
CLEARING RESTARTING AUTOMATA AND GRAMMATICAL
INFERENCE

TECHNICAL REPORT

PETER ČERNO
PETERCERNO@GMAIL.COM

Abstract. Clearing and subword-clearing restarting automata are linguistically moti-
vated models of automata. We investigate the problem of grammatical inference for such
automata based on the given set of positive and negative samples. We show that it is
possible to identify these models in the limit. In this way we can learn a large class of
languages. On the other hand, we prove that the task of finding a clearing restarting au-
tomaton consistent with a given set of positive and negative samples is NP-hard, provided
that we impose an upper bound on the width of its instructions.
Keywords: grammatical inference, clearing restarting automata, subword-clearing restart-
ing automata, formal languages.

1. Introduction

Restarting automata [13] were introduced as a tool for modeling some techniques used
for natural language processing. In particular they are used for analysis by reduction which
is a method for checking (syntactical) correctness or non-correctness of a sentence. While
restarting automata are quite general (see [16] for an overview), they still lack some prop-
erties which could facilitate their wider use. One of their drawbacks is, for instance, the
lack of some intuitive way how to infer their instructions. There were several attempts
to learn their instructions by using genetic algorithms, but the results are far from being
applicable.

Clearing restarting automata were introduced in [4, 5] as a new restricted model of
restarting automata which, based on a limited context, can only delete a substring of the
current content of its tape. The model is motivated by the need for simpler definitions
and simultaneously by aiming for efficient machine learning of such automata. In [5] it
has been shown that this model is effectively learnable from positive samples of reductions
and that in this way it is even possible to infer some non-context-free languages. Here we
introduce also a more general model, called subword-clearing restarting automata, which,
based on a limited context, can replace a substring z of the current content of its tape by a
proper substring of z. In this paper we focus on the grammatical inference of clearing and
subword-clearing restarting automata from the given set of positive and negative samples.

This work was partially supported by the Grant Agency of Charles University under Grant-No.
272111/A-INF/MFF and by the Czech Science Foundation under Grant-No. P103/10/0783 and Grant-No.
P202/10/1333.

1

MAILTO:PETERCERNO@GMAIL.COM

2 PETER ČERNO

The used inference algorithm is inspired by strictly locally testable languages [15, 17].
The idea of strictly locally testable languages rests in the assumption that in order to
verify the membership of the given input word we only need to verify all the local parts of
this word. Unfortunately the class of strictly locally testable languages is only a subclass
of regular languages, which limits their wider use. Our models work in a similar local
way. The main difference is that our automata can locally modify the content of their
input tape by using rewriting instructions. The inference algorithm itself is responsible
only for deciding, which rewriting instructions are justified, based on the given set of
positive and negative samples. In the first phase, the algorithm uses the set of positive
samples to infer all possible instruction candidates. In the second phase, it uses the set
of negative samples for filtering out all “bad” instructions that violate the so-called error
preserving property (i.e. instructions that allow a reduction from a negative sample to a
positive sample). The output is the set of all surviving instructions. We show that, under
certain assumptions, this algorithm runs in a polynomial time and can infer all clearing
and subword-clearing restarting automata in the limit. In contrast with this result we show
that the task of finding a clearing restarting automaton consistent with the given set of
positive and negative samples is NP-hard, provided that we impose an upper bound on the
width of instructions. This result resembles the famous result of Gold ([11]) who showed
that the construction of a minimum state automaton consistent with the given data is, in
general, computationally difficult. Indeed, for every n-state finite automaton there exists
an equivalent clearing restarting automaton that has the width of instruction bounded
from above by O(n) (see [5]).

Although clearing and subword-clearing restarting automata have their roots in restart-
ing automata, we will study them from the perspective of the so-called string-rewriting
systems. Our approach is reminiscent of the delimited string-rewriting systems introduced
in [10], which are expressive enough to define a nontrivial class of languages containing all
regular languages and some context-free languages. [10] presented a novel algorithm LARS
(Learning Algorithm for Rewriting Systems) which identifies a large subclass of these lan-
guages in a polynomial time. In fact, a simplified version of LARS (see [9]) identifies
any delimited string-rewriting system in the limit. The main difference between delimited
string-rewriting systems and clearing (subword-clearing) restarting automata is that de-
limited string-rewriting systems use a specific order relation over the set of all terms and
rules in order to make always only one single rule eligible for application for any given
input string. This makes them an efficient (often linear) parsing device for strings with
the membership problem decidable in a polynomial time. Our models, on the other hand,
are nondeterministic and do not use any ordering. We also added an important concept of
contexts deep into the definitions of our models by using the so-called context rewriting
systems as a common framework for all our models. Although our inference algorithm is
able to identify most of the languages presented in [10], the exact relationship between the
corresponding classes of languages is not clear at all.

The paper has the following structure. In Section 2 we first introduce string-rewriting
systems and then extend them to context rewriting systems. The definition of clearing and
subword-clearing restarting automata can be easily obtained as a special kind of context

CLEARING RESTARTING AUTOMATA AND GRAMMATICAL INFERENCE 3

rewriting systems. In Section 3 we give a description of the general setting for grammatical
inference. Here we also introduce an important concept called identification in the limit.
In Section 4 we propose a learning schema for clearing and subword-clearing restarting
automata. We show that it is possible, by using this schema, to identify any clearing
and subword-clearing restarting automaton in the limit. In Section 5 we prove that the
task of finding a consistent clearing restarting automaton with the given set of positive
and negative samples is, in general, NP-hard, provided that we impose an upper bound
on the width of instructions. Without an upper bound the problem is trivially solvable
in a polynomial time. Conclusions are presented in Section 6. An implementation of the
presented algorithms can be found on the following website: http://code.google.com/
p/clearing-restarting-automata/.

2. Theoretical Background

In this section we follow the approach used in the book [2] by first introducing the
abstract reduction systems and then defining string-rewriting systems as their special case.
For brevity we omit the proofs.

Definition 2.1 ([2]). Let B be a set of objects and let → be a binary relation on B. Let
→−1 be the inverse of →, and let ◦ denote composition of relations.

(1) →0 is the identity relation.
(2) →n=→n−1 ◦ →.
(3) →∗=

⋃
n≥0 →n and →+=

⋃
n>0 →n.

(4) ↔=→ ∪ →−1.
(5) ↔n=↔n−1 ◦ ↔.
(6) ↔∗=

⋃
n≥0 ↔n and ↔+=

⋃
n>0 ↔n.

The relation→∗ is reflexive and transitive, and the relation↔∗ is an equivalence relation
on B. In fact, it is the smallest equivalence relation on B that contains →.

Definition 2.2 (Reduction systems [2]). Let B be a set of objects and let → be a binary
relation on B.

(1) The structure S = (B,→) is a reduction system and the relation→ is the reduction
relation.

(2) If x ∈ B and there is no y ∈ B such that x→ y, then x is irreducible; otherwise, x
is reducible. The set of all irreducible elements of B with respect to → is denoted
IRR(S).

Definition 2.3 ([2]). Let (B,→) be a reduction system. If x, y ∈ B and x →∗ y, then x
is an ancestor to y and y is a descendant of x. If x, y ∈ B and x↔∗ y, then x and y are
equivalent.

Definition 2.4 ([2]). Let (B,→) be a reduction system. For x, y ∈ B, if x↔∗ y and y is
irreducible, then y is a normal form for x.

http://code.google.com/p/clearing-restarting-automata/
http://code.google.com/p/clearing-restarting-automata/

4 PETER ČERNO

Suppose that for every object in B there is a unique normal form. Then for every x, y ∈ B,
x ↔∗ y if and only if the normal form of x is identically equal to the normal form of y.
Now we consider conditions that guarantee the existence of unique normal forms in the
abstract setting.

Definition 2.5 ([2]). Let S = (B,→) be a reduction system.

(1) S is confluent if for all w, x, y ∈ B, w →∗ x and w →∗ y imply that there exists a
z ∈ B, x→∗ z and y →∗ z.

(2) S is locally confluent if for all w, x, y ∈ B, w → x and w → y imply that there
exists a z ∈ B, x→∗ z and y →∗ z.

(3) S has the Church-Rosser property if for all x, y ∈ B, if x ↔∗ y, there exists a
z ∈ B, such that x→∗ z and y →∗ z.

If we say that a system “is Church-Rosser” we mean that it has the Church-Rosser
property.

Lemma 2.1 (Relating confluence and Church-Rosser property [2]). Let S = (B,→) be a
reduction system. Then S is Church-Rosser if and only if it is confluent.

Corollary 2.1 ([2]). Let S = (B,→) be a reduction system that is confluent. Then for
each x ∈ B, [x] has at most one normal form.

Definition 2.6 ([2]). Let (B,→) be a reduction system. The relation → is noetherian if
there is no infinite sequence x0, x1, . . . ∈ B such that for all i ≥ 0, xi → xi+1.

Lemma 2.2 ([2]). Let (B,→) be a reduction system. If → is noetherian, then for every
x ∈ B, [x] has a normal form.

In this paper the definition of reduction will always satisfy the properties (1) of being
acyclic and (2) being such that for every x, the set of descendants of x is finite. Under
these conditions the reduction is noetherian.

Definition 2.7 ([2]). If S = (B,→) is a reduction system such that S is confluent and →
is noetherian, then S is convergent.

Theorem 2.1 ([2]). Let S = (B,→) be a reduction system. Suppose that → is noetherian.
Then S is confluent if and only if S is locally confluent.

Now we move from the general setting of reduction systems to a more specific setting
of string-rewriting systems, where the set B will usually be a set of words. We use the
standard notation from the theory of automata and formal languages. As our reference
concerning this field we use the monograph [12].

An alphabet is a finite nonempty set. The elements of an alphabet Σ are called letters or
symbols. A word or string over an alphabet Σ is a finite sequence consisting of zero or more
letters of Σ, whereby the same letter may occur several times. The sequence of zero letters
is called the empty word, written λ. The set of all words (all nonempty words, respectively)
over an alphabet Σ is denoted by Σ∗ (Σ+, respectively). If x and y are words over Σ, then
so is their catenation (or concatenation) xy (or x · y), obtained by juxtaposition, that is,

CLEARING RESTARTING AUTOMATA AND GRAMMATICAL INFERENCE 5

writing x and y one after another. Catenation is an associative operation and the empty
word λ acts as an identity: wλ = λw = w holds for all words w. Because of the associativity,
we may use the notation wi in the usual way. By definition, w0 = λ.

Let u be a word in Σ∗, say u = a1 . . . an with ai ∈ Σ. We say that n is the length of u
and we write |u| = n. The sets of all words over Σ of length k, or at most k, are denoted
by Σk and Σ≤k, respectively. By |u|a, for a ∈ Σ, we denote the total number of occurrences
of the letter a in u. The reversal (mirror image) of u, denoted uR, is the word an . . . a1.
Finally a factorization of u is any sequence u1, ..., ut of words such that u = u1 · · ·ut.

For a pair u, v of words we define the following relations:

(1) u is a prefix of v, if there exists a word z such that v = uz,
(2) u is a suffix of v, if there exists a word z such that v = zu, and
(3) u is a factor (or subword) of v, if there exist words z and z′ such that v = zuz′.

Observe that u itself and λ are subwords, prefixes and suffixes of u. Other subwords,
prefixes and suffixes are called proper.

Subsets, finite or infinite, of Σ∗ are referred to as (formal) languages over Σ.
In formal language theory in general, there are two major types of mechanisms for

defining languages: acceptors and generators. Acceptors are usually defined in terms of
automata, which work as follows: they are given an input word and after some processing
they either accept or reject this input word. For instance, the so-called finite automata
consist of a finite set of internal states and a set of rules that govern the change of the
current state when reading a given input symbol. The finite automaton reads a given input
word from left to right starting in a specific starting state. After reading the input word it
accepts only if it ends in a so-called accepting state, otherwise it rejects. Finite automata
recognize the family of regular languages, which plays a central role in the whole formal
language theory.

Generators, on the other hand, usually generate the language using some finite set of
rules. Typically they are defined in terms of grammars. One of the most famous is the
classical Chomsky hierarchy of grammars (and corresponding languages), which consists of
phrase-structure, context-sensitive, context-free, and regular grammars (they are also called
type 0, type 1, type 2, and type 3 grammars, respectively).

In this paper we will be interested mainly in the so-called string-rewriting systems, which
are somehow on the edge between acceptors and generators.

Definition 2.8 (String-rewriting systems [2]). Let Σ be a finite alphabet.

(1) A string-rewriting system R on Σ is a subset of Σ∗ × Σ∗. Each element (l, r) of R
is a (rewrite) rule. The set {l ∈ Σ∗ | ∃r ∈ Σ∗ : (l, r) ∈ R} is called the domain
of R and is denoted dom(R). The set {r ∈ Σ∗ | ∃l ∈ Σ∗ : (l, r) ∈ R} is called the
range of R and is denoted rng(R). If R is finite, then the size of R is defined to be∑

(l,r)∈R(|l|+ |r|) and is denoted ‖R‖. The width of rule (l, r) ∈ R is |l|+ |r|.
(2) If R is a string-rewriting system on Σ, then the single-step reduction relation on

Σ∗, that is induced by R is defined as follows: for any u, v ∈ Σ∗, u →R v if and
only if there exists (l, r) ∈ R such that for some x, y ∈ Σ∗, u = xly and v = xry.

6 PETER ČERNO

The reduction relation on Σ∗ induced by R is the reflexive and transitive closure of
→R and is denoted by →∗R.

If R is a string-rewriting system on Σ, then (Σ∗,→R) is a reduction system. We
will frequently use R, as opposed to (Σ∗,→R), when a reduction system is considered.

(3) The Thue congruence generated by R is the relation ↔∗R.
(4) Two strings u, v ∈ Σ∗ are congruent modulo R if u ↔∗R v. For each w ∈ Σ∗, [w]R

is called the congruence class of w modulo R.

Lemma 2.3 ([2]). If R is a finite string-rewriting system on alphabet Σ, then the set IRR(R)
of irreducible strings with respect to R is a regular set; furthermore, a finite automaton for
IRR(R) can be constructed in a polynomial time from R.

Definition 2.9. Let R be a string-rewriting system on Σ. We say that R is:

(1) length-reducing, if for each rule (l, r) ∈ R : |l| > |r|.
(2) non-increasing, if for each rule (l, r) ∈ R : |l| ≥ |r|.
(3) weight-reducing, if there exists a so-called weight function f : Σ → N, such that

for each rule (l, r) ∈ R : f ∗(l) > f ∗(r), where f ∗ : Σ∗ → N is defined inductively as:
f ∗(λ) = 0, f ∗(xa) = f ∗(x) + f(a) for all x ∈ Σ∗, a ∈ Σ.

Note that the length-reducing string-rewriting systems represent only a special
case of the more general weight-reducing string-rewriting systems. To see this just
consider the following weight function: f(a) := 1 for all a ∈ Σ.

Also note that every weight-reducing string-rewriting system is noetherian.

In the literature string-rewriting systems are also known as semi-Thue systems. A string-
rewriting system R with the property that (l, r) ∈ R implies (r, l) ∈ R is also called a Thue
system. For a Thue system R, the single-step reduction relation →R is symmetric, so that
the reduction relation →∗R coincides with the Thue congruence ↔∗R.

The reason that the relation ↔∗R is called a “congruence” relation is that it is an equiv-
alence relation that is compatible with respect to concatenation of strings.

String-rewriting systems play a central part in the definition of the so called Church-
Rosser languages. A language L ⊆ Σ∗ is called a Church-Rosser language, if it consists of
those strings w ∈ Σ∗ that, placed in the context t1wt2 of certain auxiliary strings t1 and
t2, reduce to a certain “accepting” symbol with respect to a finite, length-reducing and
confluent string-rewriting system. Apart from the final symbol and the symbols occurring
in the contexts t1 and t2, also other non-terminal symbols are allowed in this definition.
Although the rewriting process with respect to the string-rewriting system considered is
inherently non-deterministic, the confluence of the system ensures that each reduction
sequence will lead to the same result.

The natural generalization of the above definition led to the development of the broad
concept of the so-called McNaughton families [1]. Let S be a class of string-rewriting
systems. Then S yields a family of languages L(S), which we call the McNaughton family
of languages specified by S, and which we define as follows. A language L ⊆ Σ∗ belongs
to L(S), if there exists a finite alphabet Γ strictly containing Σ, a finite string-rewriting
system R ∈ S on Γ, strings t1, t2 ∈ (Γ\Σ)∗∩ IRR(R) and a letter Y ∈ (Γ\Σ)∩ IRR(R) such

CLEARING RESTARTING AUTOMATA AND GRAMMATICAL INFERENCE 7

that, for all w ∈ Σ∗: w ∈ L ⇔ t1wt2 →∗R Y . Here the symbols of Σ are terminals, while
those of Γ\Σ can be seen as nonterminals. The language L is said to be specified by the four-
tuple (R, t1, t2, Y) and this fact will be expressed as L = L(R, t1, t2, Y). By placing various
restrictions on the finite string-rewriting systems used we will obtain different families of
languages. We refer the interested reader to the article [1] where these families are studied
in detail.

In this paper we follow a similar approach, but instead of using general strings t1, t2 ∈
(Γ\Σ)∗ we will use only the single letters t1 = ¢, t2 = $, called the sentinels, and instead of
the symbol Y we will use the empty word. In the following we introduce a concept called
context rewriting system which will serve us as a framework for clearing and subword-
clearing restarting automata and also other similar models.

Definition 2.10 ([5]). Let k be a positive integer. A k-context rewriting system (k-CRS
for short) is a system M = (Σ,Γ, I), where Σ is an input alphabet, Γ ⊇ Σ is a working
alphabet not containing the special symbols ¢ and $, called sentinels, and I is a finite set
of instructions of the form:

(x, z → t, y) ,

where x is called the left context, x ∈ LCk = Γk ∪{¢} ·Γ≤k−1, y is called the right context,
y ∈ RCk = Γk ∪ Γ≤k−1 · {$} and z → t is called the instruction-rule, z, t ∈ Γ∗. The width
of the instruction i = (x, z → t, y) is |i| = |xzty|.

A word w = uzv can be rewritten into utv (denoted as uzv `M utv) if and only if there
exists an instruction i = (x, z → t, y) ∈ I such that x is a suffix of ¢ · u and y is a prefix
of v · $. We often underline the rewritten part of the word w, and if the instruction i is

known we use `(i)
M instead of `M , i.e. uzv `(i)

M utv. The relation `M ⊆ Γ∗×Γ∗ is called the
rewriting relation.

Let l ∈ {λ, ¢} · Γ∗, and r ∈ Γ∗ · {λ, $}. A word w = uzv can be rewritten in the context
(l, r) into utv (denoted as uzv `M utv in the context (l, r)) if and only if there exists an
instruction i = (x, z → t, y) ∈ I, such that x is a suffix of l · u and y is a prefix of v · r.
Each definition that uses the rewriting relation `M can be relativized to any context (l, r).
Unless told otherwise, we will use the standard context (l, r) = (¢, $).

The language associated with M is defined as L(M) = {w ∈ Σ∗ | w `∗M λ}, where `∗M
is the reflexive and transitive closure of `M . Note that, by definition, λ ∈ L(M).

The characteristic language associated with M is defined as LC(M) = {w ∈ Γ∗ | w `∗M
λ}. Similarly, by definition, λ ∈ LC(M). Obviously, L(M) = LC(M) ∩ Σ∗.

Remark 2.1. We also include a special case k = 0 in Definition 2.10. In this case we
define LC0 = RC0 = {λ}, and the rest of the definition remains the same.

Remark 2.2. We also extend Definition 2.10 with the following set notation: if X ⊆ LCk
and Y ⊆ RCk are finite nonempty sets, and Z is a finite nonempty set of instruction-rules
of the form z → t, z, t ∈ Γ∗, then we define (X,Z, Y) = {(x, z → t, y) | x ∈ X, (z →
t) ∈ Z, y ∈ Y }. However, if X = {x}, then instead of writing ({x}, Z, Y) we write only
(x, Z, Y) for short. The same holds for the sets Z and Y , too.

All k-CRS’s have the following basic property.

8 PETER ČERNO

Lemma 2.4 (Error Preserving Property, [16]). Let M = (Σ,Γ, I) be a k-CRS and u, v be
two words over Γ. If u `∗M v and u 6∈ L(M), then v 6∈ L(M).

Naturally, if we increase the length of contexts used in instructions of a CRS, we do not
decrease their expressiveness.

Theorem 2.2 (Context extension theorem [5]). For each k-CRS M = (Σ,Γ, I) there exists
a (k + 1)-CRSM ′ = (Σ,Γ, I ′) such that, for each w,w′ ∈ Γ∗, it holds w `M w′ ⇔ w `M ′ w′.
Moreover, both M and M ′ use the same set of instruction-rules:

{z → t | (x, z → t, y) ∈ I} = {z′ → t′ | (x′, z′ → t′, y′) ∈ I ′} .

Remark 2.3. Based on the above result, in Definition 2.10 we can allow contexts of any
length up to k, i.e. we can use:

LC≤k = Γ≤k ∪ ¢ · Γ≤k−1 =
⋃
i≤k LCi instead of LCk and

RC≤k = Γ≤k ∪ Γ≤k−1 · $ =
⋃
i≤k RCi instead of RCk.

It is clear from Definition 2.10 that context rewriting systems are very similar to string-
rewriting systems. Suppose that M = (Σ,Γ, I) is a k-CRS and Y /∈ Γ. Let us define a
string-rewriting system R(M) = {(xzy, xty) | (x, z → t, y) ∈ I} ∪ {(¢$, Y)}. Apparently
L(M) = L(R(M), ¢, $, Y). This basically allows us to extend most of the terminology
concerning string-rewriting systems also to our context rewriting systems. We say that a
k-CRS M is confluent (locally confluent, Church-Rosser, respectively) if the corresponding
string-rewriting system R(M) is confluent (locally confluent, Church-Rosser, respectively).
Analogously, we say that a k-CRS M is length-reducing (non-increasing, weight-reducing,
noetherian, respectively) if the reduction relation →R of the string-rewriting system R =
R(M) is length-reducing (non-increasing, weight-reducing, noetherian, respectively).

It is easy to see that general k-CRS can simulate any type 0 grammar (according to the
Chomsky hierarchy [12]). Hence we will not study k-CRS in their general form, since they
are too powerful (they can represent all recursively enumerable languages). Instead, we
will always put some restrictions on the instruction-rules and then study such restricted
models. In particular, we will consider only length-reducing k-CRS in this paper. The first
model we introduce is called clearing restarting automaton which is a k-CRS such that
Σ = Γ and all its instruction-rules are of the form z → λ, where z ∈ Σ+.

Definition 2.11 ([5]). Let k be a nonnegative integer. A k-clearing restarting automaton
(k-cl-RA for short) is a k-CRS M = (Σ,Σ, I) (or M = (Σ, I), for short), where for each
instruction i = (x, z → t, y) ∈ I: z ∈ Σ+ and t = λ. Since t is always the empty word, we
use the notation i = (x, z, y).

Remark 2.4. Speaking about a k-cl-RA M we use “automata terminology,” e.g. we say
that M accepts a word w if w ∈ L(M). By definition, each k-cl-RA accepts λ. If we say that
a k-cl-RA M recognizes (or accepts) a language L, we always mean that L(M) = L∪{λ}.

This implicit acceptance of the empty word can be avoided by a slight modification of
the definition of clearing restarting automata, or even context rewriting systems, but in
principle, we would not get a more powerful model.

CLEARING RESTARTING AUTOMATA AND GRAMMATICAL INFERENCE 9

Example 2.1. Let M = (Σ, I) be a 1-cl-RA with Σ = {a, b} and I consisting of the
following two instructions:

(1) (a, ab, b),
(2) (¢, ab, $).

Then we have aaaabbbb `(1)
M aaabbb `(1)

M aabb `(1)
M ab `(2)

M λ which means that aaaabbbb `∗M
λ. So the word aaaabbbb is accepted by M . It is easy to see that M recognizes the language
L(M) = {anbn | n ≥ 0}.

Clearing restarting automata are studied in [5]. We only mention that they can rec-
ognize all regular languages, some context-free languages and even some non-context-free
languages. However, there are some context-free languages that are outside the class of
languages accepted by clearing restarting automata.

Theorem 2.3 ([5]). The language L = {ancbn | n ≥ 0} is not recognized by any k-cl-RA.

The above limitation led to the development of the extended versions of clearing restart-
ing automata. In [5] there were introduced two extended versions – the so-called ∆-clearing
restarting automata and ∆∗-clearing restarting automata. Both of them can use a single
auxiliary symbol ∆ only. ∆-clearing restarting automata can leave a mark – a symbol ∆
– at the place of deleting besides rewriting into the empty word λ. ∆∗-clearing restarting
automata can rewrite a subword w into ∆k where k is bounded from above by the length
of w. It was shown in [5] that ∆∗-clearing restarting automata are powerful enough to
recognize all context-free languages. This result was later extended in [6, 7] to hold also
for the more restricted ∆-clearing restarting automata.

Here we propose yet another model, the so-called subword-clearing restarting automata,
which will be useful later in some grammatical inference scenarios.

Definition 2.12. Let k be a nonnegative integer. A k-subword-clearing restarting automa-
ton (k-scl-RA for short) is a k-CRS M = (Σ,Σ, I), where for each instruction i = (x, z →
t, y) ∈ I: z ∈ Σ+ and t is a proper subword of z.

It can be easily shown that L = {ancbn | n ≥ 0} can be recognized by a subword-clearing
restarting automaton. However, not all context-free languages can be recognized by these
automata. Consider for instance the language {wwR | w ∈ Σ∗}.

As we already stated, we will be mostly interested in grammatical inference for clearing
restarting automata. Therefore, in the following section we introduce the general setting
for learning such models.

3. General Setting

The main source for this section is [9], which provides a nice and comprehensive survey
of the techniques and results concerning grammatical inference. In the following we fix the
alphabet Σ.

There are some problems whose tractability is of great importance in grammatical in-
ference. Let L be a language class, G be a class of representation of objects for L and
L : G → L be the naming function, i.e. L(G) is the language denoted, accepted, recognized

10 PETER ČERNO

or represented by G ∈ G. We can imagine G to be, for instance, the class of all clearing
restarting automata, or the class of all subword-clearing restarting automata.

The first problem concerns the fact whether the following membership problem is decid-
able: given w ∈ Σ∗ and G ∈ G, is w ∈ L(G)? For instance, for context-free grammars the
membership problem is decidable in a polynomial time. In [5] we have proved that every
1-cl-RA can be transformed in a polynomial time to an equivalent context-free grammar.
Therefore, the membership problem for 0-cl-RA and 1-cl-RA is also decidable in a poly-
nomial time. For other models it is an open problem. Nevertheless, every length-reducing
(weight-reducing, respectively) context rewriting system M can be easily transformed into
an equivalent growing context-sensitive grammar. This follows easily from the fact that
the corresponding string-rewriting system R(M) is length-reducing (weight-reducing, re-
spectively). It is a well-known fact that the membership problem for any given fixed grow-
ing context-sensitive grammar is decidable in a polynomial time [8]. However, it can be
also shown that the membership problem is NP-complete if the growing context-sensitive
grammar is a part of the input [3]. If we restrict ourselves only to confluent length-reducing
context rewriting systems, then the membership problem becomes trivially decidable in a
polynomial time, because it does not matter which particular instruction we use in any
step of the computation. All reduction paths starting from the same given input word w
eventually end (after at most |w| many steps) at the same irreducible word.

The second problem is the equivalence problem: given G,G′ ∈ G, do we have L(G) =
L(G′)? For context-free grammars, the equivalence problem is undecidable. It is decidable
for finite automata, but the complexity depends on whether the automata are deterministic
or not. It is an open problem whether the equivalence problem is decidable for clearing
restarting automata.

In machine learning, however, we encounter also more difficult problems with no clear
or established notion. How do we know that the method or algorithm in use is able to
infer a reasonable model for our target language? The trick we will use is to consider that
the problem we are really interested in is not about discovering the model that would
explain the data, but about identifying the hidden target model. An alternative formalism
for convergence may be that there is no target: the idea is just to induce a grammar
from the data in such a way as to minimize some statistical criterion. But again, whether
explicitly or implicitly, there is somewhere, hidden, an ideal solution that we can call a
target. This discussion leads us to an important notion of the so-called identification in the
limit. We will not delve into the technical details of this notion, but only sketch informally
the basic idea.

A presentation φ is an enumeration of elements, which represents a source of information
about some specific language L ∈ L. An example of a presentation can be, for instance,
the enumeration of all positive and negative samples of L (in some order). A learning
algorithm A is a program that takes the first n elements of a presentation (denoted as
φn) and returns some object G ∈ G. We say that G is identifiable in the limit if there
exists a learning algorithm A such that for any target object G ∈ G and any presentation
φ of L(G) there exists a rank n such that for all m ≥ n, A(φm) does not change and
L(A(φm)) = L(G). Notice that the above definition does not force us to learn the target

CLEARING RESTARTING AUTOMATA AND GRAMMATICAL INFERENCE 11

object G, but only to learn an object equivalent to the target. However, there are some
complexity issues with the identification in limit, since it neither tells us how we know
when we have found what we are looking for nor how long it is going to take.

Another methodology in machine learning is the so-called active learning. In the previous
formalism the presentations were basically uncontrolled by the learner. The most we could
hope for was a correctly labeled data and that no essential piece of data was missing in the
limit. There are nevertheless cases where the ability to control the data we receive further
is at least desirable.

4. Learning Schema

In this section we propose a learning schema for clearing (subword-clearing) restarting
automata and other similar models and show that it is possible to identify any hidden target
model in the limit in this way. It is rather a schema than a precise algorithm, because some
details are not completely specified and are left to be adapted according to the specific
situation or, for instance, to other different models. However, the proofs will be based
only on the weak assumptions of the general schema, and thus will work also for all its
possible instances. In the following, the term automaton refers primarily to the clearing or
subword-clearing restarting automaton, but in general also to any other similar noetherian
model obtained from context rewriting systems by restricting its instruction-rules.

The problem we are interested in can be best described as follows. Suppose that we have
two finite sets of words over the alphabet Σ: the set of positive samples S+ and the set
of negative samples S−. Our goal is to find an automaton M , such that: S+ ⊆ L(M) and
S− ∩ L(M) = ∅. We may assume that S+ ∩ S− = ∅ and λ ∈ S+.

If we have no other restrictions, then the task becomes trivial even for clearing restarting
automata. Just consider the instructions I = {(¢, w, $) | w ∈ S+, w 6= λ}. It follows
trivially, that in this case L(M) = S+, where M = (Σ, I). Therefore, it is reasonable
to include some other restrictions. There are many options available: we can impose an
upper bound on the number of instructions, or we can restrict the maximal width of
instructions etc. In the following, we will consider only such requirements, that make the
task somehow non-trivial and at the same time allow only finite many automata satisfying
these requirements. From this point of view, it is not very reasonable to control only the
maximal number of instructions, since there is an infinite number of different automata
having just one single instruction. Moreover, it is useless to consider too long instructions,
since they might not even be applicable to any given positive or negative sample.

Therefore, we impose the maximal allowed width l ≥ 1 and also the specific length k ≥ 0
of contexts for the instructions of the resulting automaton. Note, that if we can effectively
enumerate all automata satisfying these restrictions then the identification in the limit
from positive and negative samples can be easily deduced from the classical positive result
of Gold on the identification in the limit of the class of primitive recursive languages (see
e.g. [14] for a nice survey on learning indexed families of recursive languages). Nevertheless,
we propose Algorithm 1, which, under certain conditions, works in a polynomial time.

12 PETER ČERNO

Algorithm 1: Learning schema Infer(S+, S−, l, k)

Input : The set of positive S+ and negative S− samples over Σ, S+ ∩ S− = ∅,
λ ∈ S+. The maximal width of instructions l ≥ 1. The length of contexts of
instructions k ≥ 0.

Output: An automaton consistent with (S+, S−), or Fail.
1 Φ← Assumptions(S+, l, k);

2 while ∃w− ∈ S−, w+ ∈ S+, φ ∈ Φ : w− `(φ) w+ do
3 Φ← Φ \ {φ};
4 Φ← Simplify(Φ);
5 if Consistent(Φ, S+, S−) then
6 return Automaton with the set of instructions Φ;

7 Fail;

Algorithm 1 deserves some explanation. First, the function Assumptions(S+, l, k) returns
some set of instruction candidates. Let us assume, for a moment, that this set already con-
tains all instructions of the hidden target automaton. Then in Cycle 2 we gradually remove
all instructions that allow reduction from some negative sample to some positive sample,
i.e. they violate the error preserving property (Lemma 2.4). In Step 4 we remove redundant
instructions and in Step 5 we check if the remaining set of instructions is consistent with
the given input set of positive and negative samples. In other words, we check if (1) for
all w+ ∈ S+ : w+ `∗Φ λ and (2) for all w− ∈ S− : w− 6`∗Φ λ. The condition (1) always
holds, if we assume that in Step 1 we already obtained all instructions of the hidden target
automaton. However, the condition (2) may fail. It may happen, that for some w− ∈ S−
and w+ ∈ S+ we get w− `∗Φ w+. In other words, there may exist a sequence of words and
instructions from Φ such that: w− = w1 `(φ1) w2 `(φ2) w3 `(φ3) . . . wn `(φn) wn+1 = w+,
where n ≥ 2. One of the instructions φ1, . . . , φn definitely does not belong to the hidden
target automaton, but it is not clear which one. The success of the above algorithm, there-
fore, depends both on the initial assumptions obtained in Step 1, and on the given set
of positive and negative samples. Nevertheless, we will show that if we have a reasonable
implementation of the function Assumptions, then there is always a set of positive samples
S+

0 and a set of negative samples S−0 such that the above schema converges to a correct
solution for all sets of positive samples S+ ⊇ S+

0 and negative samples S− ⊇ S−0 . This also
implies that we can infer a correct solution in the limit from any reasonable presentation
of labeled samples, where the term reasonable means that the presentation will at some
point cover all the samples from S+

0 and S−0 .
The time complexity of Algorithm 1 depends both on the time complexity of the function

Assumptions in Step 1 and on the time complexity of the simplification function and the
consistency check in Steps 4 and 5. There are correct implementations of the function
Assumptions (both for clearing and subword-clearing restarting automata) that run in a
polynomial time. In fact, they run in a linear time, if the maximal width of instructions l
and the length of contexts k is considered to be a fixed constant. If the function Assumptions

CLEARING RESTARTING AUTOMATA AND GRAMMATICAL INFERENCE 13

runs in a polynomial time then also the size of the set Φ is polynomial (with respect to the
size of the input) and therefore also Cycle 2 runs in a polynomial time. It is also possible
to implement the function Simplify so that it runs in a linear time with respect to the size
of Φ, provided that both the maximal width of instructions l and the length of contexts k
are considered to be fixed constants.

Unfortunately, it is an open problem, whether the consistency check can be done in a
polynomial time (both for clearing and subword-clearing restarting automata). But from
the point of view of the identification in the limit, we can completely omit both the simpli-
fication step and the consistency check, because they do not affect the correctness of the
inference algorithm. In the limit, the algorithm always returns a correct solution.

In the following Definition 4.1 we define precisely what we mean by the term correct
implementation of the function Assumptions.

Definition 4.1. We call the function Assumptions correct with respect to the model of
clearing restarting automata, if the following conditions hold:

(1) For every set S+ ⊆ Σ∗ the set of instructions Φ = Assumptions(S+, l, k) is finite.
Moreover, for every instruction (x, z, y) ∈ Φ : x ∈ LCk, y ∈ RCk, |z| > 0, |xzy| ≤ l.

(2) For every k-cl-RA M = (Σ, I), with the maximal width of instructions bounded
from above by l ≥ 1, there exists an equivalent k-cl-RA N = (Σ, J), J ⊆ I, and
a finite set S+

0 ⊆ L(N), such that for every S+ ⊇ S+
0 the following holds: J ⊆

Assumptions(S+, l, k).

The reason why we consider an equivalent automaton N in the second condition and do
not state the above definition directly by using M is because M could contain also some
useless instructions, i.e. instructions that M would never use in any accepting computa-
tion. We cannot reasonably expect from the function Assumptions to give us these useless
instructions. Without loss of generality, we may assume that N = (Σ, J) is a minimal
k-cl-RA (with respect to |J |) equivalent with M = (Σ, I), such that J ⊆ I.

It can easily be seen that similar definitions can be formulated also for other models, e.g.
subword-clearing restarting automata etc. In the following we will show some examples of
correct functions Assumptions for clearing restarting automata.

Example 4.1. The most trivial implementation of the function Assumptions is to return
all possible instructions with the width bounded from above by l. It follows trivially that such
a function is correct. However, the number of such instructions is in general exponential
with respect to l, therefore such a function would be of little interest in real applications.

Example 4.2. Here we define several functions Assumptions that are all correct with respect
to Definition 4.1.

(1) Assumptionscl1(S+, l, k) := {(x, z, y) | x ∈ LCk, y ∈ RCk, |z| > 0, |xzy| ≤ l and
∃w1, w2 ∈ S+ : xzy is a subword of ¢w1$ and xy is a subword of ¢w2$}.

The basic intuition behind this function is the assumption that if both patterns
xzy and xy occur in the set of positive samples, then it is somehow justified to
clear the word z based on the context (x, y). Note that the more we increase the
length of contexts k the smaller (or equal) the number of such patterns we will

14 PETER ČERNO

find. The contexts serve here as a safety cushion against the inference of incorrect
instructions.

(2) Assumptionscl2(S+, l, k) := {(x, z, y) | x ∈ LCk, y ∈ RCk, |z| > 0, |xzy| ≤ l and
∃w1, w2 ∈ S+, |w1| > |w2| : xzy is a subword of ¢w1$ and xy is a subword of ¢w2$}.

This is the same situation as before, except that in addition we require that the
patterns xzy and xy occur in different positive samples.

(3) Assumptionscl3(S+, l, k) := {(x, z, y) | x ∈ LCk, y ∈ RCk, |z| > 0, |xzy| ≤ l and
∃w1, w2 ∈ S+ : w1 = αzβ, w2 = αβ, x is a suffix of ¢α and y is a prefix of β$}.

This condition is even more restrictive than the previous one. It basically says
that the instruction (x, z, y) is justified only in the case when there are positive
samples w1, w2 ∈ S+ such that we can obtain w2 from w1 by using this instruction.

All these functions can be computed in a polynomial time with respect to size(S+) =∑
w∈S+ |w|. In fact, if l and k are fixed constants, then these functions can be computed in

a linear time, since we need to consider only subwords of length bounded from above by
the constant l.

Algorithm 2: Implementation of Assumptionscl1(S+, l, k)

Input : The set of positive S+ samples over Σ, λ ∈ S+. The maximal width of
instructions l ≥ 1. The length of contexts of instructions k ≥ 0.

Output: The set of instructions Φ.
1 Φ← ∅;
2 SW+ ← ∅;
3 foreach w+ ∈ S+ do
4 Add all subwords α of ¢w+$, such that |α| ≤ l, into SW+;

5 foreach w+ ∈ S+ and subword α of ¢w+$, such that |α| ≤ l do
6 if α = xzy, where x ∈ LCk, y ∈ RCk, |z| > 0, xy ∈ SW+ then
7 Φ← Φ ∪ {(x, z, y)};

8 return Φ;

Algorithm 2 shows one possible implementation of the function Assumptionscl1. It can
be easily verified that both Cycles 3 and 5 run in a linear time, provided that l and k are
fixed constants. Apparently, the set SW+ itself can be implemented in a linear time.

The function Assumptionscl2 can be implemented in a very similar way. We only need
to somehow memorize the origin of all particular subwords. This can be done by using a
map (instead of a set) that maps every subword α to a list of words Lα such that α is a
subword of a delimited positive sample ¢w+$ if and only if w+ ∈ Lα.

Algorithm 3 shows a possible implementation of the function Assumptionscl3. Apparently,
Cycle 3 runs in a linear time, provided that l and k are fixed constants.

In the following we prove the correctness of all functions Assumptions from Exam-
ple 4.2 with respect to Definition 4.1. It is easy to see, that Assumptionscl3(S+, k, l) ⊆
Assumptionscl2(S+, k, l) ⊆ Assumptionscl1(S+, k, l). Therefore, we only need to prove the

CLEARING RESTARTING AUTOMATA AND GRAMMATICAL INFERENCE 15

Algorithm 3: Implementation of Assumptionscl3(S+, l, k)

Input : The set of positive S+ samples over Σ, λ ∈ S+. The maximal width of
instructions l ≥ 1. The length of contexts of instructions k ≥ 0.

Output: The set of instructions Φ.
1 Φ← ∅;
2 DS+ ← ¢ · S+ · $ = {¢w+$ | w+ ∈ S+};
3 foreach w+ ∈ S+ and ω, such that ¢w+$ = αωβ, |ω| ≤ l do
4 if ω = xzy, where x ∈ LCk, y ∈ RCk, |z| > 0, and αxyβ ∈ DS+ then
5 Φ← Φ ∪ {(x, z, y)};

6 return Φ;

correctness for the most restrictive function Assumptionscl3. The correctness of the other
two functions will follow immediately. Let M = (Σ, I) be any k-cl-RA with instructions
of width at most l ≥ 1, and let N = (Σ, J) be any minimal k-cl-RA with respect to |J |
equivalent with M such that J ⊆ I. The minimality of N implies that for every instruction
φ ∈ J there is a word wφ ∈ L(N) such that the instruction φ is used in every accepting
computation wφ `∗N λ. Without the loss of generality we may assume that the instruction
φ must be used in the first step of an accepting computation for the word word wφ. (It
does not mean that φ is the only applicable instruction. There may also be some other
instructions applicable to wφ, but they will definitely not lead to any accepting computa-
tion). Let us fix for every φ ∈ J some accepting computation wφ `(φ) w′φ `∗N λ. Now define

S+
0 :=

⋃
φ∈J{wφ, w′φ}. Apparently S+

0 ⊆ L(N). Moreover, we can easily see that S+
0 con-

tains enough words to justify all instructions φ ∈ J , i.e. J ⊆ Assumptionscl3(S+
0 , l, k). The

correctness follows easily from the monotonicity of the function Assumptionscl3 with respect
to S+ and the set inclusion relation. In general, size(S+

0) is not polynomially bounded by
size(N), i.e. it may happen that for some instructions φ ∈ J the length of the word wφ is
at least exponentially large with respect to the size of N , where the size of N = (Σ, J) is
the sum of widths of all its instructions, size(N) =

∑
i∈J |i|. (See Example 4.3).

The above examples could also be easily extended to the model of k-scl-RA – instead
of patterns xzy and xy we would consider the patterns xzy and xty, where t is a proper
subword of z. We would basically get the same results as in the case of k-cl-RA.

Example 4.3. In this example we will construct a sequence of 2-clearing restarting au-
tomata: M0 = (Σ0, I0),M1 = (Σ1, I1),M2 = (Σ2, I2), . . ., such that for all i ∈ {0, 1, 2, . . .} :
Σi = {a0, a1, . . . , ai}, and Ii ⊆ Ii+1. We will prove that for each i ∈ {0, 1, 2, . . .} the size
of the automaton Mi is polynomial with respect to i, and that there exists an instruction
φi ∈ Ii such that the smallest word wi ∈ L(Mi), for which the instruction φi is applicable,
has an exponential length with respect to i, and thus also with respect to the size of the
automaton Mi. In constructing these automata we will use a technique of sending signals
from one sentinel to the other (and vice versa), which was widely applied in [5].

16 PETER ČERNO

The automaton M0 = (Σ0, I0) accepts only one word: a0a0a0a0, where Σ0 = {a0} and
I0 = {(¢, a0a0a0a0, $)}.

The best way, how to describe other automata in the sequence is to show how they work
in the reverse direction. The automaton M1 just sends a signal a1 from the left sentinel ¢
to the right sentinel $ starting from the word a0a0a0a0, as follows:

¢λ$ a ¢a0a0a0a0$ a ¢a1a0a0a0a0$ a ¢a1a0a1a0a0a0$ a ¢a1a0a1a0a1a0a0$ a
¢a1a0a1a0a1a0a1a0$ a ¢a1a0a1a0a1a0a1a0a1$.

This can be easily achieved by the following set of instructions: I1 = {(¢, a0a0a0a0, $),
(¢, a1, a0a0), (a1a0, a1, a0a0), (a1a0, a1, a0$), (a1a0, a1, $)}. It can be easily verified that the
only words accepted by the automaton M1 are the words shown in the above accepting com-
putation. It is because if you proceed in the reverse direction, starting from the empty word,
then you basically cannot get anything else than what we have in the above computation.
This property will also hold for all subsequent automata in the sequence.

The automaton M2 = (Σ2, I2) is similar to M1, except that this time it will send a sig-
nal a2 from the right sentinel $ to the left sentinel ¢. The reason why we want to send a
signal in a reverse direction is that we want to preserve the nice property of having only
one possible accepting computation. The automaton M2 works as follows (it starts exactly
where the previous automaton M1 has ended):

¢a1a0a1a0a1a0a1a0a1$ a ¢a1a0a1a0a1a0a1a0a1a2$ a
¢a1a0a1a0a1a0a1a0a2a1a2$ a ¢a1a0a1a0a1a0a1a2a0a2a1a2$ a
¢a1a0a1a0a1a0a2a1a2a0a2a1a2$ a ¢a1a0a1a0a1a2a0a2a1a2a0a2a1a2$ a
. . .
¢a2a1a2a0a2a1a2a0a2a1a2a0a2a1a2a0a2a1a2$

To enable this kind of computation we only need to add the following instructions:
(◦◦, a2, $), (◦◦, a2, ◦a2), (¢◦, a2, ◦a2), and (¢, a2, ◦a2), where ◦ is a placeholder for any of the
symbols from {a0, a1} (of course, different occurrences of the placeholder ◦ can substituted
by different symbols). As in the previous case, we have only one possible computation.

Now we can generalize the above construction also to other automata in the sequence.
The automaton Mi, for i > 0, is obtained from the automaton Mi−1 as follows:

(1) If i is odd then the automaton Mi will send a signal from the left sentinel ¢ to
the right sentinel $, thus, in order to obtain Ii, we only need to add the following
instructions to Ii−1: (¢, ai, ◦◦), (ai◦, ai, ◦◦), (ai◦, ai, ◦$), and (ai◦, ai, $), where ◦ is
a placeholder for any of the symbols from {a0, a1, . . . , ai−1}.

(2) If i is even then the automaton Mi will send a signal from the right sentinel $ to
the left sentinel ¢, thus, in order to obtain Ii, we only need to add the following
instructions to Ii−1: (◦◦, ai, $), (◦◦, ai, ◦ai), (¢◦, ai, ◦ai), and (¢, ai, ◦ai), where ◦ is
a placeholder for any of the symbols from {a0, a1, . . . , ai−1}.

CLEARING RESTARTING AUTOMATA AND GRAMMATICAL INFERENCE 17

First observe that the size of the Mi is polynomial with respect to i. This can be easily
proved inductively by using a simple observation that we only add O(i2) new instructions
to Ii−1 when constructing Ii.

Now consider any i > 0. If i is even then let us take the instruction φi = (¢, ai, ai−1ai−2).
This instruction can be applied only after the previous signal ai−1 has arrived to the left
sentinel ¢. In other words, it can be applied only to the longest word in L(Mi−1). However,
the length of the longest word in L(Mj) is exponential with respect to j, for all j ≥ 0, since
every time the signal traverses from one end to the other, the length of the resulting word
more than doubles.

In the case when i is odd we can take the instruction φi = (ai−2ai−1, ai, $), which can be
applied only after the previous signal ai−1 has arrived to the right sentinel $.

The above example clearly shows that sometimes we need to consider an exponentially
large set (i.e. having an exponentially large binary representation) of positive samples S+

in order to obtain all instructions of the hidden target automaton. In the construction itself
we have used 2-clearing restarting automata as a witness of this fact. This naturally rises
an open question, whether this can also happen to 1-clearing restarting automata.

Finally, the following Algorithm 4 shows a possible implementation of the function
Simplify both for clearing and subword-clearing restarting automata.

Algorithm 4: Implementation of Simplify(Φ)

Input : The set of instructions Φ.
Output: The simplified set of instructions Ψ.

1 Ψ← ∅;
2 foreach φ = (x, z → t, y) ∈ Φ in some fixed order do
3 if z 6`∗Ψ t in the context (x, y) then
4 Ψ← Ψ ∪ {(x, z → t, y)};

5 return Ψ;

In Definition 2.10 we have defined the the rewriting relation ` only with respect to the
context (¢, $), but it can be easily extended to a general context (x, y), where x ∈ LCk,
y ∈ RCk. The statement “z `∗Ψ t in the context (x, y)” then basically says that the
instruction φ can be simulated by using some other instructions from Ψ, and therefore φ
is redundant. We enumerate the instructions from Φ in some fixed order that guarantees
that the later instructions in this order cannot simulate any former instruction. If we fix
the maximal width of instructions l and the length of contexts k then the condition in Step
3 can be verified in the O(1) time, and the whole algorithm runs in O(|Φ|) time.

In the following Theorem 4.1 we state our first positive result concerning the grammatical
inference of clearing restarting automata. This theorem and its proof can be easily extended
to subword-clearing restarting automata and other similar models.

Theorem 4.1. Let a function Assumptions be correct with respect to k-cl-RA. Then, for
every k-cl-RA M = (Σ, I), with instructions of width at most l ≥ 1, there exists a finite set

18 PETER ČERNO

of positive samples S+
0 and a finite set of negative samples S−0 consistent with M , such that

for every finite set of positive samples S+ ⊇ S+
0 and every finite set of negative samples

S− ⊇ S−0 consistent with M the algorithm Infer(S+, S−, l, k) will succeed and return an
equivalent automaton k-cl-RA N = (Σ, J) such that L(N) = L(M).

Proof. Let M = (Σ, I) be any k-cl-RA with instructions of width at most l ≥ 1. According
to Definition4.1, there exist J ⊆ I and S+

0 ⊆ L(M) such that k-cl-RA N = (Σ, J) is
equivalent to M and for each S+ ⊇ S+

0 it holds J ⊆ Assumptions(S+, l, k). We will show how
to construct a finite set of negative samples S−0 such that the algorithm Infer(S+, S−, l, k)
will always succeed and return an automaton equivalent to N for every finite set of positive
and negative samples S+ ⊇ S+

0 , S− ⊇ S−0 consistent with N . Let Φ denote the set of all
instructions (x, z, y) such that x ∈ LCk, y ∈ RCk, |z| > 0, |xzy| ≤ l. We say that the
instruction φ ∈ Φ is bad if there exist w− /∈ L(N), w+ ∈ L(N) : w− `(φ) w+. We say that
the instruction φ is disabled by (S+

0 , S
−
0) if ∃w− ∈ S−0 , w+ ∈ S+

0 : w− `(φ) w+. Now consider
the following Algorithm 5:

Algorithm 5: Extension of Samples (S+
0 , S

−
0)

Input : The set of positive and negative samples (S+
0 , S

−
0).

Output: The set of extended positive and negative samples (S+
0 , S

−
0).

S−0 ← ∅;
while ∃ bad instruction φ ∈ Φ such that φ is not disabled by (S+

0 , S
−
0) do

Let w− /∈ L(N), w+ ∈ L(N) : w− `(φ) w+;
S+

0 ← S+
0 ∪ {w+};

S−0 ← S−0 ∪ {w−};

Every added pair w+, w− effectively disables at least one instruction from Φ, so the
function is definitely finite. Now consider any finite set of positive samples S+ ⊇ S+

0 and
any finite set of negative samples S− ⊇ S−0 consistent with N . If we run the algorithm
Infer(S+, S−, l, k), then in Step 1 we obtain some set of instructions covering all instructions
from J . Note that no instruction from J is bad. In the following cycle the algorithm
gradually removes all bad instructions. After this cycle we are left with correct instructions
including all instructions from J , so the resulting automaton is apparently equivalent to
the automaton N , and therefore also to the original target automaton M . �

Note that we do not have to disable all bad instructions having the width bounded
from above by l. We could restrict ourselves only to the possibly smaller finite set of
instructions Φ := Assumptions(L(M), l, k), because basically these are the only instructions
we may eventually encounter inside the algorithm Infer(S+, S−, l, k), provided that S+ ⊆
L(M). However, this modification does not improve our proof in any way, since the set
Assumptions(L(M), l, k) may still be exponentially large with respect to the size of the
automaton M . The best we can hope for is that in specific problem instances some smaller
sets S+, S− will be sufficient. For instance, the set Assumptions(L(M), l, k) might be large,
but it may also contain only a small number of bad instructions.

CLEARING RESTARTING AUTOMATA AND GRAMMATICAL INFERENCE 19

Example 4.4. Consider the 1-cl-RA M = ({a, b}, {(¢, ab, $), (a, ab, b)}) recognizing the
language L(M) = {anbn | n ≥ 0} (see Example 2.1). Let us take S+ = {λ, ab, aabb}.
First, we would like to estimate the set of instructions Φ = Assumptionscl1(S+, l, k) for
k = 1 and l = 6 (see Example 4.2 for definition). The set of all subwords of the delimited
positive samples ¢S+$ is: SW+ = {λ, ¢, a, b, $, ¢$, ¢a, aa, ab, bb, b$, ¢aa, ¢ab, aab,
abb, ab$, bb$, ¢ab$, ¢aab, aabb, abb$, ¢aabb, aabb$, ¢aabb$}. An instruction (x, z, y), where
x ∈ LC1 = {a, b, ¢}, y ∈ RC1 = {a, b, $}, |z| > 0 and |xzy| ≤ l, is justified, according
to the definition of Assumptionscl1, if and only if both xzy, xy ∈ SW+. Thus, only the
following reductions are justified: ¢aa ` ¢a, aab ` ab, abb ` ab, bb$ ` b$, ¢ab$ ` ¢$,
aabb ` ab, ¢aabb$ ` ¢$. Therefore Assumptionscl1(S+, l, k) = {(¢, a, a), (a, a, b), (a, b, b),
(b, b, $), (¢, ab, $), (a, ab, b), (¢, aabb, $)}. Apparently, all instructions of M are included.
However, the following instructions are bad: (¢, a, a), (a, a, b), (a, b, b), (b, b, $). We can
disable them easily by taking S− = {aab, abb}. We do not need to add anything else to
S+, so the function Infer(S+, S−, l, k) will correctly output the automaton N = ({a, b},
{(¢, ab, $), (a, ab, b)}) (after the simplification), which is equivalent to the hidden target
automaton M . The function Simplify removes the instruction (¢, aabb, $) from the inferred
automaton as it can be simulated by the remaining two instructions.

We should emphasize, that the set S− = {aab, abb} used in Example 4.4 is not big
enough to guarantee the properties expressed in Theorem 4.1. What we mean here is that
if we take, for instance, a bigger set of positive samples, such as S+ = {λ, ab, aabb, aaabbb}
then the function Assumptionscl1(S+, l, k) would give us a set of instructions containing a
bad instruction (a, aa, b) not prohibited by the pair (S+, S−). Therefore, Infer(S+, S−, l, k)
would output an incorrect solution in this case.

However, it can be shown that the following sets of positive and negative samples:
S+

0 = {anbn | 0 ≤ n ≤ 6} and S−0 = {aab, abb, aaab, abbb, aaaab, aaabb, aabbb, abbbb,
aaaaab, aaaabb, aabbbb, abbbbb, aaaaabb, aabbbbb, aaaaaabb, aabbbbbb} satisfy the prop-
erties of Theorem 4.1, for k = 1 and l = 6. This is because Assumptionscl1(S+

0 , l, k) =
Assumptionscl1({anbn | n ≥ 0}, l, k) = Φ0, and the negative samples in S−0 can filter out all
bad instructions in Φ0. In this case, the function Infer(S+, S−, l, k) will give us the correct
solution for every finite set of positive samples S+ ⊇ S+

0 and every finite set of negative
samples S− ⊇ S−0 consistent with the target language {anbn | n ≥ 0}.

Also note that if we used the function Assumptionscl3 in Example 4.4 instead of the
function Assumptionscl1 (see Example 4.2 for definition) we would need no negative samples
at all.

In the following Example 4.5 we show how the inference algorithm can be used also
for a more general subword-clearing restarting automata. We will use the following func-
tion Assumptions: Assumptionsscl1(S+, l, k) := {(x, z → t, y) | x ∈ LCk, y ∈ RCk, |z| >
0, |xzty| ≤ l, t is a proper subword of z and ∃w1, w2 ∈ S+ : xzy is a subword of ¢w1$
and xty is a subword of ¢w2$}. It can be shown (similarly as in Example 4.2) that this
assumptions function is correct with respect to the model of subword-clearing restarting
automata.

20 PETER ČERNO

Example 4.5. Consider the 1-scl-RA M = ({a, b, c}, {(a, acb → c, b), (¢, acb, $)}) recog-
nizing the language L(M) = {ancbn | n > 0} ∪ {λ}. (We use the abbreviation (x, z, y)
instead of (x, z → λ, y)). This language cannot be recognized by any clearing restarting au-
tomaton, therefore we have to use the inference algorithm for subword-clearing restarting
automata. Let us take S+ = {λ, acb, aacbb}. Then Assumptionsscl1(S+, l, k) = {(¢, a, a),
(a, a, c), (b, b, $), (c, b, b), (¢, aa → a, c), (a, ac → c, b), (c, bb → b, $), (a, cb → c, b),
(¢, acb, $), (a, acb→ c, b)}, where k = 1 and l = 6. In this case, there are only two correct
instructions: (¢, acb, $) and (a, acb→ c, b). In order to filter all the other bad instructions,
the following set of negative samples is sufficient: S− = {aacb, acbb}.

Similarly as in Example 4.4, the set S− = {aacb, acbb} is not big enough to guaran-
tee the correctness of the inference algorithmin in all cases. However, it can be shown
that the following sets of positive and negative samples: S+

0 = {λ, acb, aacbb, aaacbbb,
aaaacbbbb, aaaaacbbbbb, aaaaaacbbbbbb} and S−0 = {aacb, acbb, aaacb, acbbb, aaaacb, aaacbb,
aacbbb, acbbbb, aaaaacb, aaaacbb, aacbbbb, acbbbbb, aaaaacbb, aaaacbbb, aaacbbbb, aacbbbbb,
aaaaaacbb, aaaaacbbb, aaacbbbbb, aacbbbbbb} meet our criteria stated in Theorem 4.1 (mod-
ified for the model of subword-clearing restarting automata), for k = 1 and l = 6.

Note that if we used a stronger function Assumptions: Assumptionsscl3(S+, l, k) := {(x, z →
t, y) | x ∈ LCk, y ∈ RCk, |z| > 0, |xzty| ≤ l, t is a proper subword of z, and ∃w1, w2 ∈ S+ :
w1 = αzβ, w2 = αtβ, x is a suffix of ¢α and y is a prefix of β$}, then we would need no
negative samples at all.

In the following Example 4.6 we illustrate how to execute an active learning approach
for the inference of a more realistic language of correct arithmetical expressions.

Example 4.6. Our goal is to infer a model of a subword-clearing restarting automaton
recognizing the language of correct arithmetical expressions. For convenience, we use only
a simplified alphabet Σ = {a,+,−, [,]}, where the letter a is used as a placeholder for any
variable or numeric value. Correct arithmetical expressions are, for instance: a + [a − a],
[a + a], [[a]] etc., whereas the following expressions are all incorrect: a+,]a, [a + a etc.
For the sake of readability we omit many cumbersome details, e.g. we do not list all the
inferred instructions etc. Instead, we focus more on the big picture and mention only those
artifacts that have some impact on the decisions made during the learning process. We fix
the length of contexts to k = 1 and the maximal width of instructions to l = 6. Let us start
with some initial set of positive and negative samples S+

1 and S−1 , as in Table 1.
These samples give us a good initial essence of what the correct arithmetical expressions

might look like. The function Assumptionsscl1(S+
1 , l, k) (see Example 4.5 for definition) gives

us altogether 144 instruction candidates, where only two of them: (¢, [, a) and (a,], $) are
going to be filtered out due to the set of negative samples. The resulting automaton M1

(our first hypothesis) is consistent with the given input set of positive and negative samples
S+

1 and S−1 , and contains exactly 37 instructions after simplification. Let us generate some
expressions recognized by this automaton M1. The following Table 2 lists the set of all
recognized expressions up to length 5.

As we can see, there are both correct and incorrect arithmetical expressions (we have
highlighted all the correct ones). Note that the automaton was able to recognize even some

CLEARING RESTARTING AUTOMATA AND GRAMMATICAL INFERENCE 21

Table 1. The initial set of positive and negative samples.

Positive Samples S+
1 Negative Samples S−1

a [[a+ a]] a+ [a− a] + a[−− []
a+ a [[a− a]] a− [a+ a] − a] −[]a
a− a a+ a+ a a− [a− a] [++ −]]+

[a] a+ a− a [a+ a] + a] +− [a]−
[a+ a] a− a+ a [a+ a]− a aa +[[+][
[a− a] a− a− a [a− a] + a a+ +] [−]]

[[a]] a+ [a+ a] [a− a]− a a− −+ [[

Table 2. The set of all expressions up to length 5 recognized by M1.

Expressions Recognized by M1

λ a+ [a [a]] a− a + a a]− [a [a] + a
a a− a] [[a] a− a− a a]] + a [a]− a

a + a a− [a [[[a a− a]] a]]− a [a]]]
a− a a] + a a + a + a a− [a] a]]]] [[a+ a
a]] a]− a a + a− a a− [[a [a + a] [[a− a
[a] a]]] a+ a]] a] + a] [a+ [a [[a]]
[[a [a+ a a + [a] a] + [a [a− a] [[[a]

a+ a] [a− a a+ [[a a]− a] [a− [a [[[[a

correct arithmetical expressions that it had not seen before, e.g. a+ [a]. Our next step will
be to add the above incorrect arithmetical expressions to the set of negative samples. Let
S+

2 := S+
1 and let S−2 be the set of all negative samples in S−1 extended by the incorrect

arithmetical expressions shown in Table 2. The inference algorithm will now return on the
input (S+

2 , S
−
2 , l, k) a consistent automaton M2 having only 36 instructions after simplifi-

cation. Up to length 5, the automaton M2 recognizes only correct arithmetical expressions.
However, it recognizes also some incorrect arithmetical expressions beyond this length, e.g.
expressions shown in Table 3.

Table 3. The set of some incorrect arithmetical expressions recognized by M2.

Expressions Recognized by M2

a− a]− a a− [a− a [[a− a]
a− a] + a a− [a+ a [[a+ a]
a+ a]− a a+ [a− a [a− a]]
a+ a] + a a+ [a+ a [a+ a]]

Again, let S+
3 := S+

2 and let S−3 be the set of all negative samples in S−2 extended by the
incorrect arithmetical expressions shown in Table 3. This time the inference algorithm will
return on the input (S+

3 , S
−
3 , l, k) a consistent automaton M3 having 24 instructions (see

Table 4) that recognizes only correct arithmetical expressions. This can be verified easily

22 PETER ČERNO

by observing that every single instruction of the automaton M3 preserves the correctness
when applied to a correct arithmetical expression.

Table 4. The set of instructions of M3.

Instructions of M3

(¢, a, $) (¢, a+, a) (a,−a,−) (a,+a,+)
(¢, a−, a) (¢, a+, [) (a,−a,+) (a,+a,])
(¢, a−, [) ([, a+, a) (a,−a,]) (],+a, $)
([, a−, a) (−, a+, a) (],−a, $) (¢, [a], $)

(−, a−, a) (+, a+, a) (a,+a, $) (¢, [a]→ a, $)

(+, a−, a) (a,−a, $) (a,+a,−) ([, [a]→ a,])

Unfortunately, the automaton is not complete yet. It does not recognize, for instance,
the following correct arithmetical expression: a + [a + [a]]. This time we need to extend
the set of positive samples. We will not do it because our goal was only to sketch the
principles of the active learning. We only mention that if we had chosen the maximal
width of instructions to be l = 5 then we would not have been able to infer any subword-
clearing restarting automaton recognizing the language of correct arithmetical expressions,
because simply there is no such automaton. The inference algorithm would fail on the input
(S+

2 , S
−
2 , l, k) and no additional samples would ever change this situation. The intuitive

reason behind this observation can be best explained as follows: if we want to recognize the
language {[na]n | n ≥ 0} we cannot do it without some rewriting of the following form:
[ka]k → [la]l, where 0 ≤ l < k. This kind of rewriting requires the use of a subword-clearing

instruction having the width at least 6 (e.g. ([, [a]→ a,])).
Another important observation is the following: Note that the symbols + and − are used

interchangeably. We could have used only one single symbol (e.g. �) representing both
symbols + and −. Better approach would be to deduce this fact from the set of positive
samples. We could, for instance, deduce that both symbols + and − have the same set of
contexts in the set of positive samples. Some kind of categorization would be crucial in real
world applications where we encounter much bigger alphabets.

5. Negative Results

In this section we show that, in general, the task of finding a consistent clearing restarting
automaton with the given set of positive and negative samples is NP-hard, provided that
we impose an upper bound on the width of instructions. First, we prove this result for the
simplest case of 0-clearing restarting automata.

Theorem 5.1. Let l ≥ 2 be a fixed integer. Consider the following task: We are given a
finite set of positive and negative samples: S+, S−, S+ ∩ S− = ∅, λ ∈ S+. Our task is to
find a 0-cl-RA M = (Σ, I) consistent with S+ and S− such that the width of instructions
of M is at most l. This task is NP-complete.

CLEARING RESTARTING AUTOMATA AND GRAMMATICAL INFERENCE 23

Proof. Consider a 3-SAT formula ψ =
∧n
i=1Ci, where clause Ci = `i,1 ∨ `i,2 ∨ `i,3, and

`i,1, `i,2, `i,3 are literals having pairwise different variables, for all i = 1, 2, . . . , n. Let Ω =
{a1, a2, . . . , am} be the set of all variables occurring in ψ. In the following, we will specify
a finite set of positive samples S+ and a finite set of negative samples S−, S+ ∩ S− = ∅,
λ ∈ S+, such that the following holds: the formula ψ is satisfiable if and only if there exists
a 0-cl-RA M = (Σ, I) consistent with S+ and S−, such that the width of instructions of M
is bounded from above by l.

Our alphabet will be Σ = Ω ∪ Ω, where Ω = {ai | ai ∈ Ω}, and Ω ∩ Ω = ∅. First
set S+ := {λ}, S− := ∅. For each clause Ci = `i,1 ∨ `i,2 ∨ `i,3 add the negative sample

w−Ci
= `i,1 `i,2 `i,3 to the set of negative samples S−. (We define a = a for all a ∈ Ω). For

each variable a ∈ Ω add the following positive samples: w+
0 = (aa)l, w+

1 = al, w+
2 = al to

the set of positive samples S+. And at last, for each a ∈ Ω add all words w ∈ {a, a}≤l, such
that |w|a ≥ 1 and |w|a ≥ 1, to the set of negative samples S−. Note that, for fixed l, there
is only finite number of such words for every a ∈ Σ. Thus the size of the constructed set of
positive and negative samples is, in fact, linear with respect to the size of the formula ψ.

(⇒) Suppose that ψ is satisfiable, i.e. there exists an assignment v : Ω→ {0, 1} such that
v∗(Ci) = 1 for all i ∈ {1, 2, . . . , n}, where v∗ denotes the natural extension of v to formulas.
We will construct a 0-cl-RA M = (Σ, I) consistent with S+ and S−, and with instructions
of width at most l. Let I = I1 ∪ I2, where I1 = {(λ, a, λ) | a ∈ Ω : v(a) = 1} ∪ {(λ, a, λ) |
a ∈ Ω : v(a) = 0} and I2 = {(λ, al, λ), (λ, al, λ) | a ∈ Ω}. It can be easily observed that,
for each literal ` ∈ Ω ∪ Ω : ` `M λ ⇔ v(`) = 1, or equivalently: ` `M λ ⇔ v(`) = 0.
Therefore no negative sample w−Ci

= `i,1 `i,2 `i,3, for i = 1, 2, . . . , n, can be reduced to
the empty word λ by using the instructions from I1, because otherwise it would mean
that v(`i,1) = v(`i,2) = v(`i,3) = 0. As the literals used in w−Ci

have all pairwise different
variables, no instruction from I2 can be applied to it. Therefore, the resulting automaton
M cannot reduce any negative sample of the form w−Ci

= `i,1 `i,2 `i,3 to the empty word λ.

Moreover, all positive samples of the form w+
0 = (aa)l, w+

1 = al, w+
2 = al can be reduced to

the empty word λ. For each a ∈ Ω there is either the instruction (λ, a, λ), or the instruction
(λ, a, λ) in I1. Therefore, we can always reduce the positive sample w+

0 = (aa)l either to
the word al, or al. After that we can use one of the instructions in I2 to reduce it further
to the empty word λ. Therefore, for each a ∈ Ω: (aa)l `∗M λ, and also trivially al `M λ,
and al `M λ. Finally, for each a ∈ Ω the word w ∈ {a, a}≤l, such that |w|a ≥ 1 and
|w|a ≥ 1, cannot be reduced to the empty word λ. This is because there is only one of the
instructions: (λ, a, λ), (λ, a, λ) available in I1, and we will never be able to use any of the
instructions: (λ, al, λ), (λ, al, λ) from I2, since |w|a < l and |w|a < l.

(⇐) Now suppose that there exists a 0-cl-RA M = (Σ, I) consistent with S+ and S−,
such that the width of instructions of M is bounded from above by l. We will show that ψ
is satisfiable, i.e. we will construct an assignment v : Ω → {0, 1} such that v∗(Ci) = 1 for
all i ∈ {1, 2, . . . , n}. First observe, that for each a ∈ Ω: either (λ, a, λ) ∈ I, or (λ, a, λ) ∈ I.
Consider the positive sample w+

0 = (aa)l ∈ S+. We know that (aa)l `∗M λ. Let φ ∈ I be
the first instruction used in any such accepting computation. The instruction φ is of the
form (λ, z, λ), where z is a subword of the word (aa)l. However, the only allowed options

24 PETER ČERNO

here are φ ∈ {(λ, a, λ), (λ, a, λ)}, because if |z| > 1, then we would immediately get that
|z|a ≥ 1, |z|a ≥ 1, and thus also z ∈ S−, which is a contradiction to z `(φ) λ. Moreover,
both instructions (λ, a, λ) and (λ, a, λ) cannot be in I simultaneously, because it would
mean that aa `∗M λ, where aa ∈ S−. Now, for each a ∈ Ω let v(a) = 1 if (λ, a, λ) ∈ I, and
let v(a) = 0 if (λ, a, λ) ∈ I. For each clause Ci = `i,1 ∨ `i,2 ∨ `i,3 we have a negative sample

w−Ci
= `i,1 `i,2 `i,3 ∈ S−. Therefore, `i,1 6`M λ or `i,2 6`M λ or `i,3 6`M λ, which is equivalent

to v(`i,1) = 1 or v(`i,2) = 1 or v(`i,3) = 1. This means that ψ is satisfiable.
It remains to be shown that the task of finding a 0-cl-RA M = (Σ, I) consistent with

the given input set of positive and negative samples (S+, S−), such that the width of
instructions ofM is bounded from above by l, is in NP. In [5] it was shown that every 1-cl-RA
can be transformed in a polynomial time to an equivalent context-free grammar. Therefore,
the membership problem for 0-cl-RA and 1-cl-RA is also decidable in a polynomial time.
The next question is, how many instructions do we need? It turns out that the number
of instructions can be bounded from above by size(S+) =

∑
w∈S+ |w|, because for every

positive sample w+ ∈ S+ the accepting computation w+ `∗M λ uses at most |w+| many
instructions. Therefore, we can first nondeterministically guess the set of instructions, and
then verify in a polynomial time the consistency with the given input set of positive and
negative samples. �

Theorem 5.1 can be generalized to cover all clearing restarting automata.

Theorem 5.2. Let k ≥ 1 and l ≥ 4k + 4 be fixed integers. We are given finite sets of
positive and negative samples: S+, S−, S+∩S− = ∅, λ ∈ S+. Our task is to find a k-cl-RA
M = (Σ, I) consistent with S+ and S− such that the width of instructions of M is bounded
from above by l. This task is NP-complete for k = 1 and NP-hard for k > 1.

Proof. Consider a 3-SAT formula ψ =
∧n
i=1 Ci, where clause Ci = `i,1 ∨ `i,2 ∨ `i,3, and

`i,1, `i,2, `i,3 are literals having pairwise different variables, for all i ∈ {1, 2, . . . , n}. Let
Ω = {a1, a2, . . . , am} be the set of all variables occurring in ψ. As in Theorem 5.1, we will
specify a finite set of positive and negative samples S+, S−, S+∩S− = ∅, λ ∈ S+, such that
the formula ψ is satisfiable if and only if there exists a k-cl-RA M = (Σ, I) consistent with
S+ and S−, where the width of instructions of M is bounded from above by l. The difference
here is that the alphabet Σ will contain also some other special symbols, except Ω∪Ω. (We
use the same notation as in the proof of Theorem 5.1). First set S+ := {λ}, S− := ∅. For
each clause Ci = `i,1 ∨ `i,2 ∨ `i,3 add the negative sample w−Ci

= �k`i,1�k`i,2�k`i,3�k to the
set of negative samples S−, where � is a special dummy symbol that will later match the
contexts of the instructions. For each variable a ∈ Ω, add the following positive samples:
w+

0 = �ka�ta�k, w+
1 = �ka�k+t, w+

2 = �k+ta�k, and w+
3 = �4k to the set of positive

samples S+, and also add the negative sample w−4 = �ka�2ka�k to the set of negative
samples S−, where t = l − 2k − 3. Since l ≥ 4k + 4, it follows that t ≥ 2k + 1, and thus
w+

0 6= w−4 . Our next goal is to allow only the following types of instructions, where a ∈ Ω:

(a) (�k, a,�k).
(b) (�k, a,�k).
(c) (¢,�ka�k+t, $).

CLEARING RESTARTING AUTOMATA AND GRAMMATICAL INFERENCE 25

(d) (¢,�k+ta�k, $).
(e) (¢,�4k, $).

All of these instructions are allowed since they have the width at most l. (The longest
are the instructions of the type (c) and (d), having the width 2k + t + 3 = l). On the
other hand, it is not possible to store the whole word w+

0 = �ka�ta�k in one instruction
containing both sentinels (such us, for instance, (¢,�ka�ta�k, $)), since its width would
be 2k + t + 4 = l + 1 > l. Also note, that the instructions (c) and (d) will never interfere
with any of the negative samples w−Ci

= �k`i,1�k`i,2�k`i,3�k, because: |�k`i,1�k�k�k| =

|�k�k�k`i,3�k| = 4k + 1, while |�ka�k+t| = |�k+ta�k| = 2k + t + 1 = l − 2 ≥ 4k +
2. The same holds for the negative sample w−4 = �ka�2ka�k, because |�ka�2k�k| =
|�k�2ka�k| = 4k + 1.

In the following we introduce a general technique, how to prohibit the inference of any
specific undesirable instruction. Note that it is no longer plausible just to introduce some
negative samples as we did in the proof of Theorem 5.1, since now the instructions also have
contexts. Suppose that we want to prohibit the instruction φ = (x, z, y), where |xzy| ≤ l.
Let x′ (y′, respectively) be the largest possible subword of x (y, respectively) not containing
the sentinels (¢, $); thus either x = x′, or x = ¢x′ (either y = y′, or y = y′$, respectively).
There are only the following four possible cases:

(1) x = ¢x′ and y = y′$
(2) x = ¢x′ and y = y′

(3) x = x′ and y = y′$
(4) x = x′ and y = y′

In the first case we only need to add the word x′zy′ to the set of negative samples S−

and the word x′y′ to the set of positive samples S+ in order to prohibit the instruction
φ = (x, z, y) = (¢x′, z, y′$). In the other cases let us first introduce a new symbol �φ, which
we also add to our alphabet Σ. This is what we do in the particular cases:

(1) S− := S− ∪ {x′zy′}, S+ := S+ ∪ {x′y′}.
(2) S− := S− ∪ {x′zy′�φ}, S+ := S+ ∪ {x′y′�φ}.
(3) S− := S− ∪ {�φx

′zy′}, S+ := S+ ∪ {�φx
′y′}.

(4) S− := S− ∪ {�φx
′zy′�φ}, S+ := S+ ∪ {�φx

′y′�φ}.
For every prohibited instruction φ we add two new samples: a positive sample w+

φ to the

set S+ and a negative sample w−φ to the set S−. It is easy to see, that in each case we have
effectively prohibited the instruction φ = (x, z, y). Note that this is the only instruction not
containing the symbol �φ (and having x ∈ LCk, y ∈ RCk, see Definition 2.10) that reduces
w+
φ to w−φ . However, in the following we will also have to verify the consistency of the

constructed k-cl-RA M with these new samples, i.e. that for every prohibited instruction φ
the following holds: w+

φ `∗M λ and w−φ 6`∗M λ. In all cases, the newly added positive sample

w+
φ can always be reduced to the empty word in one step by using the instruction (¢, w+

φ , $).
This is because the width of this instruction is 2 + |w+| ≤ 2 + 2 + |x′y′| ≤ 4 + 2k ≤ l. If
we use a new symbol �φ in w+

φ , then the instruction (¢, w+
φ , $) will be applicable only to

this specific sample w+
φ ∈ S+, and thus will not interfere with other samples. On the other

26 PETER ČERNO

hand, the verification of the second condition (w−φ 6`∗M λ) is more difficult. Fortunately, we

will always use the symbol �φ in w−φ , i.e. the first case will never occur in our proof.
Now we have all necessary ingredients to finish the proof. For each a ∈ Ω consider the

following positive sample: w+
0 = �ka�ta�k. By using the above technique we disable all

instructions applicable to this word having the width at most l, except for the instructions
of the form (a) – (e). Observe, that we will never attempt to disable any instruction of the
form φ = (¢x′, z, y′$). This is because the word w+

0 = �ka�ta�k (as we already mentioned
above) is too long. Moreover, there is only polynomially many disabled instructions, since
there is only polynomially many subwords of the above word. Now we have completely
specified the sets of positive and negative samples S+, S−, S+ ∩S− = ∅, λ ∈ S+, and thus
we can proceed with the proof in exactly the same way as in Theorem 5.1.

(⇒) Suppose that ψ is satisfiable, i.e. there exists an assignment v : Ω → {0, 1} such
that v∗(Ci) = 1 for all i ∈ {1, 2, . . . , n}, where v∗ denotes the natural extension of v
to formulas. We will show that there exists a k-cl-RA M = (Σ, I) consistent with S+

and S−, such that the width of instructions of M is bounded from above by l. Consider
the following k-cl-RA M = (Σ, I): First, we add to I the following set of instructions:
I1 = {(�k, a,�k) | a ∈ Ω : v(a) = 1} ∪ {(�k, a,�k) | a ∈ Ω : v(a) = 0}. It can be easily
observed that, for all literals l ∈ Ω ∪ Ω : �kl�k `M �k�k ⇔ v(l) = 1, or equivalently:
�kl�k `M �k�k ⇔ v(l) = 0. Therefore no negative sample w−Ci

= �k`i,1�k`i,2�k`i,3�k,

where i ∈ {1, 2, . . . , n}, can be reduced to the positive sample �4k by using the instructions
from I1, because otherwise it would mean that v(`i,1) = v(`i,2) = v(`i,3) = 0. Next we
add to I the following set of instructions I2 = {(¢,�ka�k+t, $), (¢,�k+ta�k, $) | a ∈
Ω}∪{(¢,�4k, $)}. As we have already stated above, no instruction from I2 will ever interfere
with any negative sample w−Ci

= �k`i,1�k`i,2�k`i,3�k, or w−4 = �ka�2ka�k. Finally, we

add to I all instructions (¢, w+
φ , $), where w+

φ was added to the set of positive samples

S+ during the process of disabling some undesirable instruction φ. These instructions
are applicable only to words containing these special symbols �φ, so we do not have
to care about them at all. Now we will show that the constructed k-cl-RA M = (Σ, I)
is consistent with the set of positive and negative samples S+ and S−. (The width of
instructions of M is apparently bounded from above by l). First, it is easy to see, that
for each variable a ∈ Ω the following positive samples: w+

0 = �ka�ta�k, w+
1 = �ka�k+t,

w+
2 = �k+ta�k, w+

3 = �4k are all reducible to the empty word λ. The positive sample
w+

0 is always reducible to either w+
1 , or w+

2 , depending on whether (�k, a,�k) ∈ I1, or
(�k, a,�k) ∈ I1. The other positive samples: w+

1 , w+
2 , w+

3 can be reduced to the empty
word λ in a single step by using the corresponding instruction from I2. The negative
sample w−4 = �ka�2ka�k clearly cannot be reduced to the empty word λ. We can clear
either the letter a, or a by using the corresponding instruction from I1, but then we get
the irreducible word �k�2ka�k, or �ka�2k�k. None of the instructions from I2 can be
applied to a such word, since the length |�ka�2k�k| = |�k�2ka�k| = 4k + 1, while
|�ka�k+t| = |�k+ta�k| = 2k + t + 1 = l − 2 ≥ 4k + 2. It remains to be shown, that no
negative sample w−φ , which was added to the set of negative samples S− during the process
of disabling some instruction φ, can be reduced to the empty word λ. Both the negative

CLEARING RESTARTING AUTOMATA AND GRAMMATICAL INFERENCE 27

sample w−φ and the corresponding positive sample w+
φ contain the special symbol �φ. The

negative sample w−φ without this special symbol �φ is basically a subword of some word

�ka�ta�k. First observe, that the only instruction from I, that could be possibly applied
to the negative sample w−φ , is some instruction from I1. Without loss of generality assume

that we can apply the instruction ρ = (�k, a,�k) ∈ I1 to the word w−φ , i.e. w−φ `(ρ) w′.

This also implies that (�k, a,�k) /∈ I1. It is easy to see, that no other instruction from
I can be applied to the resulting word w′, except possibly the instruction (¢, w+

φ , $). But

if (¢, w+
φ , $) was applicable to w′, it would have implied that we wanted to disable the

instruction ρ itself, which is not possible, since ρ is of the form (a). Thus, we have shown
that the constructed k-cl-RA M = (Σ, I) is consistent with S+ and S−, and that the
width of instructions of M is bounded from above by l. As in Theorem 5.1, the size of the
constructed set of positive and negative samples is linear with respect to the size of the
formula ψ.

(⇐) Now suppose that there exists a k-cl-RA M = (Σ, I) consistent with S+ and S−,
such that the width of instructions of M is bounded from above by l. We will show that ψ
is satisfiable, i.e. we will construct an assignment v : Ω→ {0, 1} such that v∗(Ci) = 1 for all
i ∈ {1, 2, . . . , n}. First observe, that for each a ∈ Ω: either (�k, a,�k) ∈ I, or (�k, a,�k) ∈
I. Consider the positive sample w+

0 = �ka�ta�k. We know that �ka�ta�k `∗M λ. Let
φ ∈ I be the first instruction used in any such accepting computation. The instruction φ
is either of the form (�k, a,�k), or (�k, a,�k), because all other instructions are disabled.
Moreover, it cannot happen that both instructions (�k, a,�k), (�k, a,�k) are in I, because
it would mean that �ka�2ka�k `∗M �4k, where �ka�2ka�k ∈ S− and �4k ∈ S+. Now let
us define the assignment v : Ω→ {0, 1} as follows: for each a ∈ Ω : v(a) = 1 if (λ, a, λ) ∈ I,
and v(a) = 0 if (λ, a, λ) ∈ I. For each clause Ci = `i,1∨ `i,2∨ `i,3 we have a negative sample

w−Ci
= �k`i,1�k`i,2�k`i,3�k ∈ S−. Therefore, (�k, `i,1,�k) /∈ I or (�k, `i,2,�k) /∈ I or

(�k, `i,3,�k) /∈ I, which is equivalent to v(`i,1) = 1 or v(`i,2) = 1 or v(`i,3) = 1. This means
that ψ is satisfiable.

As in Theorem 5.1, it can easily be shown that the task is NP-complete for 1-cl-RA, since
the membership problem for 1-cl-RA is decidable in a polynomial time. Whether the task
is in NP also for k > 1 depends on the complexity of membership problem for k-cl-RA. �

It should be pointed out that if we do not impose any upper bound l on the max-
imal width of instructions, then the task is easily decidable in a polynomial time for
any k ≥ 0. Suppose that S+ = {w1, w2, . . . , wn}. For k = 0 just take the instructions
I = {(λ,w1, λ), (λ,w2, λ), . . . , (λ,wn, λ)} and verify (in a polynomial time) the consistency
with negative samples S−. For k ≥ 1 the task is even more trivial, just take the instructions
I = {(¢, w1, $), (¢, w2, $), . . . , (¢, wn, $)} and verify that S+ ∩ S− = ∅ and λ ∈ S+.

6. Conclusion

We have shown that it is possible, by using a simple learning algorithm, to identify any
clearing and subword-clearing restarting automaton in the limit, which implies that we can
learn a large class of languages in this way. This fact is contrasted with the negative result

28 PETER ČERNO

that the task of finding a consistent clearing restarting automaton with the given set of
positive and negative samples is NP-hard under the constraint that we impose an upper
bound on the width of instructions. This result resembles the famous result of Gold ([11])
who showed that the question of whether there is a finite automaton with at most n states
which agrees with the given set of positive and negative samples is NP-complete. Indeed,
for every n-state finite automaton there is an equivalent clearing restarting automaton that
has the width of instructions bounded from above by O(n) (see [5]). Without an upper
bound the task becomes trivially solvable in a polynomial time both for finite automata
and clearing restarting automata. However, it is an open problem, whether similar negative
results hold also for other more powerful models, such as subword-clearing, ∆-clearing
or ∆∗-clearing restarting automata. It would be also interesting to further investigate
the complexity of membership and equivalence problem for these models and to study
grammatical inference for other related models.

Acknowledgements

I would like to thank Friedrich Otto and Frantǐsek Mráz for their support and careful
proofreading of almost all revisions of this paper and for all suggestions and advices that
significantly contributed to the quality of this paper.

References

[1] M. Beaudry, M. Holzer, G. Niemann, and F. Otto. Mcnaughton families of languages. Theoretical
Computer Science, 290(3):1581 – 1628, 2003.

[2] R. V. Book and F. Otto. String-rewriting systems. Springer-Verlag, New York, NY, USA, 1993.
[3] G. Buntrock and K. Lorys. On growing context-sensitive languages. In Proc. 19th ICALP, Lecture

Notes in Computer Science (W. Kuich,ed, pages 77–88. Springer-Verlag, 1992.
[4] P. Černo and F. Mráz. Clearing restarting automata. In H. Bordinh, R. Freund, M. Holzer, M. Kutrib,

and F. Otto, editors, Workshop on Non-Classical Models for Automata and Applications (NCMA),

volume 256 of books@ocg.at, pages 77–90. Österreichisches Computer Gesellschaft, 2009.
[5] P. Černo and F. Mráz. Clearing restarting automata. Fundamenta Informaticae, 104(1):17–54, 2010.
[6] P. Černo and F. Mráz. Delta-clearing restarting automata and cfl. In G. Mauri and A. Leporati,

editors, Developments in Language Theory, volume 6795 of Lecture Notes in Computer Science, pages
153–164. Springer Berlin / Heidelberg, 2011.

[7] P. Černo and F. Mráz. Delta-clearing restarting automata and cfl. Technical Report 8/2011, Charles
University, Faculty of Mathematics and Physics, Prague, 2011.

[8] E. Dahlhaus and M. Warmuth. Membership for growing context sensitive grammars is polynomial. In
P. Franchi-Zannettacci, editor, CAAP ’86, volume 214 of Lecture Notes in Computer Science, pages
85–99. Springer Berlin / Heidelberg, 1986. 10.1007/BFb0022661.

[9] C. de la Higuera. Grammatical Inference: Learning Automata and Grammars. Cambridge University
Press, New York, NY, USA, 2010.

[10] R. Eyraud, C. de la Higuera, and J.-C. Janodet. Lars: A learning algorithm for rewriting systems.
Machine Learning, 66:7–31, 2007. 10.1007/s10994-006-9593-8.

[11] E. M. Gold. Complexity of automaton identification from given data. Information and Control, 37,
1978.

[12] J. E. Hopcroft and J. D. Ullman. Formal Languages and their Relation to Automata. Addison-Wesley,
Reading, 1969.

CLEARING RESTARTING AUTOMATA AND GRAMMATICAL INFERENCE 29

[13] P. Jančar, F. Mráz, M. Plátek, and J. Vogel. Restarting automata. In H. Reichel, editor, FCT’95,
volume 965 of LNCS, pages 283–292, Dresden, Germany, August 1995. Springer.

[14] S. Lange, T. Zeugmann, and S. Zilles. Learning indexed families of recursive languages from positive
data: A survey. Theor. Comput. Sci., 397(1-3):194–232, May 2008.

[15] R. McNaughton. Algebraic decision procedures for local testability. Theory of Computing Systems,
8:60–76, 1974. 10.1007/BF01761708.

[16] F. Otto. Restarting automata. In Z. Ésik, C. Mart́ın-Vide, and V. Mitrana, editors, Recent Advances
in Formal Languages and Applications, volume 25 of Studies in Computational Intelligence, pages
269–303. Springer, Berlin, 2006.

[17] Y. Zalcstein. Locally testable languages. J. Comput. Syst. Sci, 6(2):151–167, 1972.

Department of Computer Science, Charles University, Faculty of Mathematics and
Physics, Malostranské nám. 25, 118 00 PRAHA 1, Czech Republic

	1. Introduction
	2. Theoretical Background
	3. General Setting
	4. Learning Schema
	5. Negative Results
	6. Conclusion
	Acknowledgements
	References

