Robot Framework

author: Peter Cerno
e-mail: petercerno[at]gmail.com

e platform: Win32
« language: C++
e development tools: Microsoft Visual C++ 2005, Microsoft DirectX SDK

Robot Framework is a framework for simple 2D physics-based robot simulations. It a graphical
extension of the open-source Enki project based on DirectX.

If you want to experiment with simple robots using neural networks, genetic algorithms or
other techniques, you do not need to start from scratch. This framework is both simple to learn
in a short time and complex enough to make reliable simulations. I have also created a simple
application to demonstrate the power of this framework.

What is Robot Framework (RFW)?

e
Robot Framework W

You can imagine Robot Framework as a box that encapsulates Enki, DirectX and MSXML
components. RFW provides common interface for all these three parts, but on the other hand it
separates their implementation. It uses strategy pattern, so you can dynamically (at the run-
time) change the way of rendering the objects or loading them. One of the main purposes of the
Robot Framework is to visualize simulations made by Enki simulator.

What is Robot Neural Simulator (RNS)?

Robot Neural Simulator is a concrete application of Robot Framework. I have created this
simulator to illustrate the power of the framework. The point of the simulator is this: At first a
robot is trained by a user who controls the robot with keyboard. The robot generates a log file
where it writes all the data on the sensors and the actions made by the user. The log file is then
moved to MATLAB where a neural network is trained to give corresponding actions on given
sensor data. This neural network is then moved to the simulator. You can easily turn the
control over to this neural network and observe how precisely can the robot reproduce the
actions made by the user. To gain a better understanding of how it works I recommend
downloading this simulator and trying some of the experiments.

What is An?

An is a C++ library which provides basic useful bricks for scientific use. This includes the Color
type, a collection of several random distributions, some numeric functions such as exponential
decay with varying time step, and Formula, a formula parser, byte compiler and interpreter.
Enki depends on this library.

What is Enki?

Enki is a fast 2D physics-based robot simulator written in C++. It is able to simulate
kinematics, collisions, sensors and cameras of robots evolving on a flat surface. It also provides
limited support for friction. It is able to simulate groups of robots hundred times faster than
real-time on a modern desktop computer.

I had to do some minor modifications to the original Enki library in order to avoid some design
problems.

Enki is a part of Robot Framework and serves mainly as a physical engine.

What is DirectX?

Microsoft DirectX is a set of low-level APIs for creating games and other high-performance
multimedia applications. It includes support for high-performance 2D and 3D graphics, sound,
and input.

DirectX is a part of Robot Framework and serves mainly as a graphical engine.

You should download and install: Microsoft DirectX SDK.

What is MSXML?
Microsoft XML Core Services (MSXML for short) consist of preprogrammed classes and

functions that contain code to access and manipulate information in an XML document.
MSXML is a part of Robot Framework and serves mainly as an input/output engine.

The documentation that follows is divided into two parts:

In the first part the Robot Neural Simulator application is described from the user point of
view. The best way to understand the simulator is to try some of the experiments.

In the second part the basic interfaces and classes of Robot Framework and Robot Neural
Simulator are described. This part is destined for readers who are interested in the source code
of the application or just want to write their own application.

I. PART

Experiments

At first you have to download Robot Neural Simulator (RNS) in order to perform these
experiments.

1st experiment

In this experiment I have tried to train a robot to avoid the bounds of a rectangular area. When
training it I only moved straight forward or turned left. The robot should not be able to turn
right. To see the results of this experiment just follow these steps:

1. Run the Robot Neural Simulator application.

2. To the File Name edit box write "Scene1.xml" and click on the Load Scene button.

3. To the File Name edit box write "Robot1.xml" and click on the Load Robot button.

4. To the File Name edit box write "Robot1Network1.xml" and click on the Load Network
button.

From the Robot1Network1.xml file you can find out that this neural network has two layers:
first input layer has 2 neurons and second hidden layer has 4 neurons. The only transfer
function used is logsig. The robot has six infrared sensors so this network has six input cells
and four output cells. (Each output cell is associated with different key: up, down, left, right)

If everything is loaded successfully then just click on the Neural Network radio button and
observe how the robot behaves.

If you want to change the position of the robot just click on the Keyboard radio button and
move the robot with keys.

2nd experiment

In this experiment I have tried to train a robot to keep a certain distance from the bounds of a
rectangular area. Again I only moved straight forward or turned left. To see the results of this
experiment just follow the steps of the 1st experiment except that you have to load
"Robot1Network2.xml" neural network.

3rd experiment

In this experiment I have tried to train a robot to move in a narrow corridor. Again I only
moved straight forward or turned left.

The files you have to load are:

Scene: "Scene2.xml"

Robot: "Robot2.xml"

NeuralNetwork: "Robot2Network1.xml" or "Robot2Network2.xml".

4th experiment

In this experiment I have tried to train a robot to move in a narrow corridor. But now the robot
is able to turn in both directions.

The files you have to load are:

Scene: "Scene3.xml"

Robot: "Robot3.xml"

NeuralNetwork: "Robot3Networki.xml" or "Robot3Network2.xml".

How to train a robot

In order to train a robot you must have MATLAB with Neural Network toolbox installed on
your computer. I have created two scripts: feedforward.m and savenetwork.m which are
used in this tutorial. Please copy them into your MATLAB work directory.

The first step you have to undertake is designing a scene and a robot. In this tutorial we are
working with a simple empty rectangular area and a simple robot with six infrared sensors.

<world width = "80.0" height = "100.0"
startX = "10.0"
startY = "10.0"
startAngle = "0.0">
</world>
<neuralrobot wheelDistance = "5.2" robotSpeed = "8.0">
<object x = "20.0" y = "20.0" r = "2.6"
angle = "0.0"
height = "3.0"
mass = "50.0"
staticFrictionThreshold = "1.0"
viscousFrictionTau = "0.5"
viscousMomentFrictionTau = "0.0"
collisionAngularFrictionFactor = "0.01"
color = "Red">
</object>
<sensors>
<irsensor x = "1.0" y = "1.0"
height = "1.8"
orientation = "0.0"
range = "20.0"
aperture = "0"
rayCount = "1"
sensorResponseKernel = "simple" />
<irsensor x = "1.0" y = "-1.0"
height = "1.8"
orientation = "0.0"
range = "20.0"
aperture = "0"
rayCount = "1"
sensorResponseKernel = "simple" />
<irsensor x = "0.5" y = "1.0"
height = "1.8"

orientation = "45.0"

range = "20.0"

aperture = "0O"

rayCount = "1"

sensorResponseKernel = "simple" />
<irsensor x = "0.5" y = "-1.0"

height = "1.8"

orientation = "-45.0"

range = "20.0"

aperture = "0"

rayCount = "1"

sensorResponseKernel = "simple" />
<irsensor x = "0.0" y = "1.0"

height = "1.8"

orientation = "90.0"

range = "20.0"

aperture = "0O"

rayCount = "1"

sensorResponseKernel = "simple" />
<irsensor x = "0.0" y = "-1.0"

height = "1.8"

orientation = "-90.0"

range = "20.0"

aperture = "0"

rayCount = "1"

sensorResponseKernel = "simple" />

</sensors>
</neuralrobot>

When loaded successfully in Robot Neural Simulator application you should get the following
scene:

We are going to train the robot to keep a certain distance from the bounds of the rectangular
area. At first we have to specify the name of the log file.

For instance "RobotLog.log" is a good choice. It is necessary that this file does not exist. If it
does not then write "RobotLog.log" to the File Name edit box.

When you are ready then click on the Start Log button. Now the log file is created and the data
on the sensors + your actions are being written to this log file in certain time intervals. It is
time to move the robot around the rectangular area. After some time if you think that the
training is at the end just click on the Stop Log button.

Here is a piece of my own log file:

00000000 00000000 00000000 013.6866 00000000 057.8567
00000000 00000000 O0OOOO0O0O0O 016.3869 00000000 053.2265
00000000 00000000 00OOOOOOO 014.8516 00000000 055.7677
00000000 00000000 00000000 015.7606 00000000 056.5351
00000000 00000000 00000000 015.6614 00000000 054.2562
0.689666 0.616129 00000000 015.2781 00000000 059.8924
0.898523 0.780486 00000000 016.7938 00000000 059.1452
01.09827 01.28201 00000000 014.9952 00000000 053.4388
01.63977 01.44604 00000000 015.4153 00000000 061.2761
01.67267 02.05729 00000000 017.3189 00000000 056.6577
03.09586 03.72857 00000000 017.3809 00000000 062.4889
005.0089 05.03493 00000000 07.21895 00000000 062.8666
06.52008 06.79527 00000000 04.09871 00000000 046.0674
06.03534 08.55567 00000000 010.7992 00000000 026.0934
04.97141 009.1698 00000000 018.5785 00000000 012.4829
03.89935 08.00387 00000000 0029.847 00000000 05.10918
01.00478 03.52438 00000000 045.4979 00000000 0019.916
00000000 00.77206 00000000 048.2736 00000000 042.9448
00000000 00000000 00000000 044.5865 00000000 060.3912
00000000 00000000 00000000 032.9384 00000000 077.0842
00000000 00000000 00000000 0012.801 00000000 069.5409
00000000 00000000 O0OOOOOOO 0015.052 00000000 066.0309

HFRPREPRPRPRPRRPRRRERRRRRRRRRRE B
eNoNeoNeoNoNeoNoloNoloNoloNoNoNoNoNoNoNoNoNole)
eNeoNeNoNoNeoNoloNoloNoloNoNoNoNoNoNoNoNeoNole)
eNeoNeNoNoNeoNoloNoloNoloNoNoNoNoNoNoNoNeoNole)
COFRRPRPRPREPRPREPPROOOOOOOOOOO
eNeoNeNoNoNeoNoleoNoloNoloNoNoNoNoNoNoNoNoNole)
eNeoNeNoNoNeoNoleoNoloNoloNoNoNoNoNoNoNoNoNole)
eNeoNeNoNoNeoNoloNoloNoloNoNoNoNoNoNoNoNeoNole)

As you can see there are six columns for sensors and four columns for user's actions (1.0 = a
key is down, 0.0 = a key is up). An important thing to note is that the order of rows is
irrelevant. Each row is independent and is representing a self-containing piece of information.
You can create few log files and then you can merge them.

When training a robot you have to realize that the only thing the robot can see are the six
numbers on its sensors. So if you make different actions on very similar situations (from the
robot point of view) then it is very likely that the robot will not be able to understand what you
want.

Now we are going to transfer this log file into the MATLAB. You do not need to copy all the
lines. It is recommended to delete those lines where the robot is not moving (i.e. the last four
columns are zero).

In MATLAB you have to create two matrices. The first matrix X contains the columns 1 to 6 of
the log file and the second matrix Y contains the columns 7 to 10 of the log file. If you have
these matrices set then all you need to do is to write the following command:

[net, mean, std, PCAmatrix] = feedforward(X.', Y.'");

Note that X." is a transposition of matrix X.

The results of the training are showed in a graph like this one:

Performance 1= 000757576, Goal is 0

TD L T T T T T T T T T T
i Train i
Validation []
Test
107} !
107} i
15‘3]]] 1]]]]] 1

0 2 4 B 8 10 12 14 16 18 20

The result network is stored in the net variable. The variables mean, std and PCAmatrix are
used to correlate the input data.

You can also define your own architecture of the network. All you have to do is to open
"feedforward.m" file and modify the default settings - the row:

net = newff (minmax (Xtrans), [2 m], {'logsig', 'logsig'});

The m variable is the number of output cells (in our case m = 4).
I have tried only these architectures in my own experiments:

[2 m], {'"logsig', 'logsig'}
[4 m], {'"logsig', 'logsig'}
[2 4 m], {'logsig', 'logsig', 'logsig'}
[4 4 m], {'logsig', 'logsig', 'logsig'}

The last step is saving this network into an xml file:
savenetwork ('RobotNetwork.xml', net, mean, std, PCAmatrix);

This command saves the network to the "RobotNetwork.xml" file. You can load this network in
Robot Neural Simulator application and try how it works. That is all.

But remember, this network is closely associated with the robot you have trained. You cannot
use this network with other robots.

First results are often unsatisfactory. You have to gain some practice and experience in order to
become a good trainer.

Results and conclusion

One of the main limitations of the simulator is that the robot (and also the feed forward neural
network) does not contain any internal states. This means for instance that the robot does not
know what it has done few milliseconds before. Its actions are based only on the present data
on the sensors.

Another limitation is that the circular cameras are not considered during training. This is
mainly because the camera gives you too many information at once. At first you have to
transform the raw data from the camera into the form that is appropriate for training neural
networks. It is not easy to make up such transformation so I have not implemented one yet.

If we take into account all these constraints then we get some unpleasant consequences: For
instance the robot is not able to learn drawing back from a dead end. The robot cannot stop
because if it stops then it will never start running again etc.

Despite all these restrictions I consider this simulator successful. It has proved that it is
possible to train a robot to do some actions only by demonstrating these actions. You need not
to specify all the details to the robot.

I think that this technique can be also applied in the physical robots. If you write the control
unit of a robot by hand you often cannot treat all the possibilities that can happen. Neural
networks are more robust than if-then-else code. They can give good results even if the input
data are imprecise.

II. PART

Robot Framework

Robot Framework (RFW) is a group of interfaces and classes in the RFW namespace. The core
interfaces are: IWorld, IPhysicalObject and IRobot.

Robot Framework)

<< [nterface ==
IWorld

+ClearWoridiwiath: double height: doubie) void
+GetPhysicalObjectCount): size 1
+GetPhysicalObjectiindex size t).[PhysicalDbject
+5etRobotCount() size t

+GetRobotfindex size t)1Robot

+5tep(time double) void

l& !

<< [Merface ==

I
I
|
|
I IPhysicalObject

ConcreteWorld &

p— c:interface >>
IRebot

Classes that implements IWorld contain (are composed of) IPhysicalObjects and IRobots. Note
that if you destroy IWorld then IPhysicalObjects and IRobots are also destroyed. If you think
of IWorld you should remember that it is only a container of objects and robots. It has no other
responsibilities.

These interfaces are too general so they are not used directly. We have to add some
dependencies in order to get useful interfaces.

RFW Interfaces

At first IEnkiWorld interface is introduced:

Fobot Framew ork |I"ItEI‘TEEE.'5/J [

<< |nterface »>»
IWorld

+ClearWoridiwidth. double height. couble) void
+GetPhysicalObjectCount() size_t
+GetPhysicalObject{index:size _t):IPhysicalObject
+GetRobotCount(): size_t

+GetRobolfindex; size 1) IRobot

+Step(time double) void

A

<< nterface ==
IEnkiW orld

+AcdP hysicalObject{object IEnkiPhysicalObject) void
+AcdRobot{robot: IEnkiRobat); void
+AadStartingPoint(point A Point) void
+RemovePhysicalCbjectiobject:IEnkiP hysicalChject) void
+RemoveRoboifrobot IEnkiRabat) void
+5etStarfingPointCount().size t

+GetStartingPointfindey size) An:Poirt
+H5etEnkiWorid() Enki World
+Read(io:CEnKIOStrust) void

+Render) vaid

The most important methods are: GetEnkiWorld, Read and Render.
GetEnkiWorld method connects IEnkiWorld to Enki, Read connects IEnkiWorld to MSXML
and Render connects IEnkiWorld to DirectX.

Other important methods are: AddPhysicalObject and AddRobot. These methods should not

be called directly by the user. Instead they should be placed in the constructor of the object
(robot).

For instance the creation of CEnkiRobot should look like this:

m_EnkiRobot = new RFW::CEnkiRobot (m_EnkiWorld);

This code creates an instance of RFW::CEnkiRobot class and then it inserts this instance to the
m_ EnkiWorld and makes all other necessary things.

m__EnkiRobot now belongs to m_EnkiWorld so it is prohibited to call destructor on

m_ EnkiRobot. Instead you should call m_ EnkiWorld.RemoveRobot method.

Note on naming convention: We write IEnkiWorld in order to underline the fact that this
interface depends somehow on Enki physical engine. Despite this interface is full-valued RFW
interface. This also relates to all other interfaces (classes) starting with IEnki (CEnki) prefix.
Enki classes always start with Enki:: prefix.

IEnkiPhysicalObject and IEnkiRobot interfaces are analogous:

Robot Framewark InterTaces)
<< |rterface == << interface ==
IPhysicalObject IRobot
<< jnterface == =< jnterface ==
IEnkiPhysicalObject IEnkiRobot
+ClearPhysicalObject() void +ClearRobot().void
+GEelEnKIPROD() Enki -Physicalobject +GelEnkiRobal(). Enki:: Robot
+Read(io. CEnkICOStruet) void +Read/io, CEnkilOStruct) void
+Render() . void +Render(). void

RFW Classes

Robot Framework Classes)

<< |nterface ==
IEnkiWorid

CEnkiWorld

-m_Waord Enki:Waord

-m_EnkiWoarldGraphics IEnkiGraphics
-m_Enkivarldl 2 IEnkilO
-m_EnkiFhysicalObjects:vectar<|EnkiFhysicalObject *=
-m_EnkiRobots vectar<IEnkiRobots *=»
-m_statingFoints: vector<An:: Foint=

CEnkiWorld class implements IEnkiWorld interface. It is something like a container of
IEnkiPhysicalObjects and IEnkiRobots.

Fobat Framewark Classes)
CEnkiWonrd
=< [nterface == << jnterface ==
IEnKiPhysicalObject IEnkiRobot

+ClearP hysicalObject (). void +ClearRobol{):void
+SelEnkiPhObL() Enki: PhysicalObject +GetEnkiR obof(): Enki:Robot
+Read(io: CEnkIIOS truct):void +Read(io: CEnkiIlOStruct) void
+Render() void +Render() void

CEnkiWorld class is also able to generate graphic output (Render()) and load data from an xml
document (Read(CEnkiIOStruct &)). The responsibility for rendering and loading data is
moved to other classes due to strategy pattern (see the green rectangle). CEnkiWorld class
knows only the interfaces: IEnkiGraphics and IEnkilO.

Robot Framework Classes)

<< interface =» << interface »=
IEnkiPhysicalObject IEnkiRobot
A A
| ' [
1 1
CEnkiPhysicalObject CEnkiRobot
-m_Enkivwarld: CEnkiv arld | -m_Enkiwarld: CEnkivv orld
-m_PhysicalObject Enki: PhysicalCbject -m_Robot Enki;Robot
-m_EnkiFnCbGraphics: IEnkiGraphics -m_EnkiRobotGraphics: IEnkiGraphics
-m_EnkiPhCkEIC: [Enkil O -m_EnkiRobotl O ERKID

These classes are similar to CEnkiWorld class. CEnkiRobot class is only a demonstration class.
It cannot be used directly. It only shows you how to create your own robotic classes. The reason
is simple: At first you have to write a concrete Enki robot class that extends Enki::Robot class.
Then you can write a wrapper RFW class.

Classes like CEnkiWorld, CEnkiPhysicalObject, CEnkiRobot should not be subclassed.

RFW Graphics

Robot Framew ark Graphics Inten‘al:e)

=< interface >
IEnkiGraphics

+Render():void

IEnkiGraphics is an interface for all classes that are responsible for rendering something.

RFW Graphics classes

At first auxiliary plotter classes are introduced:

Robot Framew ork Graphics Classes)

CEnKiP hysicalObjectPlotter

+Render{object Enki::PhysicalObject):void

CEnKiCircularCampP lotter

+Render{camera: Enki: CircularCam rdouble):void

CEnkilRSensorP lotter

+Render{irsensor Enki:IRS ensor): void

These classes are very useful because they can render basic Enki primitives: objects, sensors
and cameras. The object that they render is passed to them through a parameter in their
Render method.

Classes that implements IEnkiGraphics interface follow:

Raobot Framewark Graphics Classes)

<< interface >>
IEnkiGraphics

+Rendeir(); void

AT LA

|
CEnkiWorldGraphics

1

CEnkiPhysicalObjectGraphics

-m_Enkiworld: CEnkiwand -m_EnkiPhyiscalObject: CEnkiP hysical Ohject

[
[
[
|
| -m_ErkiFhCbPlotter: CEnkiPhysicalObjectPlotter
[
[
|

+Render{jvoid

+Rendern)vaid

CEnkiRobotGraphics

-m_EnkiRobot: CEnkiRobot
-m_EnkiPhCbPlotter: CEnkiPhysicalObjectFlotter

+Render()void

For instance CEnkiWorldGraphics class is responsible for rendering CEnkiWorld class. This is
a very tight unidirectional relationship. CEnkiWorld class knows nothing about
CEnkiWorldGraphics class. It only knows IEnkiGraphics interface.

The other classes are analogous: CEnkiPhysicalObjectGraphics class is responsible for
rendering CEnkiPhysicalObject class. CEnkiRobotGraphics class is only a demonstration class
like CEnkiRobot class.

RFW Input/Output

Robaot Framewark 1O |I"ItEI'TE]IZE)

<< [nterface == << [pterface =
IReportErrorAble IEnkilO
+Good(). boof +Read(io. CERKIOSruct)-void

+Error{ert; string) void
+ClearEmor().void
+ReportError() string
AN
|
I

L

CEnkilOStruct

-m_ModePtrMSAMLZ IXMLDOMN odePtr
-m_ReportErrar: CRepartE rrar

+CENKIIOStruct{fileM ame: string):vaid
+SetMadePtinodePtrMSX ML XM LDOMN adeP) void
+GetModePtr() MSE ML IAMLDOMN adeP

Classes that implement IReportErrorAble interface are able to report errors.

CEnkilOStruct encapsulates a handle to an xml file and implements IReportErrorAble
interface too. This class is something like a connection between Robot Framework and
MSXML.

IEnkilO is an interface for all classes that are responsible for loading something from an xml
document.

RFW Input/Output classes

At first auxiliary reader classes are introduced:

Fobot Framew ark 10 C|ESSES/J

CAnNP olygoneReader

+Read(io:CEnkilOStruct polygone: An:Palygone): void

CEnkiPhysicalObjectReader

-m_AnFaolygoneReader CAnNPolygoneReader

+Read({io:CEnkilOStruct object Enki:: Physical Object) void

CEnkKiCircularCamReader

+Read(io:CEnkilOStruct camera Enki: CircularCam)void

CEnkilRSensorReader

+HRead(io:CEnKIOStruct irEnki: IR Sensor) void

These classes are able to read basic Enki primitives: objects, sensors and cameras. The object
that they read is passed to them through a parameter in their Read method.
The io parameter serves as a handle to an xml file.

Classes that implements IEnkilO interface follow:

Fobot Framew ork 1O C|ESSES/J

<< |nterface ==

IEnKIlO
+Read(io; CEnKIOStruct)void
A A
| E'S |
L 1
CEnkiwordiO CEnkiRobotlO

; : _ -m_EnkiFhObReader CEnkiPhysicalObjectReader
+HHead(io:CEnkil CStruct) vaid -

!
i
=
-m_EnkiWord: CEnkiWwarld g -m_EnkiRobot: CEnkiRobot
|
; +Read(io: CEnkilOStruct) vaid
i

CEnKiPhysicalObjectdO

-m_EnkiP hysicalObject: CEnkiPhysicalObject
-m_EnkiP hObReader CEnkiPhysicalObjectReader

+Read(io: CEnkilIOStruct) vaid

For instance CEnkiWorldIO class is responsible for reading CEnkiWorld class from an xml file.
This is a very tight unidirectional relationship. CEnkiWorld class knows nothing about
CEnkiWorldIO class. It only knows IEnkilO interface.

The other classes are analogous. CEnkiPhysicalObjectIO class is responsible for reading
CEnkiPhysicalObject class from an xml file. CEnkiRobotIO class is only a demonstration class
like CEnkiRobot class.

RFW XML files

At first coordinate system is introduced:

Let us imagine a physical object or a robot. Its boundary is defined as a polygon or a circle. If it
is a polygon then the boundary vertices must be sorted in a counterclockwise order. The
centroid of the boundary is always at the beginning of the coordinate system. The front side of
the object (robot) is always in the direction of an x axis.

All the coordinates are in cm and the speed is in ¢cm/s. The framework is precise in a sense that
if you set the speed of a robot for instance to 5 cm/s and robot is moving 10 seconds then it
moves by 50 cm.

A polygon is defined easily. For instance:

<polygone m = "9">
-10.0 -10.0
+10.0 -10.0
+12.0 -7.0
+12.5 -1.5
+12.5 +1.5
+12.0 +7.0
+10.0 +10.0
-10.0 +10.0
-11.0 0.0

</polygone>

Be ware of the counterclockwise order of the vertices.

A physical object is a little more complicated:

<object x = "80.0" y = "40.0"

color = "Maroon"
height = "10.0"
angle = "0.0"
mass = "200.0"
staticFrictionThreshold = "1.0"
viscousFrictionTau = "0.1"
viscousMomentFrictionTau = "0.0"
collisionAngularFrictionFactor = "0.01">
<polygone m = "4">

-10.0 -10.0

+10.0 -10.0
+10.0 +10.0

-10.0 +10.0
</polygone>
</object>

This is a physical object with circular boundary:

<object x = "20.0" y = "60.0" r = "10.0"
color = "Navy"
height = "10.0"
angle = "0.0"
mass = "100.0"
staticFrictionThreshold = "1.0"
viscousFrictionTau = "0.1"
viscousMomentFrictionTau = "0.0"
collisionAngularFrictionFactor = "0.01">
</object>

If you want to understand what exactly all these parameters mean you should look how the
Enki physical engine works.

World just encapsulates physical objects. You can also define starting position for a robot.

<world width = "100.0" height = "100.0"

startX = "10.0"

starty = "10.0"

startAngle = "45.0">

<object x = "40.0" y = "25.0"
color = "Lime"
height = "10.0"
angle = "-45.0"
mass = "100.0"
staticFrictionThreshold = "1.0"
viscousFrictionTau = "0.1"
viscousMomentFrictionTau = "0.0"
collisionAngularFrictionFactor = "0.01">
<polygone m = "9">

-10.0 -10.0

+10.0 -10.0
+12.0 -7.0

+14.0 -1.5
+14.0 +1.5
+12.0 +7.0
+10.0 +10.0
-10.0 +10.0
-12.0 0.0
</polygone>
</object>
<object x = "80.0" y = "40.0"
color = "Red"
height = "10.0"
angle = "45.0"
mass = "100.0"
staticFrictionThreshold = "1.0"
viscousFrictionTau = "0.1"
viscousMomentFrictionTau = "0.0"
collisionAngularFrictionFactor = "0.01">
<polygone m = "4">
-10.0 -10.0

+10.0 -10.0
+15.0 +10.0
-10.0 +10.0
</polygone>
</object>
<object x = "20.0" y = "60.0" r = "5.0"
color = "Blue"
height = "10.0"
angle = "0.0"
mass = "50.0"
staticFrictionThreshold = "1.0"
viscousFrictionTau = "0.1"
viscousMomentFrictionTau = "0.0"
collisionAngularFrictionFactor = "0.01">
</object>
</world>

Circular camera and infrared sensor follow:

<camera x = "2.0" y = "0.0"
height = "0.5"
orientation = "0.0"
fieldOfview = "15.0"
pixelCount = "50" />
<irsensor x = "1.3" y = "1.3"
height = "1.8"
orientation = "45.0"
range = "20.0"
aperture = "0"
rayCount = "1"
sensorResponseKernel = "simple" />

If you want to know where a camera or a sensor is placed on a robot then always imagine the
coordinate system showed at the beggining of this page.

Robot Neural Simulator

Robot Neural Simulator (RNS) is a concrete application of Robot Framework (RFW).

At first Enki::NeuralRobot class is introduced:

EnHi::NeuraIF:Dbl:lt/]

<< jnterface == Robot
RemoteControl

+isUp()-hool
+isDown{): bool

+isLeft(). bool /—?
+isRighty):bool
+Clearn) vold NeuralRobot
+Update()void -irsensors:vector<IRSensar *>

/\ -robotSpeed double

I -wheelDist double

1 -re;RemaoteCartral
ConcreteRem oteControl

+Clear(jvoid

TC: +ClearRemoteContral () void
+SetRemoteControl{rc:RemoteCaontrol): void
+GetRemateControl () Remate Contral
+Step(time doubleyvoid

Enki::NeuralRobot class extends Enki::Robot class. This class represents a simple robot with
two wheels and some infrared sensors and cameras. The robot is controlled via remote control.
Every concrete remote control class implements Enki::RemoteControl interface. I have
implemented two remote classes: CKeyboardRemoteControl class (through this class you can
control a robot by keys) and CNeuralNetworkRemoteControl class (through this class a robot
is controlled by a neural network).

NeuralRobot in RFW

If we want to integrate Enki::NeuralRobot into the Robot Framework we have to create several
classes: CEnkiNeuralRobot, CEnkiNeuralRobotGraphics and CEnkiNeuralRobotIO.

Integrating NeuralRobat)

<< [nterface >
IEnkiRobot

+ClearRobot() void
+GetErkiRobol(). Enki:: Robat
+Read{io. CEnkKIOStruet): void
+Render()void

Jal

1
CEnkiNeuralRobot

-m_Enkiworld: CEnkivarld
-m_MeuralRobot Enki:;NeuralRobot
-m_EnkiNRGraphics: IEnkiGraphics
-m_EnkiNRIC:TEnKIC

+GetEnkiRobat() Enki;: NeuralRobot

The most important thing to note is that GetEnkiRobot method returns pointer to the
Enki::NeuralRobot class.

CEnkiNeuralRobotGraphics class is responsible for rendering CEnkiNeuralRobot class.

Integrating NeuralRobat)

<< [rferface =>
IEnkiGraphics

+Render():void

A

L
CEnkiNeuralRobotGraphics

-m_EnkiMeuralR obot: CEnkiN euralRobot
-m_EnkiFhObPlatter: CEnkIP hysical ObjectP (otter
-m_EnkiCircCamPlotter CEnkiCircularC amPlotter
-m_EnkilRSensorPlotter CEnkilRSensorF latter

#RenderDirection()void
#RenderWheels():vaid

CEnkiNeuralRobotIO class is responsible for reading CEnkiNeuralRobot from an xml file.

Integrating NeuralRobot J

<< nterface ==
IEnkilO

+Read(io. CEnKIOS fruct) void

JA

1

CEnkiNeuralRobotO

-m_EnkiNeuralRobot: CEnkiM euralRobot
-m_EnkiFhObReader; CEnkiFhysicalObjectReader
-m_EnkiCircCamReader. CEnkiCircularCamReader
-m_EnkilRSensorFeader. CEnKIIES ensorReader

#ReadSensars(io: CENKIOStruct);vaid

An example of an xml file follows:

"5.2"
"20.0"

<neuralrobot wheelDistance =
<object x = "20.0" y =
angle = "0.0"
height = "3.0"
mass = "50.0"
staticFrictionThreshold =
viscousFrictionTau = "0.5"
viscousMomentFrictionTau =

"l.O"

"0.0"

robotSpeed = "15

collisionAngularFrictionFactor = "0.05"

color = "Gold">
<polygone m = "6">
-2.5 =2.
+2. -2.
+3. -2.
+3. +2.
+2. +2.
-2.5 +2.
</polygone>
</object>
<sensors>
<irsensor x = "1.0"
height = "1.8"
orientation =
range = "20.0"
aperture = "0"
rayCount = "1"
sensorResponseKernel = "simple"
<irsensor x = "1.3" y = "1.3"
height = "1.8"
orientation =
range = "20.0"
aperture = "0"
rayCount = "1"
sensorResponseKernel = "simple"
<irsensor x = "1.6" y = "0.6"
height = "1.8"
orientation =
range = "20.0"
aperture = "0"
rayCount = "1"
sensorResponseKernel = "simple"
<irsensor x = "1.6" y = "-0.6"
height = "1.8"
orientation =
range = "20.0"
aperture = "0"
rayCount = "1"
sensorResponseKernel = "simple"
<irsensor x = "1.3" y = "-1.3"
height = "1.8"
orientation =
range = "20.0"
aperture = "0"
rayCount = "1"

O O O O
g o O O U1 U

y = nl . gn

"90.0"

"45.0"

"0.0"

"0.0"

"_45.0"

/>

/>

/>

/>

.0">

sensorResponseKernel = "simple" />
<irsensor x = "1.0" y = "-1.5"
height = "1.8"
orientation = "-90.0"
range = "20.0"
aperture = "0"
rayCount = "1"
sensorResponseKernel "simple" />
<irsensor x = "-1.5" y = "-1.0"
height = "1.8"
orientation = "-180.0"
range = "20.0"
aperture = "0O"
rayCount = "1"
sensorResponseKernel = "simple" />
<irsensor x = "-1.5" y = "1.0"
height = "1.8"
orientation = "-180.0
range = "20.0"
aperture = "0O"
rayCount = "1"
sensorResponseKernel = "simple" />
<camera x = "0.0" y = "1.0"
height = "0.5"
orientation = "60.0"
fieldOfview = "45.0"
pixelCount = "50" />
<camera x = "0.0" y = "-1.0"
height = "0.5"
orientation = "-60.0"
fieldOfview = "45.0"
pixelCount = "50" />
<camera x = "2.0" y = "0.0"
height = "0.5"
orientation "0.o"
fieldOfview = "15.0"
pixelCount = "50" />
</sensors>
</neuralrobot>

As you can see this robot has got eight infrared sensors and three cameras.

Feed Forward

The feed forward neural networks are the simplest type of artificial neural networks devised.
The information moves in only one direction, forward, from the input nodes, through the
hidden nodes (if any) and to the output nodes. There are no cycles or loops in the network.

Feed Foward Neural Network)

CFeedForward

-m_InputDimensions:int
-m_OutputDimensions:int
-m_MNumLayers:int

-m_Mean CWectaor

-m_F CAMatrix . CMatrix
-m_LayersDimensions:vectar<int=
-m_LayersTransferFcnvector<function=
-m_Weights:vector< CMatrix =
-m_Biases vector<CWectors

+Simulate(inp: CVectaor) CVectar

The Simulate method simply transforms the input vector into the output vector. The pseudo-
code of this method follows:

CFeedForward: :Simulate (CVector x): CVector

begin
(1) x := x — m_Mean
(2) x := x / m_Std // element by element
(3) v := m_PCAMatrix * x
(4) for Layer := 0 to m_NumLayers - 1 do begin
(5) y := m_Weights[Layer] * y + m_Biases[Layer]
(6) y := m_LayersTransferFcn[Layer] (y)
(7) end

return y;
end

The rows (1), (2), (3) transform the input vector x into the vector y. m_ PCAMatrix is the matrix
of PCA analysis. This transformation of the input data is optional, but the feed forward
networks give better results when trained on correlated data.

The rows (4), (5), (6), (7) are the main computation of the network. We recognize three types of
transfer functions: logsig, tansig and purelin.

An example of an xml file follows:

<network inputDimensions = "6" outputDimensions = "4" numLayers = "3">
<mean>
<vector m = "6">
0.5469
0.8383
14.9469
24.2931
27.4923
39.5549
</vector>
</mean>
<std>
<vector m = "6">
1.4228
2.2431
13.2114
14.9573
18.6651
21.5919
</vector>
</std>
<PCAmatrix>
<matrix m = "6" n = "6">

-0.6129 -0.6111 0.2967 0.2694 0.1270 0.2720
0.0337 0.1230 -0.4286 0.5603 -0.4914 0.4944
-0.0786 -0.0334 -0.6607 0.1831 0.7211 -0.0497
0.3468 0.0235 0.1716 -0.3121 0.3307 0.8017
-0.1551 -0.4163 -0.5119 -0.6501 -0.3351 0.0740
0.6874 -0.6605 0.0078 0.2443 -0.0225 -0.1751
</matrix>
</PCAmatrix>
<layers>
<layer index = "1" dimensions = "4" transferFcn = "logsig" />
<layer index = "2" dimensions = "4" transferFcn = "logsig" />
<layer index = "3" dimensions = "4" transferFcn = "logsig" />
</layers>
<weights>
<inputlayer to = "1">
<matrix m = "4" n = "6">
-2.5202 -0.2487 0.5199 4.9593 -0.2628 -1.5376337509

-1.8132 -=-3.7116 -3.3079 20.3096 -20.5454 20.6921671054
3.5972 -2.0743 -2.6365 2.8116 -2.2578 6.4847634567

0.4913 0.4940 0.0806 -0.5194 -0.3200 -0.8301912843
</matrix>
</inputlayer>
<hiddenlayer to = "2" from = "1">
<matrix m = "4" n = "4">

23.6662 39.9447 41.9081 -83.0140367806
55.5267 -27.9243 45.4143 35.5339920444
4.3360 27.2725 -=23.6810 45.0458177605
-48.7727 33.5489 3.8649 -56.0159550367

</matrix>

</hiddenlayer>

<hiddenlayer to = "3" from = "2">
<matrix m = "4" n = "4">

8.1293
-3.0373
-44.1881

2.2256
-6.8360
-66.0722

10.8377
0.2909
3.9148

.1275475536
. 9822623431
-99.

4670877679

-30.0430 -37.7869 86.7369517566
</matrix>
</hiddenlayer>
</weights>
<biases>
<bias to = "1">
<vector m = "4">
0.5537
-2.3086
6.6602
-0.5831
</vector>
</bias>
<bias to = "2">
<vector m = "4">
17.6842
-64.1610
-13.8322
14.2032
</vector>
</bias>
<bias to = "3">
<vector m = "4">
4.5828
-10.2205
68.0925
-44.,2838
</vector>
</bias>
</biases>
</network>

41.3335

This xml code was not written by a human. The network was generated in MATLAB. I have
written a special MATLAB function that can convert such network into an xml file.

RNS Scene

Robot Meural Simulataor Scene)

=< interface ==
IReporiErrorAble

AN
bty
1
CRobotMeuralSimulatorScene

+ClearScens():void

+ClearRobot{ivoid

+ClearMetwork();void
+LoadSceneFromFilelfieMame:string):void
+LoadR obotFromFile(file Name: string):vaid
+LoadMetworkFromFile(file Mame: string):v oid
+5tartLog (file Mame:string):void
+isLogging():bool

+Log(time:floativoid

+5tapLlog()void

+5etRobotTokeyboard (v oid
+SetRobotToleuralMetwork():void
+GetWo rld(): | En kiWarld
+GetRobot():CEnkiNeuralRohot
+Render() v aid

+Step(time: double) void

CRobotNeuralSimulatorClass does not belong to RFW. It is a specific class for Robot Neural
Simulator. The interface of this class defines what a user can do in RNS. Calling these methods
in any order at any time should not cause a fall of a program or a run-time error.

Auxiliary classes

There are many useful classes used in Robot Neural Simulator. I will mention only two classes:
CVertexBuffer class and CViewport class.

CVertexBuffer class encapsulates Direct3D Vertex Buffer.

Auxiliary classes)

CVertexBuffer

+Clear{JHRESULT

+CopyWertices{pData;void* Size:uinty HRESULT
+Addvertices(pDatavoid® Size uinty HRESULT

+SetvertexBuffer() HRESULT

+OrawPrimitive(type: D3DPRIMITIVE TYFPEJHRESULT
+DrawPrimitive(type: D3DPRIMITIVETY PE mat D3DAMATRIXYHRESULT

You can simply copy some vertices there and then you can draw it. In addition you can specify
a transformation matrix when drawing. The main advantage of this class is that we have only
one vertex buffer through the whole application. Or if you want to rewrite the simulator for
instance for the OpenGL you just need to rewrite this class.

CViewport class is an interface between logical coordinates of the simulator and physical
coordinates on the screen.

Auxiliary classes)

CViewport

+Setviewport{YHRESULT

+Clearviewport{color D3DCOLOR)HRESULT
+UndoViewport() HRESULT
+SetClippingRect{x int yv.intwidth:int height.int). void
+SetToTarget{width:float height:float) void
+MoveTa(x float v float time:float)void
+MoveBy(« float v float time:float)void
+ScaleTo(scalefloat timefloat) void
+ScaleBy(scalefloat timefloat) void
+GetGlobalPoint{localvec D3DXVECTOR 2} P aint
+GetlocalPoint{globalPoint Point). D3DXVECTOR2

Thanks to this class you can for instance transform a position of the mouse to the logical
coordinates of the simulator and vice versa. You can imagine this class as a rectangle on the
screen of the application where all the objects of the simulator world are rendered.

There are also some useful methods. For instance by MoveTo method you can move the
viewport fluently to some specific point.

All these auxiliary classes work independently of robot framework.

