

@D

G
Gom?

‘annn}

Example — Assumptions

weak

4)

Positive Samples

$
(¢, a+ — A, a)

(a+ $

Gom?

‘annn}

Example — Assumptions

weak

4)

Positive Samples

$
(¢, a+ — A, a)

(a+ $

'€ © DE
(+ @ —a +)
¢ aE$

Example — Assumptions, ...
4 R

Positive Samples

@D

G

(fPta)s

(+, (— A, a) BAD Instruction

‘(atfra)s

Example — Assumptions, ...
4 R

Positive Samples

@D

Part lll: Active Learning Example

- Our goal:

- Infer a model of sc/-RA recognizing the language of simplified
arithmetical expressions over the alphabet 2= {a, + ()}

- Correct arithmetical expressions:
ca+@+a),
- (a+a),
- ((@)), etc.
- Incorrect arithmetical expressions:
- a+t,
-)a,
- (a+a, etc.
- We fix maximal width / to 6, length of context & to 1.

Active Learning Example

- Initial set of positive (5,7) and negative (5,) samples.

Table 1: The Initial Set of Positive and Negative Samples.

Positive Samples ST

Negative Samples S|

a (@) ((a+a))
ata ((a))
a+a+a (a+a)

a—+ (a+a)
(@ +a)+a

+ at+ -+

(
)

(+)+ +a
a(+((C)((a
a) +) ()))a

Active Learning Example

- Assumptions,,_.(S;7,], k) dgives us 64 instructions.

- After filtering bad instructions and after simplification
we get a consistent automaton M, with 27 instructions:

Table 2: The Instructions of the Resulting Automaton M; After Simplification.

(s (;al ¢ G +Gal 1,8 la))]l a,), 4] (¢, a, 3]
¢, (Ga] e.(a—=a,+] [a,)),8] [),+a,3] [a,+a,8] [a,+a,)] [o,+a,+]

)
[+,0) = a,8] [(a+,a] [¢a+,(] [¢.a4,a] [+,a+,0] ¢ (a),8] [¢(a) = a,9]

Active Learning Example

- All expressions recognized by M, up to length 5':

Table 3: The Set of Expressions Recognized by Mj.

A ata a+(a) a) (at+a ((((a
a ((a (((e a)+a atata a)))
(a) (o)) (@) a+a) a+a) a)+(a
(e (a)+a ((e+a a+(a (((a) (a+(a
a)) (a+a) a+((a a)+a (a) a)+a)

- There are both correct and incorrect arithmetical
expressions. Note that (a) +a was never seen before.

- Next step: Add all incorrect arithmetical expressions to
the set of negative samples. (We get: S, =5, and S,).

Active Learning Example

- We get a consistent automaton M, with 76 instructions.

- Up to length 5, the automaton M, recognizes only
correct arithmetical expressions.

- However, it recognizes also some incorrect arithmetical
expressions beyond this length, e.g.:
- ((a+a),

- (a+a)),
ca+@+a,
ca+a)+ta.

- Add also these incorrect arithmetical expressions to the
set of negative samples. (We get: 5, =S5, and S,).

Active Learning Example

- Now we get a consistent automaton M, with 12
Instructions recognizing only correct expressions.

Table 4: The Instructions of the Resulting Automaton M3 After Simplification.

¢, a, 9] D, +a, 8] o, +a, 9] la,+a,)]
la,+a,+] [(,a+,4] (¢, a+, (] ¢, a+, al
[+ at+,a] [(s(a) = a,)] [¢(a),8] [¢(a) = a,$]

- The automaton is not complete yet.
- It does not recognize e.qg. a + (a + (a)).
- This time we would need to extend the positive samples.

Part Ill: Hardness Results

- In general, the task of finding a consistent Clearing
Rest. Aut. with the given set of positive and negative
samples is NP-hard, provided that we impose an upper
bound on the width of instructions.

- This resembles a famous result of Gold who showed
that the question of whether there is a finite automaton
with at most n states consistent with a given list of
iInput/output pairs is NP-complete.

- Indeed, for every n-state finite automaton, there is an

equivalent Clearing Restarting Automaton that has the
width of instructions bounded from above by O(n).

Hardness Results

- Let /=2 be afixed integer. Consider the following task:
- Input:

- Set of positive samples 57,
- Set of negative samples S,
- We assume that $*n.$ = (D, and 1 € §*.

- Qutput:
- 0-cl-RA M such that:
1. The width of instructions of M Is at most /.
2 LM)cS* and L(M)n S = (V.
- Theorem:
- This task is NP-complete.

L
Hardness Results — Generalization

- Let k=1 and /= 4k + 4 be fixed integers. Consider:
- Input:

- Set of positive samples 57,
- Set of negative samples S,
- We assume that $*n.$ = (D, and 1 € §*.

- Qutput:
- k-c/-RA M such that:
1. The width of instructions of M is at most /.

2 LM)cS* and L(M)n S = (V.
- Theorem:
- This task is NP-complete for k=1 and NP-hard for k> 1.

Part V: Concluding Remarks

- We have shown that it is possible to infer any hidden
target Clearing (Subword-Clearing) Rest. Aut. in the
limit from positive and negative samples.

- However, the task of finding a consistent Clearing
Rest. Aut. with the given set of positive and negative

samples is NP-hard, provided that we impose an upper
bound on the width of instructions.

- If we do not impose any upper bound on the maximal
width of instructions, then the task is trivially decidable
In a polynomial time for any &= 0.

Open Problems

- Do similar hardness results hold also for other (more
powerful) models like Subword-Clearing Rest. Aut.?

- What is the time complexity of the membership and
equivalence queries for these models?

References

M. Beaudry, M. Holzer, G. Niemann, and F. Otto. Mcnaughton families of languages.
Theoretical Computer Science, 290(3):1581-1628, 2003.
- Ronald V Book and Friedrich Otto. String-rewriting systems.
Springer-Verlag, New York, NY, USA, 1993.
- Peter Cerno. Clearing restarting automata and grammatical inference.

Technical Report 1/2012, Charles University, Faculty of Mathematics and Physics, Prague, 2012. URL
http://popelka.ms.mff.cuni.cz/cernoffiles/cerno_clra_and_gi.pdf.

- Peter Cerno and Frantisek Mraz. Clearing restarting automata.
Fundamenta Informaticae, 104(1):17-54, 2010.
- C. de la Higuera. Grammatical Inference: Learning Automata and Grammars.
Cambridge University Press, New York, NY, USA, 2010.
- R. Eyraud, C. de la Higuera, and J.-C. Janodet. Lars: A learning algorithm for rewriting systems.
Machine Learning, 66:7-31, 2007.
- E. Mark Gold. Complexity of automaton identification from given data.
Information and Control, 37, 1978.
- John E. Hopcroft and J. D. Ullman. Formal Languages and their Relation to Automata.
Addison-Wesley, Reading, 1969.
- S. Lange, T. Zeugmann, and S. Zilles. Learning indexed families of recursive languages from positive
data: A survey.
Theor. Comput. Sci., 397(1-3):194-232, May 2008.
R. McNaughton. Algebraic decision procedures for local testability.
Theory of Computing Systems, 8:60-76, 1974.
F. Otto. Restarting automata.

In Zoltan Esik, Carlos Martin-Vide, and Victor Mitrana, editors, Recent Advances in Formal Languages and Applications,
volume 25 of Studies in Computational Intelligence, pages 269-303. Springer, Berlin, 2006.

- Y. Zalcstein. Locally testable languages.
J. Comput. Syst. Sci, 6(2):151-167, 1972.

D
Thank You!

- The technical report is available on:
http://popelka.ms.mff.cuni.cz/cerno/files/cerno_clra_and_gi.pdf

- This presentation is available on:
http://popelka.ms.mff.cuni.cz/cerno/files/cerno_clra_and_gi_presentation.pdf

- An implementation of the algorithms can be found on:
http://code.google.com/p/clearing-restarting-automata/

