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Preface

Restarting automata [7] were introduced as a tool for modeling some tech-
niques used for natural language processing. In particular they are used for
analysis by reduction which is a method for checking (syntactical) correct-
ness or non-correctness of a sentence. While restarting automata are quite
general (see [8] for an overview), they still lack some properties which could
facilitate their wider use. One of their drawbacks is, for instance, the lack
of some intuitive way how to infer their instructions. There were several
attempts to learn their instructions by using genetic algorithms, but the
results are far from being applicable.

Clearing restarting automata were introduced in [2, 3] as a new restricted
model of restarting automata which, based on a limited context, can only
delete a substring of the current content of its tape. The model is motivated
by the need for simpler definitions and simultaneously by aiming for efficient
machine learning of such automata. Clearing restarting automata are studied
in [3]. We only mention that they can recognize all regular languages, some
context-free languages and even some non-context-free languages. Moreover,
the model is effectively learnable from positive samples of reductions and it
is even possible to infer some non-context-free languages in this way. How-
ever, there are some context-free languages that are outside the class of
languages accepted by clearing restarting automata. This limitation led to
the development of the extended versions of clearing restarting automata. In
[3] there were introduced two extended versions – the so-called ∆-clearing
restarting automata and ∆∗-clearing restarting automata. Both of them can
use a single auxiliary symbol ∆ only. ∆-clearing restarting automata can
leave a mark – a symbol ∆ – at the place of deleting besides rewriting into
the empty word λ. ∆∗-clearing restarting automata can rewrite a subword
w into ∆k where k is bounded from above by the length of w. It was shown
in [3] that ∆∗-clearing restarting automata are powerful enough to recog-
nize all context-free languages. This result was later extended in [4, 5] to
hold also for the more restricted ∆-clearing restarting automata. In [1] there
was proposed yet another model, the so-called subword-clearing restarting
automata, which, based on a limited context, can replace a substring z
of the current content of its tape by a proper substring of z. This model
proved useful in some grammatical inference scenarios. It was shown that
it is possible, by using a simple learning algorithm, to identify any clearing
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(subword-clearing) restarting automaton in the limit from any “reasonable”
presentation of positive and negative samples.

The goal of the project Clearing Restarting Automaton is to provide a
basic development framework for implementing the algorithms concerning
clearing restarting automata and other similar models (like subword-clearing
restarting automata, ∆-clearing restarting automata etc.). In other words,
our aim is to bring the theory closer to the real world. We do not expect that
the algorithms developed in this project will be applicable to the real world
data. Instead, they can be used as tools for researchers who are interested in
models used in the theory of automata and formal languages. The project
itself is hosted on the following website: http://code.google.com/p/
clearing-restarting-automata/.

This guide has the following structure. Chapter 1 introduces the used
automata models and fixes the notation. Chapter 2 shows how to install
the application and how to use the application to define and investigate
our automata models. It also shows how to infer automata from a sample
computation and how to infer automata from the given set of positive and
negative samples.

The project Clearing Restarting Automaton is freely licensed under the
GNU GPL v3.0 and available for Windows, Linux and Unix platforms. It
was developed in C] 4 by using Microsoft Visual Studio 2010 and the target
platform is .NET Framework 4.0. If you want to use the application on Win-
dows, you need to have the .NET Framework 4.0 installed on your computer.
For Linux and Unix platforms, you can use the open source Mono project
for running this application. You are very welcome to use and modify the
source code, and even to contribute to the project itself, provided that you
contact me and mention my authorship in your own projects.
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Chapter 1

Theoretical Background

As our reference concerning the theory of automata and formal languages
we use the monograph [6].

An alphabet is a finite nonempty set. The elements of an alphabet Σ are
called letters or symbols. A word or string over an alphabet Σ is a finite
sequence consisting of zero or more letters of Σ, whereby the same letter
may occur several times. The sequence of zero letters is called the empty
word, written λ. The set of all words (all nonempty words, respectively)
over an alphabet Σ is denoted by Σ∗ (Σ+, respectively). If x and y are words
over Σ, then so is their catenation (or concatenation) xy (or x · y), obtained
by juxtaposition, that is, writing x and y one after another. Catenation is
an associative operation and the empty word λ acts as an identity: wλ =
λw = w holds for all words w. Because of the associativity, we may use the
notation wi in the usual way. By definition, w0 = λ.

Let u be a word in Σ∗, say u = a1 . . . an with ai ∈ Σ. We say that n is
the length of u and we write |u| = n. The sets of all words over Σ of length
k, or at most k, are denoted by Σk and Σ≤k, respectively. By |u|a, for a ∈ Σ,
we denote the total number of occurrences of the letter a in u. The reversal
(mirror image) of u, denoted uR, is the word an . . . a1. Finally a factorization
of u is any sequence u1, ..., ut of words such that u = u1 · · ·ut.

For a pair u, v of words we define the following relations: u is a prefix of
v, if there exists a word z such that v = uz; u is a suffix of v, if there exists
a word z such that v = zu; and u is a factor (or subword) of v, if there exist
words z and z′ such that v = zuz′. Observe that u itself and λ are subwords,
prefixes and suffixes of u. Other subwords, prefixes and suffixes are called
proper.

Subsets of Σ∗ are referred to as (formal) languages over Σ.

1.1 Context Rewriting Systems

In this section we introduce our central concept, called context rewriting
systems, which will serve us as a framework for clearing (subword-clearing)
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restarting automata and other similar models.

Definition 1.1 ([3]). Let k be a positive integer. A k-context rewriting
system ( k-CRS for short) is a system M = (Σ,Γ, I), where Σ is an input
alphabet, Γ ⊇ Σ is a working alphabet not containing the special symbols ¢
and $, called sentinels, and I is a finite set of instructions of the form:

(x, z → t, y) ,

where x is called left context, x ∈ LCk = Γk ∪ ¢ · Γ≤k−1, y is called right
context, y ∈ RCk = Γk ∪ Γ≤k−1 · $ and z → t is called instruction-rule,
z, t ∈ Γ∗. The width of the instruction i = (x, z → t, y) is |i| = |xzty|.

A word w = uzv can be rewritten into utv (denoted as uzv `M utv) if
and only if there exists an instruction i = (x, z → t, y) ∈ I such that x is a
suffix of ¢ · u and y is a prefix of v · $. We often underline the rewritten part
of the word w, and if the instruction i is known we use `(i)

M instead of `M ,

i.e. uzv `(i)
M utv. The relation `M ⊆ Γ∗ × Γ∗ is called rewriting relation.

Let l ∈ ¢ ·Γ∗ ∪Γ∗, and r ∈ Γ∗ ∪Γ∗ · $. A word w = uzv can be rewritten
in the context (l, r) into utv (denoted as uzv →R utv in the context (l, r))
if and only if there exists an instruction i = (x, z → t, y) ∈ I, such that x is
a suffix of l · u and y is a prefix of v · r. Each definition that uses somehow
the rewriting relation →R can be relativized to any context (l, r). Unless told
otherwise, we will use the standard context (l, r) = (¢, $).

The language associated with M is defined as L(M) = {w ∈ Σ∗ | w `∗M
λ}, where `∗M is the reflexive and transitive closure of `M . Note that, by
definition, λ ∈ L(M).

The characteristic language associated with M is defined as LC(M) =
{w ∈ Γ∗ | w `∗M λ}. Similarly, by definition, λ ∈ LC(M). Obviously,
L(M) = LC(M) ∩ Σ∗.

Remark 1.1. We also include a special case k = 0 in Definition 1.1. In this
case we define LC0 = RC0 = {λ}, and the rest of the definition remains the
same.

Remark 1.2. We also extend Definition 1.1 with the following notation: if
X ⊆ LCk and Y ⊆ RCk are finite nonempty sets, and Z is a finite nonempty
set of rules of the form z → t, z, t ∈ Γ∗, then we define (X,Z, Y ) = {(x, z →
t, y) | x ∈ X, (z → t) ∈ Z, y ∈ Y }. However, if X = {x}, then instead of
writing ({x}, Z, Y ) we write only (x, Z, Y ) for short. The same holds for the
sets Z and Y , too.

Naturally, if we increase the length of contexts used in instructions of a
CRS, we can increase their power only.

Remark 1.3. Based on the above observation, in Definition 1.1 we can
allow contexts of any length up to k, i.e. we can use:

LC≤k = Γ≤k ∪ ¢ · Γ≤k−1 =
⋃
i≤k LCi instead of LCk and

RC≤k = Γ≤k ∪ Γ≤k−1 · $ =
⋃
i≤k RCi instead of RCk.
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It is easy to see that general k-CRS can simulate any type 0 grammar (ac-
cording to the Chomsky hierarchy [6]). Hence we will not consider k-CRS in
their general form, since they are too powerful (they can represent all recur-
sively enumerable languages). Instead, we will always put some restrictions
on the instruction-rules and then study such restricted models. The first
model we introduce is the so-called clearing restarting automaton which is
a k-CRS such that Σ = Γ and all instruction-rules are of the form z → λ,
where z ∈ Σ+.

1.2 Clearing Restarting Automata

Definition 1.2 ([3]). Let k be a nonnegative integer. A k-clearing restarting
automaton ( k-cl-RA for short) is a k-CRS M = (Σ,Σ, I) (or M = (Σ, I),
for short), where for each instruction i = (x, z → t, y) ∈ I: z ∈ Σ+ and
t = λ. Since t is always the empty word, we use the notation i = (x, z, y).

Remark 1.4. Speaking about a k-cl-RA M we use “automata terminology,”
e.g. we say that M accepts a word w if w ∈ L(M). By definition, each
k-cl-RA accepts λ. If we say that a k-cl-RA M recognizes (or accepts) a
language L, we always mean that L(M) = L ∪ {λ}.

This implicit acceptance of the empty word can be avoided by a slight
modification of the definition of clearing restarting automata, or even context
rewriting systems, but in principle, we would not get a more powerful model.

Example 1.1. Let M = (Σ, I) be a 1-cl-RA with Σ = {a, b} and I consisting
of the following two instructions:

(1) (a, ab, b),
(2) (¢, ab, $).

Then we have aaaabbbb `(1)
M aaabbb `(1)

M aabb `(1)
M ab `(2)

M λ which means that
aaaabbbb `∗M λ. So the word aaaabbbb is accepted by M . It is easy to see that
M recognizes the language L(M) = {anbn | n ≥ 0}.

Clearing restarting automata are studied in [3]. We only mention that
they can recognize all regular languages, some context-free languages and
even some non-context-free languages. However, there are some context-
free languages that are outside the class of languages accepted by clearing
restarting automata.

Theorem 1.1 ([3]). The language L = {ancbn | n ≥ 0} is not recognized by
any k-cl-RA.

The above limitation led to the development of the extended versions of
clearing restarting automata. In [3] there were introduced two extended ver-
sions – the so-called ∆-clearing restarting automata and ∆∗-clearing restart-
ing automata. Both of them can use a single auxiliary symbol ∆ only. ∆-
clearing restarting automata can leave a mark – a symbol ∆ – at the place
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of deleting besides rewriting into the empty word λ. ∆∗-clearing restarting
automata can rewrite a subword w into ∆k where k is bounded from above
by the length of w.

1.3 ∆-Clearing Restarting Automata

Definition 1.3 ([3]). Let k be a nonnegative integer. A k-∆-clearing restart-
ing automaton ( k-∆cl-RA for short) is a system M = (Σ, I), where R =
(Σ,Γ, I) is a k-CRS such that ∆ /∈ Σ, Γ = Σ∪{∆}, and for each instruction
i = (x, z → t, y) ∈ I: z ∈ Γ+ and either t = λ, or t = ∆.

Analogously, a k-∆∗-clearing restarting automaton ( k-∆∗cl-RA for short)
is a system M = (Σ, I), such that for each instruction i = (x, z → t, y) ∈ I:
z ∈ Γ+ and t = ∆i, where 0 ≤ i ≤ |z|.

The k-∆cl-RA (k-∆∗cl-RA) M recognizes the language L(M) = {w ∈ Σ∗ |
w `∗M λ} = L(R), where `M is the rewriting relation `R of R = (Σ,Γ, I).

The characteristic language of M is the language LC(M) = LC(R).

Example 1.2. Let M = (Σ, I) be the 1-∆cl-RA with Σ = {a, b, c} and the
set of instructions I consisting of the following instructions:

(1) (a, c→ ∆, b),
(2) (a, a∆b→ ∆, b),
(3) (¢, a∆b→ ∆, $),
(4) (¢, c→ ∆, $),
(5) (¢,∆→ λ, $).

An input word ancbn, for arbitrary n > 1, is accepted by M in the fol-
lowing way:

ancbn `(1)
M an−1a∆bbn−1n `(2)

M an−1∆bn−1 `(2)
M . . . `(2)

M a∆b `(3)
M ∆ `(5)

M λ .

First, M deletes c while marking its position by ∆. In each of the following
steps, M deletes one a and one b around ∆ until it obtains single-letter word
∆, which is then reduced into λ.

It is easy to see that M recognizes the language L = {ancbn | n ≥ 0}∪{λ}.
The characteristic language of M is

LC(M) = {ancbn, an∆bn | n ≥ 0} ∪ {λ} .

It was shown in [3] that ∆∗-clearing restarting automata are powerful
enough to recognize all context-free languages. This result was later extended
in [4, 5] to hold also for the more restricted ∆-clearing restarting automata.

1.4 Subword-Clearing Restarting Automata

In [1] there was proposed yet another model, the so-called subword-clearing
restarting automaton, which proved useful in some grammatical inference
scenarios.
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Definition 1.4. Let k be a nonnegative integer. A k-subword-clearing restart-
ing automaton ( k-scl-RA for short) is a k-CRSM = (Σ,Σ, I), where for each
instruction i = (x, z → t, y) ∈ I: z ∈ Σ+ and t is a proper subword of z.

Subword-clearing restarting automata are strictly more powerful than
clearing restarting automata. They can, for instance, recognize the language
{ancbn | n ≥ 0} ∪ {λ}, which lies outside the class of languages accepted
by clearing restarting automata. However, they still cannot recognize all
context-free languages. (Consider e.g. the language {wwR | w ∈ Σ∗}).

1.5 Grammatical Inference

In this section we introduce a learning schema for clearing (subword-clearing)
restarting automata and other similar models. It is possible to identify any
hidden target model in the limit by using this schema. We provide only a
short introduction for the purposes of this guide. For more details we refer
the interested reader to [1].

The problem we are interested in can be best described as follows. Sup-
pose that we have two finite sets of words over the alphabet Σ: the set of
positive samples S+ and the set of negative samples S−. Our goal is to find
an automaton M , such that: S+ ⊆ L(M) and S− ∩ L(M) = ∅. We may
assume that S+ ∩ S− = ∅ and λ ∈ S+.

If we have no other restrictions, then the task becomes trivial even for
clearing restarting automata. Just consider the instructions I = {(¢, w, $) |
w ∈ S+, w 6= λ}. It follows trivially, that in this case L(M) = S+, where
M = (Σ, I). Therefore, we impose the maximal allowed width l ≥ 1 and
also the specific length k ≥ 0 of contexts for the instructions of the resulting
automaton.

The learning schema itself is defined in Algorithm 1.

Algorithm 1: Learning schema Infer(S+, S−, l, k)

Input : The set of positive S+ and negative S− samples over Σ,
S+ ∩ S− = ∅, λ ∈ S+. The maximal width of instructions
l ≥ 1. The length of contexts of instructions k ≥ 0.

Output: An automaton consistent with (S+, S−), or Fail.
1 Φ← Assumptions(S+, l, k);
2 while ∃w− ∈ S−, w+ ∈ S+, φ ∈ Φ : w− `φ w+ do
3 Φ← Φ \ {φ};
4 Φ← Simplify(Φ);
5 if Consistent(Φ, S+, S−) then
6 return Automaton with instructions Φ;

7 Fail;
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First, the function Assumptions(S+, l, k) returns some set of instruction
candidates. Let us assume, for a moment, that this set already contains all
instructions of the hidden target automaton. Then in Cycle 2 we gradually
remove all instructions that allow reduction from some negative sample to
some positive sample. (These filtered instructions are definitely not in the
set of instructions of the hidden target automaton). In Step 4 we remove
redundant instructions and in Step 5 we check if the remaining set of in-
structions is consistent with the given input set of positive and negative
samples. In other words, we check if (1) for all w+ ∈ S+ : w+ `∗Φ λ and (2)
for all w− ∈ S− : w− 6`∗Φ λ. The condition (1) always holds, provided that in
Step 1 we already obtained all instructions of the hidden target automaton.
However, the condition (2) may fail. The success of the above algorithm,
therefore, depends both on the initial assumptions obtained in Step 1, and
on the given set of positive and negative samples. Nevertheless, if we have
a “reasonable” implementation of the function Assumptions, then there is
always a set of positive samples S+

0 and a set of negative samples S−0 such
that the above schema converges to a correct solution for all sets of positive
samples S+ ⊇ S+

0 and negative samples S− ⊇ S−0 consistent with the hidden
target automaton. This also implies that we can infer a correct solution in
the limit from any presentation of labeled samples that covers all the samples
from S+

0 and S−0 .
There are “reasonable” implementations of the function Assumptions

(both for clearing and subword-clearing restarting automata) that run in
a polynomial time. In fact, they run in a linear time, if the maximal width
of instructions l and the length of contexts k is considered to be a fixed
constant.

Example 1.3. Here we define two functions Assumptions that we use in our
inference algorithm.

1. Assumptionsweak(S
+, l, k) := {(x, z, y) | x ∈ LCk, y ∈ RCk, |z| >

0, |xzy| ≤ l and ∃w1, w2 ∈ S+ : xzy is a subword of ¢w1$ and xy
is a subword of ¢w2$}.
The basic intuition behind this procedure is the assumption that if both
patterns xzy and xy occur in the set of positive samples, then it is
somehow justified to clear the word z based on the context (x, y). Note
that the more we increase the length of contexts k the smaller (or equal)
the number of such patterns we will find. The contexts serve here as a
safety cushion against the inference of incorrect instructions.

2. Assumptionsstrong(S
+, l, k) := {(x, z, y) | x ∈ LCk, y ∈ RCk, |z| >

0, |xzy| ≤ l and ∃w1, w2 ∈ S+ : w1 = αzβ, w2 = αβ, x is a suffix
of ¢α and y is a prefix of β$}.
This condition is more restrictive than the previous one. It basically
says that the instruction (x, z, y) is justified only in the case when there
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are positive samples w1, w2 ∈ S+ such that we can obtain w2 from w1

by using this instruction.

All these functions can be computed in a polynomial time with respect
to size(S+) =

∑
w∈S+ |w|. In fact, if l and k are fixed constants, then these

functions can be computed in a linear time, since we need to consider only
subwords of length bounded from above by the constant l.

The above examples can be easily extended to the model of k-scl-RA.
The only difference would be that instead of patterns xzy and xy we would
consider the patterns xzy and xty, where t is a proper subword of z.
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Chapter 2

Application

This chapter shows how to model and investigate clearing (subword-clearing,
∆-clearing, etc.) restarting automata and, in general, all context rewriting
systems. For simplicity, we use the term automaton to refer to any context
rewriting system. In Section 2.1 we show how to install the application both
on Windows and UNIX platforms. In Section 2.2 we explain how to enter the
instructions into the application and how to test the properties of correctly
defined automata. In Section 2.3 we showcase the inference of automata
based on the set of sample reductions. Finally, in Section 2.4 we show how
to infer clearing (subword-clearing) automata from the set of positive and
negative samples.

2.1 Installation

In this Section we explain how to install the project Clearing Restarting
Automaton both on Windows and UNIX platforms.

For Windows platform you need to have the .NET Framework of version
at least 4.0 installed on your computer. You can download this framework
from the Microsoft web site: http://www.microsoft.com/. To run the
application just double-click on the application executable:

ClearingRestartingAutomaton.exe

For UNIX platform you need to have the Mono project installed on your
computer. For more information on the project see the web page: http:
//www.mono-project.com/. If the Mono project is installed correctly
you can run the application by entering the following command:

> mono ClearingRestartingAutomaton.exe

If you want to make modifications to the code we recommend to use
Microsoft Visual Studio as the development environment.

Both the source code and the executable file can be downloaded freely
from the following website:
http://code.google.com/p/clearing-restarting-automata/
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2.2 Basics

Figure 2.1: Clearing Restarting Automaton.

After starting Clearing Restarting Automaton application the window for
entering the instructions displays as in Figure 2.1. The instructions entered
into this window define the corresponding automaton. In the first part of
this Section we explain the syntax of these instructions. After the automa-
ton is correctly defined (i.e. the instructions of the automaton are correctly
entered), it is possible to investigate the properties of this automaton (i.e.
the language recognized by this automaton etc.). Therefore in the second
part of this Section we describe Reduce/Generate Dialog that can be used
to investigate the properties of the correctly defined automata.

Example 2.1. Suppose that we want to model the cl-RA M = ({a, b}, I),
where the instructions I are:

(a, ab, b),

(¢, ab, $).

We can represent these instruction as:

[a]ab[b]
[ˆ]ab[$]

Note that the symbol ˆ represents the left sentinel ¢ and the symbol $ repre-
sents the right sentinel $. The set notation for instructions is also supported.
The set braces are represented by the square brackets [ and ], and the ele-
ments inside these brackets are separated by whitespace or by commas: ,, ;.

10



For instance, if we want to represent the instruction ({¢, a, b}, ab, {a, b, $}),
we can do it as follows:

[ˆ a b] ab [a b $]

Note that the whitespace inside the instruction (i.e. between the left and the
right context) is ignored.

All instructions of CRS are supported. For instance, the instruction (a, ab→
ba, b) can be represented as:

[a] ab -> ba [b]

However, only the following symbols can occur inside the words and contexts:
a-z A-Z 0-9 ! @ # % & * ( ) ’ \ / _ + : " | ? .
The dot symbol . has a special meaning. It represents the empty word λ.
This means, for instance, that the following two instructions are equivalent:

[a] ab [b]
[a] ab -> . [b]

You can also use the empty contexts in instructions. For instance, the fol-
lowing two instructions are equivalent:

[] ab []
[.] ab [.]

In the following example we illustrate how to investigate the properties
of correctly defined automata.

Example 2.2. Suppose that we have a CRS M = (Σ,Σ, I) with Σ = {a, b}
and the following set of instructions I:

(¢, ab→ λ, $), (2.1)

(a, ab→ λ, b), (2.2)

({¢, a, b}, ba→ ab, {a, b, $}). (2.3)

The language L(M) = {w ∈ {a, b}∗ | |w|a = |w|b}. Obviously, if w ∈ L(M),
then |w|a = |w|b (because each instruction preserves this property). On the
other hand, if w ∈ {a, b}∗ and |w|a = |w|b then by using the instruction (2.3)
finitely many times we can get the word akbk which can be easily reduced to
λ by using the instructions (2.1) and (2.2).

In Clearing Restarting Automaton application we can represent the in-
structions of M as:

[ˆ] ab [$]
[a] ab [b]
[ˆ a b] ba -> ab [a b $]

11



Figure 2.2: Reduce/Generate Dialog.
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After entering these instructions into the instruction window click on Action
menu item and then click on Reduce/Generate menu item. Reduce/Generate
Dialog will appear as in Figure 2.2.

If you click on Generate Button, the first 20 words of the language L(M)
will appear in Result ListView as in Figure 2.3. You can change the number
of generated words by modifying MaxCount property (20 is set by default).
The button is called Generate Button since the resulting set of words is
generated from Initial Word, which is in our case set to the empty word λ,
by using the breadth-first search technique. You can also specify the maximal
length of the generated words by modifying MaxLength property. By default
this property is set to 0 which means that there is no upper bound on the
length of the generated words.

Figure 2.3: Result ListView.

Now click on the word abba. Two smaller ListViews on the right side
of Result ListView show the list of words which the selected word abba can
be reduced from and the list of words which the selected word abba can
be reduced to. If a word in one of these two smaller ListViews has a gray
color it means that this word is not in Result ListView. For instance, the
word abba can be reduced from the word baba, but the word baba is not
in Result ListView. For illustration see Figure 2.4.

If you click on the word baba then the reduction step from the word
baba to the word abba will appear in Bottom TextBox together with the
used instruction as in Figure 2.5.

If you double-click on the word baba you will add it to Result ListView.
However, the word will still have a gray color. In this way you can explore
the derivation path of a word in both directions.
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Figure 2.4: Smaller ListViews.

Figure 2.5: Reduction Step.
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If you double-click on the word abba in Result ListView then the reduc-
tion path of this word will appear in Bottom TextBox as in Figure 2.6. Only
one reduction path is shown in Bottom TextBox.

Figure 2.6: Reduction Path.

If the result list of words is large you can use a regular expression to filter
the output. Set MaxCount property to 200 and click on Generate Button.
Now enter the regular expression ˆ(ba)*$ to Filter TextBox next to Filter
Button and then click on Filter Button. Result ListView is shown in Figure
2.7.

Figure 2.7: Filtered Result ListView.

Reduce Button can be used in the same way as Generate Button. The
only difference is that Reduce Button is used to find all words that can be
reduced from Initial Word.

If you click on Instructions Button, Information Dialog will appear with
the list of instructions of the used automaton as in Figure 2.8. Note that the
set notation is not used here because this list of instructions represents the
internal representation of the automaton.

2.3 Learning from Reductions

In this section we show how to infer the automaton from the set of sample
reductions.

Example 2.3. Suppose that we have the following sequence of reductions:

abababababababab `M abababababababb `M abababababbabb `M
abababbabbabb `M abbabbabbabb `M abbabbabbab `M
abbabbabab `M abbababab `M abababab `M
abababb `M abbabb `M abbab `M
abab `M abb `M ab `M λ accept.

15



Figure 2.8: Instructions.

From this sample computation, we can collect 15 reductions. All these reduc-
tions have unambiguous factorizations (the deleted symbols are underlined).

To enter these reduction into the application click on Action menu item
and then click on Learn from Samples of Reductions menu item. Learning
Dialog will appear as in Figure 2.9.

First enter the word abababababababab into Initial Word TextBox
and then click on Start Button. After clicking on Start Button Learning
Step TextBox will contain this word and also Learning Process TextBox
will contain this word as the first and the only word. For illustration see
Figure 2.10.

If you want to enter the first reduction:

abababababababab `M abababababababb

you only need to select the underlined letter in Learning Step TextBox as
in Figure 2.11 and then you need to click on Reduce Button. The situation
after clicking on Reduce Button is illustrated in Figure 2.12.

Now we are left with the word abababababababb in Learning Step
TextBox and we can repeat the same procedure with this word etc. until we
enter the whole sample computation. The result of this process is shown in
Figure 2.13.

If we want to append another sample computation we just need to enter
the first word of this sample computation into Initial Word TextBox and
then click on Append Button. The whole process of entering the sample
computation will be the same as was described above. Note that if we click
on Start Button instead of Append Button then the whole Learning Process
TextBox will be cleared in order to enable entering a new sample computation
from scratch.

After we have entered all sample computations we wanted, everything is
prepared to infer the corresponding automaton. The only variable we have to

16



Figure 2.9: Learning Dialog.

Figure 2.10: Learning Dialog Start.
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Figure 2.11: Learning Step Select.

Figure 2.12: Learning Step.

Figure 2.13: Learning Result.
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choose is k – the length of the contexts for the instructions. For the purposes
of this example we set this parameter to k = 4. If we click on Generate
Button, Information Dialog will appear containing the instructions of the
resulting inferred automaton as in Figure 2.14.

Figure 2.14: Resulting Inferred Automaton.

The resulting inferred 4-cl-RA M = ({a, b}, I) has the following set of
instructions I:

({¢ab, abab}, a, {b$, babb}), ({¢a, abba}, b, {b$, bab$, baba}), (¢, ab, $).

It can be shown that the following holds:

L(M) ∩ {(ab)n | n > 0} = {(ab)2l | l ≥ 0}.

Suppose that we want to test this hypothesis. First we copy-paste the inferred
instructions from Figure 2.14 into the main window of Clearing Restarting
Automaton application (see Figure 2.1). Then we click on Action menu item
and then on Reduce/Generate menu item. We generate, for instance, 600
words and then filter them with the following regular expression: ˆ(ab)*$.
Result ListView shown in Figure 2.15 supports our hypothesis.

Note that there are two other buttons in Learning Dialog: Reduce to ]
Button and Reduce to: Button. These can be used to incorporate the gen-
eralized reductions of ∆cl-RA or even CRS. The symbol ] is usually used to
represent the symbol ∆ of ∆cl-RA.

2.4 Learning from Data

In this Section we show how to infer clearing (subword-clearing) automata
from the set of positive and negative samples. We use the learning schema
described in Section 1.5.

19



Figure 2.15: Testing the Hypothesis.

Example 2.4. Consider that we want to infer a k-cl-RA M = ({a, b}, I)
recognizing the language L = {anbn | n ≥ 0}.

First, click on Action menu item and then click on Infer from Posi-
tive and Negative Samples menu item. Inference Dialog will appear as in
Figure 2.16. Note that in Assumptions SelectBox Weak Clearing Assump-
tions item is selected by default. There are several other options, as is shown
in Figure 2.17. Weak Clearing Assumptions item corresponds to the func-
tion Assumptionsweak and Strong Clearing Assumptions item corresponds to
the function Assumptionsstrong, both defined in Example 1.3. The other two
items are the equivalents to these two functions for subword-clearing restart-
ing automata. The last two items are only for experimental purposes and
are not covered in this Section. The item SEARCH Clearing Automaton
( SEARCH Delta-Clearing Automaton) is used for the exhaustive search for
clearing (∆-clearing) restarting automata consistent with the given set of
positive and negative samples.

Since we want to find a clearing restarting automaton, we leave this se-
lection set to the default Weak Clearing Assumptions item. Our first attempt
will be to enter the positive samples: ab, aabb and aaabbb into Postive
Samples TextBox. These words can be separated by whitespace or commas:
,, ;. Since it is not allowed to leave the other Negative Samples TextBox
empty, we enter the following negative samples into it: aab, abb. After that,
we click on Infer Button. The result is shown in Figure 2.18 and the inferred
consistent automaton is shown in Figure 2.19.

It is easy to see, that the resulting automaton is consistent with the given
set of positive and negative samples, but it does not recognize the target lan-
guage L. We only mention that it is sufficient to add the following negative
samples: aaab, abbb, aaabb, aabbb, to Negative Samples TextBox in
order to obtain the desired automaton. The reason is that these negative
samples will filter out the undesired instructions, as is shown in Debug Out-
put in Figure 2.20.
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Figure 2.16: Inference Dialog.

Figure 2.17: Assumptions.
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Figure 2.18: Inference Dialog.

Figure 2.19: Inferred Consistent Automaton.
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Figure 2.20: Debug Output.
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